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Abstract
Cross-impact analysis relies on decision makers to provide marginal probability estimates of
interdependent events. Generally, these have to be revised in order to ensure overall system
coherency. This paper describes cross-impact analysis experimentation in which a Monte
Carlo based approach and a difference equation approach, respectively, were used to revise
these marginal probabilities. The objective of the study was to determine the consequences
of such revisions on the expected impact rankings of these events. A cross-impact analysis
system was developed and used to conduct the experiments. The experiments show that
the impact ranking of interdependent events may indeed depend on the technique used for
revising event marginal probabilities. Moreover, the Monte Carlo technique generates a world
view closer to the one of the decision makers, while the world view generated by the difference
equation technique differs from that of the decision makers.
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1 Introduction

The government of the Republic of South Africa, like other governments across the world,
has realised the importance of information technology for economic growth. Consequently,
a drive towards developing e-skills programs has gained momentum. A working group
comprising of industry representatives, government agents and academy was inaugurated
by the Minister of Communication to address, among others, an e-skills strategy that will
bring about e-skills development. It is in the light of this initiative that the working group
identified scenario analysis methods — a forecasting exercise — as a tool to support the
formulation of an e-skills strategy for the country.

The process of forecasting futures over a time horizon of say 10 to 15 years, requires
decision makers and experts to have access to possible alternative futures from which to
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make choices. The main aim of futures studies is to systematically explore, create and
analyse probable future developments to enhance decisions taken for the future [1]. If the
future could be determined by the past and present, futures research would have been a
definite exercise.

Unfortunately, unprecedented events [8] also do play a significant role in shaping the
future, and it is required of us to account for these unprecedented events in exploring
possible futures. Moreover, the evolution of the future is shaped by controllable events
such as social, economic, political, cultural, environmental and technological actions. It is,
therefore, essential that decision makers understand the full range of possible alternatives
in order to improve the decision making process. Cross-Impact Analysis (CIA) and scenario
generation enable decision makers to explore alternative futures [8].

This article reflects work that was undertaken by members of the aforementioned working
group. The purpose was to gain a sense of the validity of CIA as a scenario analysis
instrument in terms of its robustness and sensitivity to data inputs. We believe that
the results are of general interest to those who use or might potentially use the method.
Further work based on live data is currently underway as part of the working group’s brief,
and will be reported once completed and publication clearance has been obtained.

Among the important highlights of CIA is its ability to establish a ranking of interdepen-
dent events. Such a ranking could either be from least to most likely to occur, or — as
in the present case — from least to highest expected impact. Event ranking relies on the
determination of a full range of important impacts resulting from interactions between
interdependent events. Event interactions reveal causal linkages in terms of the level at
which an occurrence of one event is expected to increase or decrease the likelihood of
occurrence of other events.

Generally, the CIA methodology entails the identification of crucial causal linkages, as
well as the execution of sensitivity analysis to establish the impact of possible alternative
developments and to reveal insignificant events that are to be isolated. The types of
sensitivity analysis may be with respect to (a) the impact of the occurrence of certain
events, (b) the impact of the non-occurrence of certain events and (c) the impact of policy
changes [7].

The successful application of sensitivity analysis requires the ranking of events. By high-
lighting events that play a significant role, decision makers are enabled to systematically
explore, create and analyse probable futures. The testing for possible alternative futures
involves the evaluation of direct change of probabilities and causal interplay that takes
place among events. The strength of a CIA technique is its ability to take cognisance of the
impacts that separate components may have upon one another [11] and to reveal critical
events that are actors or reactors within those components. This makes CIA techniques
considerably different from older techniques such as Delphi [3] for future forecasting.

