New reinforcement learning algorithm for robot soccer

  • M Yoon Stellenbosch University
  • J Bekker Stellenbosch University
  • S Kroon Stellenbosch University

Abstract

Reinforcement Learning (RL) is a powerful technique to develop intelligent agents in the field of Artificial Intelligence (AI). This paper proposes a new RL algorithm called the Temporal-Difference value iteration algorithm with state-value functions and presents applications of this algorithm to the decision-making problems challenged in the RoboCup Small Size League (SSL) domain. Six scenarios were defined to develop shooting skills for an SSL soccer robot in various situations using the proposed algorithm. Furthermore, an Artificial Neural Network (ANN) model, namely Multi-Layer Perceptron (MLP) was used as a function approximator in each application. The experimental results showed that the proposed RL algorithm had effectively trained the  RL agent to acquire good shooting skills. The RL agent showed  good performance under specified experimental conditions.

Downloads

Download data is not yet available.

Author Biographies

M Yoon, Stellenbosch University
Industrial EngineeringPhD student
J Bekker, Stellenbosch University
Industrial EngineeringAssociate Professor
S Kroon, Stellenbosch University
Computer Science DivisionProfessor
Published
2017-06-16
Section
Research Articles