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Abstract

In this paper order batching is extended to a picking system with the layout of a
unidirectional cyclical picking line. The objective is to minimise the walking distance
of pickers in the picking line. The setup of the picking system under consideration is
related to unidirectional carousel systems. Three order-to-route closeness metrics are
introduced to approximate walking distance, since the orders will be batched before
the pickers are routed. All metrics are based on the picking location describing when a
picker has to stop at a location to collect the items for an order. These metrics comprise
a number of stops, a number of non-identical stops and a stops ratio measurement.
Besides exact solution approaches, four greedy heuristics as well as six metaheuristics
are applied to combine similar orders in batches. All metrics are tested using real life
data of 50 sample picking lines in a distribution centre of a prominent South African
retailer. The capacity of the picking device is restricted, thus the maximum batch
size of two orders per batch is allowed. The best combination of metric and solution
approach is identified. A regression analysis supports the idea that the introduced
metrics can be used to approximate walking distance. The combination of stops ratio
metric and the greedy random heuristic generate the best results in terms of minimum
number of total cycles traversed as well as computational time to find the solution.
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1 Introduction

The need for greater product variety and shorter response times emphasises a companies’
ability to establish efficient logistical operations. This efficiency is, amongst others, de-
termined by the operation of its warehouses or distribution centres (DC) that define the
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nodes in the distribution network [48]. In a supply chain connecting production plants
with end customers warehousing cannot be eliminated. The role of warehouse operations
is constantly changing and thus has to remain flexible. A DC focuses on the consolida-
tion and accumulation of numerous products from various suppliers to many customers.
Products from different suppliers arrive in bulk at the DC. The stock is then turned into
customer or store orders for delivery to the DC’s customers [18].

Van den Berg & Zijm [54] subdivide DC activities into four categories namely receiving,
storage, order picking and shipping. From the total logistics cost of a company, approx-
imately 25% can be attributed to the cost of operating a warehouse [23]. Therein, the
basic service of a DC is order picking that makes up for 50% to 65% of the operational
cost accounting for labour, capital and supporting activities [54]. De Koster et al. [12]
define the process of order picking as retrieving products from storage or buffer areas and
turning them into specific orders in response to a customer request. The design of the
order picking system is crucial to its performance. The number of orders together with
the items per order that are picked in a day, the average size of an order and the layout
of the storage racks are key parameters to set up an efficient order picking system [10].

The order picking system of a prominent South African retailer (referred to as the Retailer)
with around 2 000 outlets or stores is considered here. A set of non-uniform orders is the
result of a large number of stores with different sizes and various customer profiles that
needs to be handled by the DC on a daily basis. A key characteristic of the Retailer’s
operations is the central planning of the inventory kept at a store level. Instead of stock
requested by store managers, planners at a central planning department assign stock that
is available at the DC to stores. Thereby, the central planning department allocates stock
keeping units (SKUs) to stores. Planners in the central planning department decide on the
number of SKUs destined for each store after the arrival of the SKUs at the DC. Planners
issue instructions to the DC about the SKUs and the stores where they should go. The
DC then selects a subset of SKUs to be picked in a single picking wave to satisfy all store
requirements for that set of SKUs. In this study, the term order will thus refer to the set
of store requirements for a single store for all SKUs selected to be processed in a wave. A
wave is processed on a picking line in the DC. A single SKU is assigned to a single location
on a specific picking line for each wave. The activities of populating the line with SKUs,
the actual picking process and removing excess stock from the line comprise a picking
wave [36].
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m
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m i

Figure 1: A schematic representation of a picking line with m locations.



Picking location metrics for order batching 163

A schematic representation of a picking line with m locations is depicted in Figure 1. At
the Retailer’s DC a picking line consists of 56 locations with a conveyor belt placed in
the middle that has two access gates. From the storage area, a single SKU is assigned to
a single location on the picking line. The number of items of each SKU to be picked for
all stores are known prior to the start of a picking wave. Each location has the storage
capacity of five pallets of an identical SKU. Additional stock is kept on the floor space
between different picking lines for easy refill avoiding stock-outs. Therefore, stock does
not have to be replenished from storage racks during a picking wave. Pickers move around
the conveyor belt in a clockwise direction picking all orders. A voice recognition system
(VRS) guides the pickers through the picking process by sending a picker to the closest
required SKU. Therefore, the underlying picking strategy can be summarised as pick the
closest SKU in a clockwise direction. The picking system is categorised as a picker-to-parts
system. Before the picking of an order is started, an empty carton is placed on the trolley
and registered through a barcode with the VRS. After picking, full cartons and finished
orders are placed on the conveyor belt for further processing in the dispatch area of the
DC [34, 35].

The setup of the picking system at the DC shows many similarities to unidirectional
carousel systems, if the SKUs are viewed as moving relative to a static picker. A carousel is
an automated warehouse system that can be used for picking small and medium products.
It is designed as a rotatable circuit of shelving holding multiple SKUs. A picker, who
remains at a fixed location during the picking process, operates the system. In literature
this picking system is referred to as a parts-to-picker system, since the storage location
travels to the picker instead of the picker travelling to the storage location. A bidirectional
carousel can rotate in both directions to bring the required SKU in front of the picker,
whereas a unidirectional carousel can only move in one direction [3]. The cyclical setup
of the picking line and the assumptions that one picker processes one order as well as the
automation of pick sequencing by the VRS resembles a unidirectional carousel. However,
the presence of wave picking is the main difference in the Retailer’s system to the carousel
systems studied in literature. Not all SKUs may be picked and new orders may be added to
the set during the picking operation in typical carousel systems. Therefore, optimisation
approaches make use of expected SKU mixes in orders that are derived from historical
data [33]. The deterministic nature of the orders (because all orders are known and fixed
when a wave of picking starts) is unique to the Retailer’s picking system in operations
research literature [36].