In this paper, we report on CIA experimentation in which two techniques are used to
revise marginal probabilities of interdependent events. The first technique is based on
Monte Carlo simulation, and the second on the difference equation approach pioneered by
Turoff [14]. The objective of the study was to determine the effect of marginal probabilities
revision on the ranking of interdependent events in terms of their probable (or expected)
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impact. The remainder of the paper is organised as follows. In Section 2, we summarise
related work. In Section 3, we describe the methodology to build a cross-impact analysis
system that was used to conduct the CIA experimentation. In Section 4, we describe the
experimentation to determine the effects of marginal probabilities revision on the ranking
of interdependent events. In Section 5, we give a brief conclusion of the paper.

2 Related work

There are several variants of CIA techniques. In general they involve decision maker
estimates of marginal probabilities of interdependent events, and possibly also estimates
of conditional probabilities of these events.

The marginal probability of an event designates the probability that it will occur — i.e.
without regard to the influence that the occurrence of other events might have on the
probability of this event’s occurrence. The conditional probability of an event estimates
the event’s occurrence probability, subject to the occurrence of some other event.

Some CIA systems also make use of estimates of cross-impact factors in relation to these
interdependent events. A cross-impact factor of an event is an estimation of the level
and/or direction of impact that the event will make if and when it occurs. These factors
are generally recorded in a matrix in which a cell entry designates the impact that a
column-specified event is estimated to have on a row-specified event.

Various systems require decision makers to supply various sets of inputs. Examples include
(a) event marginal probabilities, occurrence conditional probabilities and non-occurrence
conditional probabilities [14]; (b) event marginal probabilities, occurrence conditional
probabilities and a causal cross-impact matrix [2]; and (c) event marginal probabilities,
occurrence conditional probabilities and times of impartation [1]. Keeping the number
of inputs solicited from decision makers to a minimum can definitely help to (a) improve
system prediction accuracy, (b) minimize input errors and (c) save decision makers from
the rigour of having to simultaneously supply many inputs.

There are many CIA techniques [4, 10, 14] that have proposed the revision of the marginal
probabilities of events. Some other CIA techniques [1, 2] consider revising the cross-impact
matrix, instead of the marginal probabilities of events, in order to improve the accuracy
of ranking events. Other CIA techniques [1, 9, 13] considered event ranking by classifying
interdependent events into influential, dependent, key, excluded and neutral categories of
events.

In this paper the important reason why we have to revise inputs supplied by decision
makers is to eliminate possible inconsistencies. For example, inconsistencies can naturally
occur between marginal and conditional probabilities of events, thereby violating the fun-
damental laws of probability calculus. For decision makers, it is practically impossible
to correctly enumerate all possible causal interactions between events to reflect the world
views of the modelled system.

This study considers ways of revising event marginal probabilities assumed to have been
provided by decision makers, and determines the effect this revision has on the ranking of
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events in terms of expected impact. We keep the number of inputs supplied by decision
makers to a minimum by allowing two types of inputs, namely marginal probabilities and
a causal cross-impact matrix. Since the expected impact depends on conditional probabil-
ities (as well as on the original cross-impact matrix) we also have to update these proba-
bilities whenever the marginal probabilities are changed. The details of this methodology
are discussed in the next section.

3 Methodological design

We assume that decision makers have identified a set of relevant events, together with
an estimate of the marginal probability that these events will occur, as well as a causal
cross-impact matrix. Our subsequent methodology then involves four computational steps,
discussed in the next four subsections respectively:

• computation of revised marginal probabilities,

• computation of consistent occurrence conditional probabilities,

• computation of a likely causal cross-impact matrix or a revised causal cross-impact
matrix, and

• ranking of events.

Figure 1 illustrates the overall architecture of our CIA system that was used for the exper-
imentation. At the higher level, the system receives two forms of inputs from the decision
makers, namely marginal probabilities and a causal cross-impact matrix. The output of
the system is a ranking of scores computed with regard to the probable (expected) impact
of the various events. At the lower levels, the inputs supplied by the decision makers are
taken through the four computational steps to realise the output.

