A partitioning scheme for solving the 0-1 knapsack problem

M.F. Kruger, J.M Hattingh

Abstract


The application of valid inequalities to provide relaxations which can produce tight bounds, is now common practice in Combinatorial Optimisation. This paper attempts to complement current theoretical investigations in this regard. We experimentally search for "valid" equalities which have the potential of strengthening the problem's formulation. Recently, Martello and Toth included cardinality constraints to derive tight upper bounds for the 0-1 Knapsack Problem. Encouraged by their results, we partition the search space by using equality cardinality constraints. Instead of solving the original problem, an equivalent problem, which consists of one or more 0-1 Knapsack Problem with an exact cardinality bound, is solved. By explicitly including a bound on the cardinality, one is able to reduce the size of each subproblem and compute tight upper bounds. Good feasible solutions found along the way are employed to reduce the computational effort by reducing the number of trees searched and the size of the subsequent search trees. We give a brief description of two Lagrangian-based Branch-and-Bound algorithms proposed in Kruger for solving the exact cardinality bounded subproblems and report on results of numerical experiments with a sequential implementation. Implications for and strategies
towards parallel implementation are also given.

Full Text:

PDF


DOI: https://doi.org/10.5784/19-0-179

Refbacks

  • There are currently no refbacks.





ISSN 2224-0004 (online); ISSN 0259-191X (print)

Powered by OJS and hosted by Stellenbosch University Library and Information Service since 2011.


Disclaimer:

This journal is hosted by the SU LIS on request of the journal owner/editor. The SU LIS takes no responsibility for the content published within this journal, and disclaim all liability arising out of the use of or inability to use the information contained herein. We assume no responsibility, and shall not be liable for any breaches of agreement with other publishers/hosts.

SUNJournals Help