Planning for order picking includes the order batching problem. Orders that are requested
are subsequently released for fulfilment. This set of orders needs to be picked and accumu-
lated for packing and shipping in a picking wave [22]. The combination of customer orders
into picking orders describes the process of order batching [24]. According to Wäscher
[55] order batching answers the question of how customer orders should be grouped into
picking orders to minimise the total length of all picking tours necessary to collect all items
while no customer order is split, given a set of customer orders consisting of a number of
items, an assignment of items to storage locations in the order picking system of a ware-
house and the capacity of a picking device. Tours that efficiently shorten the picking time
can be generated, since several orders are picked simultaneously leading to a reduction in
labour cost [11].
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While there has been intensive research on the order batching problem in single-block
warehouses with parallel aisles, according to Nicolas et al. [42] little research has been
published on carousel systems. The literature on carousels can be categorised into either
determining the pick sequence on a carousel or finding the best storage location for a
product in a carousel. No study on order batching applied to a manual unidirectional
carousel systems as implemented by the Retailer could be found in literature.

This study aims at answering the question if the order batching problem (OBP) can be
applied to the specific layout of a unidirectional cyclical picking line. The orders will be
batched before the pickers are routed. However, walking distance can not be determined
a priori and thus a realistic approximation for distance has to be provided. Different
location-based metrics are thus developed to estimate walking distance, since calculating
walking distance is too time consuming. Different algorithms that correlate with these
metrics to solve the order batching problem are tested. A suggested combination of metric
and algorithm to minimise the total distance travelled by a picker to collect all orders
during a picking wave concludes the study.

A brief overview on the literature of order-batching in single-block and automated storage
and retrieval warehouse setups is given in Section 2. The model will be described in
Section 3 including assumptions, measurements and an integer programming formulation
of the problem. The location-based order-to-route closeness metrics will be proposed in
Section 4. In Section 5 different heuristic approaches comprised of greedy heuristics and
metaheuristics are introduced to solve the OBP in reasonable time. A case study with
real life data from the Retailer is used to test the performance of the combinations of
metrics and algorithms in Section 6. In Section 7 a summary as well as an outlook on
future research opportunities is provided.

2 Literature review

The formulation of the standard order batching problem (OBP) was introduced and proved
to be NP-hard in the strong sense by Gademann & Velde [19] for a single-block warehouse
with parallel aisles. However, if no batch contains more than two orders the problem can
be solved in polynomial time. The branch-and-prize algorithm developed by Gademann
& Velde [19] solved test instances of up to 32 orders to optimality. Additionally, Henn &
Wäscher [25] solved instances of up to 40 orders. Nevertheless, their solution approach
required a time-consuming preprocessing of all feasible batches. Furthermore, Muter &
Öncan [41] solved instances of up to 100 orders with their specially tailored column-
generation based algorithm. In practice the number of customer orders is likely to exceed
these test instances, but the exact algorithms proposed so far are not able to consistently
solve larger instances. Nicolas et al. [42] introduced the OBP to a vertical carousel system
that is closely related to the layout of the unidirectional cyclical picking line. The OBP
is formulated as a mixed integer linear program (MILP). Nevertheless, the MILP has to
be stopped after 30 minutes due to time constraints for test instances over 50 orders. In
the Retailer’s DC a picking line can service up to 1 500 orders. Larger problem instances
must be solved using heuristics. Therefore, construction heuristics like seed algorithms
and saving algorithms have been introduced to solve the OBP.
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A straight-forward heuristic is the first-come-first-served method that groups together the
first entries of the list of orders as close as possible to the predetermined maximum batch
size. Then the next orders are grouped using a similar logic until all orders form part of
a batch [20].

Seed algorithms start by initiating batches, then allocating orders to batches and terminate
through a stopping rule when a batch has been completed. The objective is to minimise
the total travel distance for collecting all orders. De Koster et al. [11] evaluated seed
algorithms in a parallel aisle warehouse proposing the seed selection rules of the farthest
storage location. Ho & Tseng [27] investigated several location- and aisles-based seed
algorithms in the standard OBP environment of a single-block parallel aisle warehouse.
Ho et al. [26] extended this study with further distance- and area-based selection rules in
this environment. In their comparative study Pan & Liu [45] evaluated four initial seed
selection and four order addition rules investigating the OBP in an automated storage and
retrieval system that consists of a single storage rack with equally sized storage locations
serviced by a single storage and retrieval machine.