3.1 Computation of revised marginal probabilities

The first computational step is to calculate revised marginal probabilities from the marginal
probabilities and causal cross-impact matrix supplied by the decision makers. The Monte
Carlo and difference equation techniques are separately employed to revise marginal prob-
abilities of events.

3.1.1 The Monte Carlo approach

The Monte Carlo approach [4, 10, 11] comprises the following:

(a) Random selection of an event to test for its occurrence or non-occurrence.

(b) Random selection of a real number in the interval [0, 1] to compare with the estimated
marginal probability of the randomly selected event to test for occurrence. If the
probability of the randomly selected event is greater than the randomly selected
real number, then the event is considered to have occurred; otherwise the event is
considered not to have occurred.
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Figure 1: Architecture of the CIA system used in this paper.

(c) The probabilities of the remaining events are revised depending on whether the
selected event has or has not occurred. The way in which this revision happens is
briefly explained below.

(d) Step (a) – (c) are repeated until each event is tested for occurrence or non-occurrence
in each play.

All the probabilities are then returned to their initial values and this entire process is
replayed 500 times [11]. The relative frequency of occurrence of each event for all plays
determines the revised probability of the event.

The probability revision required in step (c) above requires further explanation. We note
that if it is determined in step (b) that event j has occurred, then it is reasonable to
assume that the new probability of event i occurring in the next Monte Carlo iteration
is provided by an estimate of the conditional probability, p(i | j). Similarly, if it is
determined in step (b) that event j has not occurred, then the conditional probability
p(i | j̄) of i occurring if j did not occur serves as a new estimate of p(i) in the next
Monte Carlo iteration. A more detailed discussion of how these conditional probabilities
may be computed from current probability estimates and from cross-impact data follows
in the next section. Note that the computation of conditional probabilities is discussed
separately, because such computation is a necessary step after the computation of revised
marginal probability estimates, whether by a Monte Carlo approach as discussed above,
or by the difference equation method, as discussed next.



6 MI Mphahlele, OO Olugbara, SO Ojo & DG Kourie

3.1.2 The difference equation method

The second method that we investigated for revising marginal probabilities of interde-
pendent events is based on the difference equation method [14]. The method assumes
the existence of a set of n equations expressing each of the probabilities of n events as a
function of the n− 1 probabilities. Thus each difference equation is enunciated as

p(i) = pi(p(1), p(2), . . . , p(i− 1), p(i+ 1), . . . , p(n)). (1)

The set of difference equations may also include variables expressing causal interactions
of potential events not specified by the event list. If an individual estimator receives new
information that requires a change in his/her estimates for any of the marginal probabili-
ties, the change is consistent with the difference equation (1). Hence this equation can be
written as the boundary value problem

δp(i) =

{
0 if p(i) = 0 or p(i) = 1∑n

k 6=i
∂p(i)
∂p(k)δp(k) + ∂p(i)

∂β δβ otherwise,
(2)

where β is considered as a collective measure of the impact of those events that are not
included in the specified set.

The difference equation approach [14] is a so-called cascading perturbation-based tech-
nique. In each iteration, or cascade, the event whose marginal probability is closest to one
or zero is determined — i.e. the event most likely to occur or not occur, as the case may be.
The event’s current marginal probability is then stored as that event’s final marginal prob-
ability. However, for perturbation purposes, the event is assumed to have occurred / not
occurred. Based on this assumption, new marginal probabilities of the remaining events
are computed. These “perturbations” are continued until the outcome is established for
all events.

In each iteration, the probability p(i) of the ith event is recalculated using the Fermi-Dirac
type of equation,

p(i) =
1

1 + exp

−γi − n∑
i 6=k

cikp(k)

 ,

which is a solution to (2). Here γi may be interpreted as a term that accounts for the
impact of unknown external events on event i. Each parameter γi is a function of original
or unrevised marginal probabilities of events and the causal cross-impact matrix. It is
computed as

γi = φ(p(i))−
n∑
k 6=i

cikp(k),

where

φ(p(i)) = ln

(
p(i)

1− p(i)

)
is a measure of occurrence ratio for expressing the likelihood of the occurrence of an event.



