A semi-supervised segmentation algorithm as applied to k-means using information value

DG Breed, T Verster, SE Terblanche

Abstract


Segmentation (or partitioning) of data for the purpose of enhancing predictive modelling is a well-established practice in the banking industry. Unsupervised and supervised approaches are the two main streams of segmentation and examples exist where the application of these techniques improved the performance of predictive models. Both these streams focus, however, on a single aspect (i.e. either target separation or independent variable distribution) and combining them may deliver better results in some instances. In this paper a semi-supervised segmentation algorithm is presented, which is based on k-means clustering and which applies information value for the purpose of informing the segmentation process. Simulated data are used to identify a few key characteristics that may cause one segmentation technique to outperform another. In the empirical study the newly proposed semi-supervised segmentation algorithm outperforms both an unsupervised and a supervised segmentation technique, when compared by using the Gini coefficient as performance measure of the resulting predictive models.

Full Text:

PDF


DOI: http://dx.doi.org/10.5784/33-2-568

Refbacks

  • There are currently no refbacks.





ISSN 2224-0004 (online); ISSN 0259-191X (print)

Powered by OJS and hosted by Stellenbosch University Library and Information Service since 2011.


Disclaimer:

This journal is hosted by the SU LIS on request of the journal owner/editor. The SU LIS takes no responsibility for the content published within this journal, and disclaim all liability arising out of the use of or inability to use the information contained herein. We assume no responsibility, and shall not be liable for any breaches of agreement with other publishers/hosts.

SUNJournals Help