Saving algorithms in the OBP are based on the Clarke and Wright-algorithm (CW) [9] and
thus the time saving that can be obtained by comparing the collection of orders in one route
to individual picking [11]. The minimum additional aisles heuristic proposed by Rosenwein
[47] starts with calculating a score for each pair of orders in terms of additional aisles to
pick from in the cases that orders are picked simultaneously or separately. Therefore,
their algorithm is capable of generating fewer but shorter picking tours when compared
to Gibson & Sharp [20]. The first OBP version of the algorithm (CW i) described by
De Koster et al. [11] computes savings for each combination of orders. Each time a new
combination of orders to batches has been determined the savings are recalculated in the
second version of the algorithm (CW ii). Bozer & Kile [6] improved this version of the
algorithm by introducing a normalised time saving value for each pair of orders. Each
time an order has been assigned the initial savings matrix is modified resulting in a third
version (CW iii) proposed by De Koster et al. [11]. Additionally, Elsayed & Unal [17]
proposed a small and large algorithm. Therefore, orders are either classified as small or
large according to a predefined value before they are assigned to batches. In general seed
algorithms are more central processing unit (CPU) time saving than saving algorithms.
The order-to-route closeness metric is central to all types of heuristics [22].

Metaheuristics are designed to solve a wide range of hard optimisation problems and can
thus also be applied to the OBP. An iterated local search that explores a neighbourhood
to identify a new solution with a smaller objective function value was applied to the OBP
by Henn et al. [23]. Albareda-Sambola et al. [2] defined three neighbourhoods to introduce
the OBP to a variable neighbourhood search. A tabu search that simulates the human
memory processes including a tabu list was applied to the OBP by Henn & Wäscher
[25]. Matusiak et al. [38] introduced a simulated annealing approach that simulates the
cooling process of metal to the OBP. Moreover, Öncan [43] introduced a combination of
an iterated local search with a tabu threshold to the OBP. A hybrid of a large adaptive
neighbourhood search and a tabu search was developed by Žulj et al. [56] based on the
findings of Henn & Wäscher [25] and Öncan [43].
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3 Model formulation

The problem environment of this study is a DC of the Retailer. The DC is made up of
several unidirectional cyclical picking lines functioning in parallel. Thus one such picking
line will be in the centre of attention. This layout differs significantly from the parallel-
aisle or the single-aisle automated storage and retrieval warehouses that are frequently
studied in academic literature.

The following assumptions are made while modelling the Retailer’s order picking system.

1. The orders that need to be picked during a wave as well as the SKUs and their
location in the picking line will be fixed a priori.

2. For movability the picking devices are small. However, SKUs are generally bulky.
Therefore, the capacity of the picking devices is currently restricted to accommodate
two orders at a time restricting the batch size to two.

3. A picker must complete the entire order before starting the next, packing stock
directly onto the trolley. When an order is completed or the carton is full, it is
placed on the conveyor belt for further processing.

4. It is assumed that a picker walks at a constant speed and that the time taken to
pick and pack a SKU or switch between orders is constant.

3.1 Measurements

The cycles traversed measurement, that was introduced by Matthews & Visagie [36],
counts the number of cycles that have to be traversed to pick all items requested during
a picking wave as a measure of distance travelled to pick all orders. This measurement
counts the total number of cycles required to pick and link all orders.

In the system currently in use by the Retailer each order is processed by one picker
completing one order at a time. Orders are sequentially assigned to the next available
picker based on a fixed list of orders. In effect each order is assigned randomly, since
the assignment does not take the previous order or the current position of the picker
into consideration. Therefore, each picker picks a random sequence of orders. Matthews
& Visagie [36] proposed a nearest end heuristic as an easily implementable option to
determine a sequence of orders that minimises the distance that pickers have to travel
during a wave. The nearest end heuristic sequentially selects the order with the nearest
ending position from the current picking position. Therefore, it simultaneously considers
the order sequence and the item sequence within the order. An example of a unidirectional
cyclical picking line with 10 locations and 10 SKUs is depicted in Figure 2. Four different
orders are indicated by the colours green, blue, red and yellow. The different shapes
represent the SKUs and locations respectively. If the nearest end heuristic is applied to
this example, the Order 4 (yellow) would be picked first, starting at the first location and
ending at location seven. This would be followed by the picking of Order 1 (green), then
Order 3 (red) and finally the Order 2 (blue). In total a picker has to traverse four cycles
to collect all orders of the picking wave. The nearest end heuristic is easily reproducible.
Therefore, it is used in determining an order sequence to test the effectiveness of the
various batching logics in terms of number of cycles traversed.
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Figure 2: Schemantic representation of a picking line with 10 SKUs and 10 locations.

This study focuses on location-based order-to-route-closeness metrics. Each picking loca-
tion defines where a picker has to stop at a location to pick items for an order. Different
picking location or so-called stop metrics will be developed to identify compatible orders
in terms of number of stops in common. The assumption is that a good overlap in stops
may lead to a reduction in total walking distance.

3.2 Exact formulation

Minimising the completion time is equivalent to minimising the travel distance to collect
all orders in a picking wave. Therefore, the objective is to minimise the incompatibility
in terms of distance between orders that are described by a picking location metric to
obtain the smallest number of cycles that have to be traversed. Orders must be combined
in batches of size two. This can be formulated as an integer programming model. Let

n be the number of orders,
cij be the cost in terms of incompatible stops to batch order i and order j,

and define the set of variables as

xij =

{
1, if order i and order j are in the same batch,

0, otherwise.

The objective is to

minimise
n∑
i=1

n∑
j=i+1

cij xij (1)
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subject to

i−1∑
k=1

xki +

n∑
j=i+1

xij = 1 i = 1, . . . , n (2)

xij ∈ {0, 1}

{
i = 1, . . . , n

j = i+ 1, . . . , n.
(3)

The incompatibility between orders in terms of stops expressed by a picking location metric
is minimised by objective function (1). The set of triangular inequality constraints (2) and
the binary condition (3) assign each order to only one other order in the case of a symmetric
cost matrix.