Cross-impact analysis experimentation 7

3.2 Computation of consistent conditional probabilities

The second step of the computation is to compute consistent occurrence conditional prob-
abilities of events. The so-called constant likelihood ratio method described in Duval et
al. [4] is used to accomplish this computational task.

Using this method, the conditional probability p(i | j) of the ith event given that the jth

event has occurred, is calculated from the likelihood ratio, rij , as

p(i | j) =
rijp(i)

1 + (rij − 1)p(i)
.

The value of rij is derived from the corresponding cross-impact factor cij via the piecewise
equation

rij =


(r−1)cij+a

a if cij ≥ 0

a
(1−r)cij+a if cij < 0.

(3)

Here it is assumed that cross-impact factor estimates are based on a scale in the interval
[−a, a]. Generally the parameter a is chosen in the interval [1, 10], varying according to
the needs of the study concerned. Similarly, the parameter r can be any value larger than
0. Its choice fixes the range of likelihood ratio values as [1r , r].

Figure 2 illustrates the relationship between the constant likelihood ratio, rij , and the
cross-impact factor, cij , in (3). The value for a used in Figure 2 is 5, and various graphs
for r = 4, 6, 8, 12 have been plotted. The non-linear relationship between rij and cij
is such that rij remains in the interval [1r , r]. Note that a positive cross-impact factor
indicates that a driving event enhances a driven event, and results in a high likelihood
ratio. Conversely, a negative cross-impact factor indicates that the driving event inhibits
the driven event and is associated with a likelihood ratio close to 0.

2
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8

10
r = 12

r = 10

r = 6

r = 4

r = 8

0
-8 -6 -4 -2 0 2 4 6 8

cij

rij

Figure 2: Relationship between the likelihood ratio and cross-impact factor.

The mapping of a cross-impact factor described by (3) reflects the symmetry of the re-
lationship between the conditional probability and the marginal probability based on the
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likelihood ratio. This symmetric relationship can be observed by plotting the graph of
conditional probability against marginal probability for a particular r value. An example
can be found in Duval et al [4].

Note that the computed value of p(i | j) by the likelihood ratio method, as shown in (3),
can fall outside the acceptable range of [0, 1] for a probability [6]. This problem can arise if
the computed conditional probability p(i | j) value violates the [0, 1] range on probabilities,
or if the conditional and marginal probabilities, taken together, violate Bayes’ Theorem.
Consequently, it is required that

p(i | j)− ≤ p(i | j) ≤ p(i | j)+,

where the model of De Kluyver and Moskowitz (cited in Nguyen and Dunn [12]) provides
the bounds

p(i | j)− = max

{
0,
p(i) + p(j)− 1

p(j)

}
and

p(i | j)+ = min

{
1,
p(i)

p(j)

}
on the conditional probabilities. (Note that Sarin’s model (also cited in Nguyen and
Dunn [12]) gives similar bounds on joint probabilities.)

If the limit constraint is violated, the p(i | j) value is replaced by the mean of the proba-
bility limits to achieve consistency between conditional and marginal probabilities. Thus,
it follows that

p(i | j) =
p(i | j)− + p(i | j)+

2
. (4)

The mean of a data sample as a measure of central tendency is a candidate representation
of the sample.

A consistent occurrence conditional probability p(i | j) of an interdependent event given
that another event has occurred can be computed using the formulae

p(i | j) =

{
rijp(i)

1+(rij−1)p(i) if i < j

1 if i = j, and
(5)

p(j | i) =
rijp(j)

1+(rij−1)p(i) if i > j. (6)

The same procedure of validating the computed value of occurrence conditional probabil-
ity is applied when (5) to (6) are used to calculate occurrence conditional probabilities.
The occurrence conditional probability is then estimated via (4) if the limit constraint is
violated. It is easy to verify that the likelihood ratio method described by (5) and (6)
for estimating the occurrence conditional probability give a higher enhancing or inhibiting
effect than the mean limit method that (4) describes.