The problem formulated in (1) – (3) is in essence an assignment problem. Another option
to solve the assignment problem is the quick match algorithm that was introduced by Orlin
& Lee [44]. It is based on the successive shortest path algorithm and combines a forward
Dijkstra with a reverse Dijkstra algorithm. Moreover, heuristics are included to speed up
its performance. Therefore, this algorithm will also be included for testing purposes.

4 Picking location metrics

The simplest way of introducing order batching to a unidirectional cyclical picking line
would be to implement a first-in-first-out (FIFO) approach. According to the FIFO rule
the first entries of a list of orders are grouped together until the predetermined maximum
batch size is reached [20]. FIFO is often used in literature as a benchmark to compare
different batching methods. It will also be used here to compare the metrics that measure
the incompatibility of orders in terms of stops. An example of the picking locations of four
orders is illustrated in Table 1. Employing the nearest end heuristic as a routing strategy
(Section 3.1), a picker has to traverse four cycles to collect all four orders. If FIFO is
applied as the random batching strategy and a batch is only allowed to contain two orders
as illustrated in Figure 3, then the first two orders would form batch one (in orange) and
batch two would be composed of Order 3 and Order 4 (in purple). The circles represent
the movement of a picker showing that only two cycles have to be traversed. The number
of circles traversed will indicate the walking distance to compare different metrics.

Picking line location example

Locations: 1 2 3 4 5 6 7 8 9 10

Order 1
Order 2
Order 3
Order 4

Table 1: The picking locations of the four orders.
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Figure 3: Schematic representation of order batching applied to a picking line.

In the remainder of this section, the stops metric, the non-identical stops metric and the
stops ratio that approximate the compatibility between orders are introduced. Addition-
ally, a small example on the basis of Table 1 will be provided to explain each metric.

The stops metric in matrix T with general element tij is a location-based batching rule. It
results in the orders with the smallest total number of picking locations forming a batch.
The logic of this metric combines the seed selection rule of choosing the smallest number
of non-overlapping picking locations introduced by Elsayed & Stern [16] with the smallest
number of additional picking locations rule proposed by Ho & Tseng [27]. The number of
picking locations of each order when combined with every other order is calculated first.
This results in the total number of picking locations that a picker has to visit if those two
orders are batched. The orders with the smallest number of combined picking locations
are then selected to form a batch. Therefore, each location at which a picker has to stop
to pick for one of the orders is counted. On the contrary, counting all locations a picker
passes not stopping to collect items for any order may result in the combination of orders
which only have a small number of picking locations in common. This option is thus not
further investigated.

The stops metric tij , with the sets Si and Sj , containing all stops for orders i and j may
be calculated as

tij = |Si|+ |Sj | − |Si ∩ Sj |. (4)

Batching Order 1 with S1 = {2, 3, 7, 8, 9} and Order 2 with S2 = {4, 5, 7} results in the
stops entry t12 = 5 + 3− 1 = 7. Calculating the stops metric for all orders in the example
results in a symmetric matrix as illustrated in Table 2a. Combining the orders with the
exact solution approach, as described in Section 3.2, batches the orders with the smallest
number of picking locations. Therefore, the first batch could contain Order 1 and 3 and
the second batch could be composed of Order 2 and 4 in this example.

An additional location-based rule is the non-identical stops metric in matrixN with general
element nij . Batches are formed by combining orders with the smallest number of non-
identical picking locations as a result of the application of this metric. Ho & Tseng [27]
proposed the greatest number of identical picking locations rule. The logic of nij is contrary
to their rule. The picking locations for combining each order with every other order are
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T =


1 2 3 4

1 − 7 8 7
2 7 − 7 6
3 8 7 − 8
4 7 6 8 −


(a) The T matrix.

N =


1 2 3 4

1 − 6 5 5
2 6 − 5 5
3 5 5 − 6
4 5 5 6 −


(b) The N matrix.

R =


1 2 3 4

1 − 0.86 0.63 0.71
2 0.86 − 0.71 0.83
3 0.63 0.71 − 0.75
4 0.71 0.83 0.75 −


(c) The R matrix.

Table 2: The T, N and R matrices for the picking line example.

obtained in the first step. However, the order with the smallest number of non-identical
picking locations between orders becomes the accompanying order in this case. Therefore,
each location where a picker stops to collect for only one of the orders is counted to identify
non-identical picking locations.

The non-identical stops matrix N , with element nij , can be calculated as

nij = |Si|+ |Sj | − 2 |Si ∩ Sj |. (5)

In the example Order 1 with stops S1 = {2, 3, 7, 8, 9} and Order 3 with S3 = {3, 5, 6, 7, 8, 10}
result in the non-identical stops entry n13 = 5 + 6− 6 = 5. Table 2b results from calculat-
ing the non-identical stops metric for all orders in the example. Using the exact solution
approach the combinations of orders with the smallest number of non-identical picking
locations could result in the combination of Order 1 and 4 as well as Order 2 and 3.

The stops ratio metric in matrix R with general element rij combines the non-identical
stops with the combined picking locations of the orders. This metric is also based on the
location of items in an order. The non-identical stops metric is divided by the stops metric
and thus results in the stops ratio metric. The closer the stops ratio is to zero, the lower
the incompatibility of orders in terms of walking distance.

Formulating the stops ratio metric can be achieved by dividing nij by tij . Therefore, the
stops ratio is calculated as

rij =
nij
tij
. (6)

For batching Orders 1 and 4 with stops S1 = {2, 3, 7, 8, 9} and S4 = {1, 2, 6, 7}, the stops
ratio metric r14 = 5/7 would result in 0.71. In Table 2c all stops ratios for all orders from
the example are illustrated. Order 1 and 4 as well as Order 2 and 3 could be combined
when applying the exact solution formulation.

Even in this small example as described in Table 1 the picking location metrics measure
the incompatibility of orders in terms of distance differently and thus suggest different
batch combinations (1, 2 and 3, 4 in FIFO, 1, 3 and 2, 4 in T , 1, 4 and 2, 3 in N as well as
R). With bigger data sets the differences in using different metrics become more evident.
Furthermore, picking lines with a size of up to 2 000 orders have over a million different
possible combinations in determining the best match between two. Applying an exact
solution approach would make checking all possible combinations very time consuming.
Therefore, heuristic and metaheuristic solution approaches that reduce computational time
are described in the following section.
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5 Heuristic solution approaches

After the orders have been measured using one of the proposed picking location metrics,
different algorithms to combine the orders in batches of size two for a unidirectional cyclical
picking line in the Retailer’s DC are described in this section. Four greedy heuristics as
well as six metaheuristics are introduced.

5.1 Greedy heuristics

The four different variations of greedy heuristics include a greedy top-down, a greedy
bottom-up, a greedy random and a greedy smallest entry approach. All four variations
search through the symmetric matrices generated by applying the stop metrics for mini-
mum entries.

The greedy top-down (GTD) starts searching the matrix from the first row until it reaches
the last row in a top-down fashion. Thereby, the tuple kij corresponding to the minimum
entry mkj of row k is recorded in a set G to indicate that orders k and j are batched. Then
both row k and column j are removed. This process continues until all rows and columns
of the matrix are eliminated. At this time set G has the cardinality n, where n is the
size of the problem. The greedy bottom-up (GBU) and the greedy random (GR) progress
in a similar way. The GBU starts at the last row and searches until it reaches the first
row. The GR searches the rows in a random sequence. This is displayed in Algorithm 1.
Furthermore, a greedy algorithm that globally searches for the smallest entry (GS) in the
matrices was developed. This algorithm then eliminates rows and columns in the same way
as the other greedy heuristics. There is no difference between searching rows or columns,
since the picking location metrics generate symmetric matrices [13].

Algorithm 1: Greedy random heuristic (GR)

Input : A picking location metric M consisting of a n× n matrix with entries mij , an empty
solution set G

Output: The solution set G as a list of batched orders

1 G ← ∅;
2 while | G | < n/2 do
3 k ← random row from M ;
4 mkq = min

j
[mkj ];

5 G ← G ∪ (k, q);
6 Remove row and column k from M ;
7 Remove row and column q from M ;

8 end
9 Return G;

5.2 Metaheuristics

Only single-solution based methods have been chosen for the six metaheuristics, since
the objective is to generate batches of size two. These methods start with a single ini-
tial solution, then moving away from it to describe a trajectory in the search space [4].
The algorithms are described in this section, while the parameters for each metaheuristic
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controlling the trade-off between intensification and diversification have been calibrated
specifically for the problem statement of the unidirectional cyclical picking line in the Re-
tailer’s DC. For each metaheuristic starting from parameter values found in literature the
number of configurations used to calibrate differ between algorithms, due to their ability to
find a solution within a limited number of iterations that allows for an overall optimisation
of the picking process. Including a range in number of orders as well as SKUs 12 sample
picking lines are used to determine the configuration for each metaheuristic that provides
the lowest number of total cycles traversed.

The iterated local search (ILS) generates a new starting solution for the following iteration
by perturbing the local optimum found at the current iteration. Therefore, the local
search procedure is not repeatedly applied to a randomly generated starting solution,
but to the best solution found in the previous iteration. The underlying assumption is
that the perturbation mechanism, that is the key feature of the ILS, is able to provide a
solution that lies in the basin of attraction of a better local optimum [5]. The ILS and
its framework was first defined by Stützle [52]. In Algorithm 2 the pseudocode of the ILS
for the OBP is displayed. The acceptance criterion incorporates a restart of the search
after a predefined non-acceptance counter thus incorporating a simple form of history. By
means of parameter calibration 12 configurations with different termination criterion and
non-acceptance counters under limited time have been tested on the sample picking lines.
The lowest numbers of total cycles traversed were found incorporating the configuration
with a termination criterion tI of 5 and a non-acceptance counter aI of 3.