3.3 Computation of likely causal cross-impact matrix

The third step of the computation is to calculate the likely causal cross-impact matrix
using pair-wise matrix multiplication [2]. The likely cross-impact matrix L(i, j) = [`ij ]
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is formed by multiplying each element of the occurrence conditional probability matrix
P (i, j) by the corresponding element of the causal cross-impact matrix C(i, j). Thus, it
follows that


`11 `12 · · · `1n
`21 `22 · · · `2n
...

...
. . .

...
`n1 `n2 · · · `nn

 =


p(1 | 1)c11 p(1 | 2)c12 · · · p(1 | n)c1n
p(2 | 1)c21 p(2 | 2)c22 · · · p(2 | n)c2n

...
...

. . .
...

p(n | 1)cn1 p(n | 2)cn2 · · · p(n | n)cnn

 . (7)

3.4 Ranking of interdependent events

The final step of the computation is to rank interdependent events using classical matrix
multiplication. Using the likely and expected impact method [2], each element ei of the
expected impact vector E(i) = [ei] ∈ Rn is calculated from the likely cross-impact matrices,
L(i, j), and from the revised marginal probabilities of events P (i) to give the ranking score
ei (i = 1, 2, . . . , n) of each event as follows.

e1
e2
...
en

 =


`11 `12 . . . `1n
`21 `22 . . . `2n
...

...
. . .

...
`n1 `n2 . . . `nn




p(1)
p(2)

...
p(n)

 . (8)

Note that the net expected impact can be obtained from equation (8) by summing all the
computed ranking scores — i.e.by summing the expected impacts of all events.

4 Implementation and discussion of results

The purpose of the experimentation is to determine the effect of the revision of marginal
probabilities on the ranking of interdependent events. Two numerical examples considered
for the experimentation are a 3 × 3 cross-impact matrix system taken from [2] and a
10× 10 cross-impact matrix system taken from [5]. Tables 1 and 2 show the causal cross-
impact matrices in which a driving event (column) is estimated to impact — positively or
negatively — on a driven event (row) to the extent indicated in the corresponding cell1.

At the bottom of each table, the originally estimated marginal probabilities of the respec-
tive events are also provided. The value of a for the 3×3 matrix is 5, while for the 10×10
matrix, it is 3. Throughout this experiment the r value used in (3) was 10.

1The authors of the two texts from which these respective systems were taken ascribe different inter-
pretations to the diagonal entries. In the 3 × 3 case, the author proposes that a diagonal entry should
represent the overall impact of the relevant event on the system under study. In the 10×10 case, the more
traditional interpretation is rendered, namely that an event’s occurrence should be viewed as vacuously
having no impact on its occurrence. These differing interpretations have no material bearing on the results
of the present study.
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Events 1 2 3

1 -5 -3 2
2 2 3 4
3 -2 2 5

P (i) 0.70 0.50 0.40

Table 1: The 3× 3 causal cross-impact matrix, where the column events (driving events) affect

the row events (driven events).

Events 1 2 3 4 5 6 7 8 9 10

1 0 0 0 1 1 -1 0 -1 0 1
2 0 0 1 -1 0 -1 1 -1 0 0
3 1 2 0 0 1 0 1 0 1 1
4 1 0 0 0 1 3 0 -1 0 1
5 2 0 1 2 0 2 0 1 1 0
6 1 0 0 2 2 0 0 -1 0 1
7 0 0 0 0 0 0 0 0 0 0
8 -1 0 0 0 0 1 1 0 0 1
9 1 1 1 1 1 1 -1 1 0 1
10 1 1 1 1 1 1 0 1 0 0

P (i) 0.80 0.10 0.50 0.50 0.60 0.60 0.23 0.50 0.30 0.25

Table 2: The 10 × 10 causal cross-impact matrix, where the column events (driving events)

affect the row events (driven events).