Algorithm 2: Iterated local search (ILS)

Input : An initial solution sa, a cost function c(·) as well as a non-acceptance counter aI and a
termination criterion tI

Output: The best solution s as a list of batched orders

1 aI , tI ← 0;
2 sa ← initiate a starting solution;
3 s← sa;
4 s∗ ← perform a local search on s;
5 while the termination criterion tI is not met do

6 s
′
← perturb s∗;

7 s∗
′
← perform a local search s

′
;

8 if c(s∗
′
) ≤ c(s∗) then

9 s∗ ← s∗
′
;

10 aI = 0;

11 else
12 aI = aI + 1;
13 if non-acceptance counter aI is not met then
14 tI = tI + 1;
15 else
16 s∗ ← restart search;
17 tI = 0;

18 end

19 end
20 s← s∗;

21 end
22 Return s;
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The variable neighbourhood search (VNS) explores the solution space by dynamically
changing neighbourhoods around a given solution. After an initial solution is introduced,
the main cycle of the VNS consists of the steps shaking, local search and move. In the
shaking step a solution s

′
is randomly selected in the hth neighbourhood of the current

solution. If the local search produces a better solution s∗
′

than s, the solution is updated
and the algorithm stays in the first neighbourhood. Otherwise, the algorithm moves to
explore the next neighbourhood [5]. Mladenović & Hansen [40] introduced the structure
of this algorithm. The pseudocode displayed in Algorithm 3, applies the VNS to the
OBP. In this study three neighbourhoods are defined after testing different configurations
in numerical experiments. In the first neighbourhood the order with the highest cost
according to the picking location metric is swapped with the lowest, then the second
highest and lowest are swapped as well as the third highest and lowest are interchanged
respectively. The termination criterion tV has been set to 5 through parameter calibration
including 6 different configurations of termination criterion tested on the sample picking
lines under time restriction.

Algorithm 3: Variable neighbourhood search (VNS)

Input : An initial solution sa, a set of neighbourhood structures H with h = 1, 2, 3, a cost
function c(·) as well as a termination criterion tV

Output: The best solution s as a list of batched orders

1 tV ← 0;
2 H ← generate a set of neighbourhood structures with h = 1, 2, 3;
3 sa ← initiate a starting solution;
4 s← sa;
5 while the termination criterion tV is not met do
6 h← 1;
7 while in one of the defined neighbourhood structures do

8 s
′
← select a random solution in the hth neighbourhood Hh(s) of s;

9 s∗
′
← perform a local search on s

′
;

10 if c(s∗
′
) ≤ c(s) then

11 s← s∗
′
;

12 h = 1;

13 else
14 h = h+ 1;
15 end

16 end
17 tV = tV + 1;

18 end
19 Return s;

The variable neighbourhood descent (VND) is a variation of the variable neighbourhood
search. The VND is a deterministic version of the VNS excluding the shaking step [53].
The search steps of the VND are illustrated in Algorithm 4. The neighbourhood structure
stays the same as in the VNS apart from the termination criterion tD that is set to
50 through parameter calibration by testing 10 configurations with varying termination
criterion on the sample picking lines under limited time. The VND is able to find a feasible
solution faster than the VNS in this study, thus more configurations can be tested.
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Algorithm 4: Variable neighbourhood descent (VND)

Input : An initial solution sa, a set of neighbourhood structures H with h = 1, 2, 3, a cost
function c(·) as well as a termination criterion tD

Output: The best solution s as a list of batched orders

1 tD ← 0;
2 H ← generate a set of neighbourhood structures with h = 1, 2, 3;
3 h← 1;
4 sa ← initiate a starting solution;
5 s← sa;
6 while in one of the neighbourhood structures and the termination criterion tD is not met do

7 s
′
← perform a local search on s in the hth neighbourhood Hh(s);

8 if c(s
′
) ≤ c(s) then

9 s← s
′
;

10 h = 1;

11 else
12 h = h+ 1;
13 end

14 end
15 tD = tD + 1;
16 Return s;

In a tabu search (TS) the history of the search is used to escape from local optima as well
as to implement an exploitative strategy. A defined number of previously encountered
solutions is recorded in a tabu list and thus forbidden to be revisited. The list can be
described as a short term memory that prevents the algorithm from endless cycling and
forces the search to explore different solution spaces. The length of the tabu list thus
controls the memory of the search process. Glover [21] first introduced the tabu search
algorithm. The mechanisms of the human memory inspired the main characteristic of this
algorithm. Its application to the OBP is illustrated in Algorithm 5. The configuration
with its tabu list length l set to 0.8 relative to the size of the problem and its termination
criterion tT set to 3 provides the lowest number of total cycles traversed when testing 32
configurations with different length of tabu lists and termination criterion on the sample
picking lines under time restriction.

Inspiration for the simulated annealing (SA) algorithm comes from the annealing technique
used by metallurgists. Material is heated up to a high temperature and then lowered down
slowly to obtain a well ordered state of minimum energy. Applying this technique, the
objective function of the optimisation problem is minimised similar to the energy of the
material [5]. The starting solution and the annealing scheme for the temperature decrease
are initiated. At each iteration, a new solution is accepted with a certain probability
determined by the Metropolis criterion [1]. The SA algorithm was introduced by Kirk-
patrick et al. [29] and by Černỳ [7] independently. In Algorithm 6 the structure of the SA
is illustrated. The annealing scheme is crucial to the performance of the algorithm [14].
Therefore, three different approaches in determining the annealing scheme have been anal-
ysed for this application. A constant lowering of the temperature, dynamically changing
the temperature according to the acceptance of a number of perturbations as well as
restarting to the initial solution after a number of non-acceptances of the new solution
have been tested. Thereby, re-heating is incorporated in two variations in the second and
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Algorithm 5: Tabu search (TS)

Input : An initial solution sa, a neighbourhood N (s), a tabu list length l, a cost function c(·) as
well as a termination criterion tT

Output: The best solution s as a list of batched orders

1 tT ← 0;
2 TabuList← ∅;
3 sa ← initiate a starting solution;
4 s← sa;
5 while the termination criterion tT is not met do

6 s
′
← select the best solution in N (s) \ TabuList;

7 if c(s
′
) ≤ c(s) then

8 s← s
′
;

9 Update TabuList;
10 tT = 0;

11 else
12 tT = tT + 1;
13 end

14 end
15 Return s;

third configuration of the algorithm. Numerical experiments showed that using the accep-
tance of a perturbation performs best in the application of this study. Additionally, the
parameters initial temperature ta was set to 1.0, the alpha value α to 0.9, the acceptance
counter aS to 12 as well as the termination criterion tS to 3 through fine-tuning initial
temperature, alpha value, acceptance counter and termination criterion in 120 different
configurations under limited time.

The great deluge (GD) algorithm is a variation of the SA algorithm. It differs in the
acceptance of solutions and is easier to apply, since it only has one parameter that needs
to be determined. The metaphor this algorithm uses is that of a hiker that tries to keep her
feet dry while visiting the peaks of an explored area under a slowly rising water level [14].
Dueck [15] proposed this algorithm and it is applied to the OBP as illustrated in the
pseudocode of Algorithm 7. The parameters have been calibrated to a rain speed r of 0.5
as well as a termination criterion tG that is set to 5 with 40 different configurations for rain
speed and termination criterion tested on the sample picking lines under time restriction.

6 Experimental results

The proposed picking location metrics that approximate the distance needed to pick orders
before pickers are routed and thus aims at minimising the picking incompatibility between
orders as well as the algorithms that combine orders in batches on the basis of these
metrics are tested on 50 sample picking lines. Thereby, the best combinations of metric
and algorithm are determined and the best combination to introduce order batching to
a unidirectional cyclical picking line is identified. Information about the data set, the
experiment and the statistical analysis of the results are provided in the following sections.
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Algorithm 6: Simulated annealing (SA)

Input : An initial solution sa, a neighbourhood N (s), an initial temperature ta, a alpha value α, a
cost function c(·) as well as an acceptance counter aS and a termination criterion tS

Output: The best solution s as a list of batched orders

1 aS , tS ← 0;
2 T ← ta;
3 sa ← initiate a starting solution;
4 s← sa;
5 while the termination criterion tS is not met do

6 s
′
← randomly select a solution in N (s);

7 if c(s
′
) ≤ c(s) or accept s

′
with probability exp(− c(s

′
)−c(s)
T

) then

8 s← s
′
;

9 aS = aS + 1;
10 tS = 0;

11 else
12 aS = 0;
13 tS = tS + 1;

14 end
15 if the thermodynamic equilibrium is reached through acceptance counter aS then
16 T = T ∗ α;
17 aS = 0;

18 end

19 end
20 Return s;

Algorithm 7: Great deluge (GD)

Input : An initial solution sa, a neighbourhood N (s), a rain speed r, a cost function c(·) as well as
a termination criterion tG

Output: The best solution s as a list of batched orders

1 tG ← 0;
2 sa ← initiate a starting solution;
3 s← sa;
4 w ← c(s);
5 while the termination criterion tG is not met do

6 s
′
← randomly select a solution in N (s);

7 if c(s) ≤ c(s
′
) then

8 tG = tG + 1;
9 end

10 if c(s
′
) < w then

11 s← s
′
;

12 w ← recalculate with w − (w−c(s
′
))

r
;

13 tG = 0;

14 end

15 end
16 Return s;
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All algorithms were implemented in Python 3.6 [46]. These implementations were run on
an Intel (R) Core (TM) i7-7700 CPU at 3.60 GHz, 4 Cores, 8 Logical Processors running
Microsoft Windows 10 Enterprise 2016 LTSB [39]. The integer programmes were solved
by means of Lingo 11.0.1.3. [32]. Additionally, IBM SPSS Statistics 25 [28] was used for
the statistical analysis of the generated results.

6.1 Data

A set of real life historical data were obtained from the Retailer. These data were made
publicly available by Matthews and Visagie and can be accessed online [37]. For reporting
purposes, 50 sample picking lines were randomly selected and divided into large data sets
with more than 1 000 orders, medium data sets with 400 – 600 orders and small data sets
with less than 100 orders. Within these data sets the picking lines are subdivided with
respect to the number of SKUs into picking lines with a large, medium or small number
of SKUs. The variety in size and location of the different retail stores together with the
seasonality of the product portfolio lead to a set of non-uniform orders that is processed
by the DC on a daily basis.

6.2 Computational results

The integer programming formulation (IP) in (1) – (3) was employed to combine orders
based on the picking location metrics. The symmetric matrix resulting from applying
one of the metrics was turned into an upper triangular matrix already containing all
information needed to solve the problem more efficiently. Nevertheless, most test cases had
to be stopped after the time limit proposed by Nicolas et al. [42] of 30 minutes. An average
computational time of over 11 minutes per sample picking line without a guaranteed
solution within 30 minutes is not feasible in a real life application as planning of the lines
need to be completed in seconds. The picking lines that can be solved to optimality do
not justify the reduction in walking distance, since only the picking location metric is
solved optimally. Furthermore, solving to optimality is computationally expensive, thus
implementing the IP on a stronger solver to get a guaranteed solution does not yield a
return on time investment.