4.1 Ranking order experiments

Table 3 shows the original Unrevised (UNR), Monte Carlo Revised (MCR) and Difference
Equation Revised (DER) marginal probabilities of events 1, 2 and 3.

P (1) P (2) P (3)

UNR 0.70 0.50 0.40
MCR 0.66 0.57 0.40
DER 0.82 0.12 0.40

Table 3: Marginal probabilities for the 3× 3 system.

In terms of these probabilities, the world view generated by the Monte Carlo technique
is close to the world view of the decision makers. However, there is a clear difference
between the world view generated by the difference equation method and the world view
of the decision makers; in terms of rankings, event 2 is adjudged the least probable by the
difference equation method, but not by the decision makers.

After revising the conditional probabilities as described in §3.2, these probabilities were
then used in equation (7) to estimate the revised cross-impact factors, `ij . In turn, these
were used in equation (8) to compute the the expected impact values (e(1), e(2) and e(3))
of the interdependent events in the 3× 3 system.

In Figure 3 these expected impact values, resulting from the Monte Carlo (MC), the
original, and the difference equation (DE) probabilities, respectively, are ranked. There
is no difference in the ranking orders generated for this smaller system; in each case,
event e(2) has the highest rank, followed by e(3), followed by e(1).
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Original Probability DE Revised ProbabilityMC Revised Probability

e(3)

e(1)

e(2) e(2)

e(3)

e(1)

e(2)

e(3)

e(1)

Figure 3: Comparison of expected impact ranking order for a 3× 3 system.

P (1) P (2) P (3) P (4) P (5) P (6) P (7) P (8) P (9) P (10)

UNR 0.80 0.10 0.50 0.50 0.60 0.60 0.23 0.50 0.30 0.25
MCR 0.72 0.14 0.66 0.66 0.76 0.68 0.24 0.52 0.63 0.62
DER 0.13 0.10 0.22 0.06 0.06 0.29 0.21 0.70 0.27 0.26

Table 4: Marginal probabilities for the 10× 10 system.

This entire exercise was then repeated for the larger 10×10 system. Table 4 gives original
decision makers (UNR), Monte Carlo-computed (MCR) and difference equation-computed
(DER) marginal probabilities of the events 1, 2, . . . 10. Inspection of the values suggests
that the probability world view generated by the MCR method is fairly close to that
of UNR. On the other hand, the probability world view generated by the DER method
appears to be rather different from UNR. These impressions about the probability rankings
can be confirmed and quantified by computing Spearman’s rank correlation coefficient, ρ.
As seen in the first row of Table 5, ρ(MCR,UNR) in the case of the probability data is
0.988—a value so close to 1 that the rankings are almost identical. On the other hand,
ρ(DER,UNR) with respect to probability data comes to 0.697, which weakly suggests a
positive correlation in the probability data.

MCR DER

Original vs Revised P 0.988 0.697
Original vs Revised e 0.919 −0.191

Table 5: Spearman’s rank correlation coefficient, ρ, for the 10× 10 system.

Again, using equation (8), the expected impact values (e(1), e(2) . . . e(10)) of the inter-
dependent events in the 10 × 10 system were computed. Figure 4 visually represents the
rankings of these expected impact values, and the second row of Table 5 gives Spearman’s
rank correlation coefficient, ρ, for this data. It shows that the expected impact rankings
derived from the Monte Carlo-revised probabilities remain very strongly positively corre-
lated with the rankings based on the original probabilities (ρ(MCR,UNR) = 0.919). On
the other hand, the rankings derived from the different equation probability revisions show
practically no correlation whatsoever with the original rankings (ρ(DER,UNR) = −0191).

Clearly, therefore, in this 10×10 system, the ranking orders generated by the two methods
differ somewhat with respect to original versus revised probabilities, and the ranking orders
differ decisively with respect to original versus revised expected impact.
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Original Probability DE Revised ProbabilityMC Revised Probability
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Figure 4: Comparison of expected impact ranking order for the 10× 10 system.

4.2 Sensitivity of initial probability estimates

The Mean Net Expected Impact (MNEI) is the mean of the net expected impacts over all
events, given by

∑n
i=1 e(i)P (i). A sensitivity experiment was conducted to determine the

impact of change in probability (as input variable) on MNEI (as output variable). This
was done by selecting the most influential event and varying its event probability in the
range of 0.1 to 1 while keeping probabilities of the remaining (n− 1) events fixed.
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Figure 5: Relationship between MNEI and probability for the 3× 3 system.

Figure 5 shows the result of the sensitivity experiment to determine the impact of proba-
bilities revision on the ranking of interdependent events for the case of a 3×3 system. The
result shows a linear relationship between MNEI against probability. It can be observed
from the figure that the graph of MNEI computed from unrevised marginal probability
against probability is closer to the graph of MNEI computed from Monte Carlo revised
probability against probability, but farther from the graph of MNEI computed from dif-
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ference equation revised probability against probability.

Figure 6 shows the result of the sensitivity experiment for the case of a 10 × 10 system.
The result also shows a linear relationship between MNEI against probability. It can also
be observed from the figure that the graph of MNEI computed from unrevised marginal
probability against probability is closer to the graph of MNEI computed from Monte Carlo
revised probability against probability, but farther from the graph of MNEI computed from
difference equation revised probability against probability.
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Figure 6: Relationship between MNEI and probability for the 10× 10 system.

The results of the experimentation generally show that in an asymptotic case, the ranking
of interdependent events depends on the technique used for revising events’ marginal
probabilities. Moreover, the Monte Carlo technique generates a world view closer to the
one of the decision makers, while the world view generated by difference equation technique
differs from that of the decision makers. The synonymous patterns of the graphs of MNEI
against probability suggest that marginal probabilities revision can be a useful process for
ranking interdependent events.

5 Conclusion

The objective of this paper was to determine the effect of marginal probabilities revision
on the ranking of interdependent events. Two methods based on Monte Carlo and dif-
ference equation approaches were separately used to conduct the marginal probabilities
revision process. A CIA system was developed and used to conduct the experimentation
to determine the effect of marginal probabilities revision on the ranking of interdependent
events.

The results of the experimentation show that the ranking of interdependent events may
depend quite significantly on the method used for revising the marginal probabilities of the
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events — the respective methods decidedly do not lead to equivalent or near-equivalent
outcomes.

Moreover, in the present examples, the Monte Carlo method generated a world view closer
to the initial one of the decision makers, while the world view generated by difference equa-
tion method differed quite substantially from that of the decision makers. This remained
true, also when the original marginal probability of the most influential event was varied
over a range of possible values.

However, one cannot at this stage conclude that one marginal probabilities revision method
is better than the other. The difference equation method theoretically takes into account
the influence of external forces which may impact on the selected events. This might be
an important reason for the difference in the world views of the decision makers and that
generated by the difference equation method. In the future, we hope to further investigate
a marginal probabilities revision method that gives a better improvement of the world
view of the decision makers.

In addition, we have started the process of eliciting the views of various stake-holders and
decision makers with regard to drivers (events) of e-skills development in South Africa.
To date more than 30 drivers have been proposed. These are being assessed in terms
of their estimated probability of occurrence and their estimated impact on the e-skills
development objective. The present study will inform the way in which we set about
revising their initial probability estimates. It will also inform the sensitivity assessments
of scenario planning exercises which are to be undertaken.
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