Applying the quick match algorithm (QM), seems to increase performance since the total
number of cycles traversed is lower for QM than for IP as illustrated in Figure 4a. Nev-
ertheless, QM is also not able to guarantee a solution within the set time frame and has
to be terminated before exceeding the time limit as well.

If an exhaustive optimisation of the picking system is aimed at, two additional decision
tiers have to be solved for each picking line determining where a SKU should be placed on
the picking line as well as on which picking line a SKU should be picked. In consultation
with the management of the Retailer a time frame of about 30 seconds per picking line
for combining all orders to batches would be feasible. Thereby, line managers do not have
to wait longer than a minute to solve all three decision tiers for a picking line.

Besides the time constraint, an upper and a lower bound help to evaluate the performance
of metric and algorithm combination in terms of solution quality. The worst case would
be to not introduce order batching. The upper bound would thus be at 46 711 total cycles
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traversed. The best case would be to reduce the walking distance by 50%, thus resulting
in an absolute lower bound of 23 356 total cycles traversed. Therefore, if no batching
was introduced the cycles traversed could be cut in two and put next to each other.
However, this would not result in a feasible solution as orders that overlap do not have the
same starting and end location. Linking up the starting and end locations would result
in a longer walking distance than the application of one of the picking location metrics.
Additionally, the benchmark incorporating a FIFO approach as discussed in Section 4 will
give a guideline of 25 451 cycles to evaluate the performance of the combinations compared
against a random batching approach. The lower bound as well as the FIFO benchmark
will be indicated by a red dashed line in the following graphs.
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Figure 4: Total number of cycles traversed and computational time per greedy heuristic per

metric.

Greedy heuristics choose the next best combination of orders in a greedy fashion and thus
speed up performance. All four greedy heuristics, namely the GTD, GBU, GR and GS,
are tested per metric on the 50 sample picking lines. For five test runs, the GR performs
best in terms of minimum number of cycles traversed on all 50 sample picking lines. It also
performs slightly better than the QM. This is depicted in Figure 4a. For 5 configurations,
the standard deviation in total number of cycles traversed for the stops metric is 28.96, for
the non-identical stops is 33.07 and for the stops ratio is 18.62. Calculating the coefficient
of variation by division of the mean shows that all metrics have a low variation in relation
to their means with stops at 0.12%, non-identical stops at 0.14% and stops ratio at 0.08%.
As illustrated in Figure 4b, all greedy heuristics have a comparable total computational
time of approximately 180 seconds, because of the similar mechanism of the algorithms.

Metaheuristics are higher level heuristics that do not have to be adapted deeply to a specific
problem, but that are able to escape local optima. Therefore, metaheuristics might get
even closer to the optimal solution of the minimum number of cycles traversed within
the predetermined time frame. All six metaheuristics ILS, VNS, VND, TS, SA and GD
are combined with the three picking location metrics. Test runs showed that using GR to
generate an initial solution performs better than initialising a random solution. Therefore,
a hybrid of GR with each metaheuristic is analysed. Each algorithm was run five times
with the same greedy starting solution for each run. However, the computational time
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restrictions resulted in the metaheuristics only being able to improve on the number of
cycles traversed in combination with the stops metric. This is depicted in Figure 5. For
the stops metric, the GD followed by the SA shows slightly better results in terms of
minimum number of total cycles traversed and computational time than the other four
metaheuristics.
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Figure 5: Box and whisker plots of the total cycles traversed per metaheuristic per metric.

All computational times per algorithm per metric for all 50 sample picking lines are illus-
trated in Figure 6. For all metrics the GR is the fastest, since all other metaheuristics are
hybrids including the time of the GR algorithm. Nevertheless, the GR is followed by the
GD- and SA-hybrid, while the VNS followed by the ILS and TS take the longest to get to
a solution.
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Figure 6: Box and whisker plots of the computational time per metaheuristic per metric.
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The hybridisation between metaheuristics may also lead to a better solution quality and
an improvement in computational time. Therefore, the combination of metaheuristics has
been tested for example picking lines, but has shown no constant improvement under the
time restriction.

Metaheuristics could not improve the solution quality under the time restriction for two
out of three picking location metrics. This raises the question whether the solution found
by GR is close to optimal (and thus few improvements exist) or the metaheuristics are
incapable of finding improvements on a poor solution found by the GR. To evaluate this
question a sample picking line in which the IP was able to find the optimal solution within
the time frame is analysed. For the stops metric possible combinations on a sample picking
line with 1 336 orders and 55 SKUs is investigated. The IP is able to generate the best
solution of 620 cycles that have to be traversed to pick all orders in 137.73 seconds. While
the GR algorithms is able to get to 631 cycles in approximately 5 seconds, the GD- as
well as the SA-hybrid are able to reach 629 cycles in almost the same time. The solution
are within 98.55% very close to the best solution. These results indicate that the more
computational time a metaheuristics is allowed to use, the closer it can get to the best
solution. However, if the walking distance could be reduced by 50% the lowest bound
would be at 594 cycles. A sample picking line with 1 356 orders and 51 SKUs is analysed
for the non-identical stops metric. It takes 169.72 seconds for the IP to generate the
best solution of 599 cycles that have to be traversed to collect all orders. None of the
metaheuristics is able to improve on the GR solution within the given time restrictions.
Nevertheless, the GR solution is within 99.50% the best solution for this metric, while the
lower bound for this example would be at 573 cycles. For the stops ratio metric a sample
picking line with 1 354 orders and 56 SKUs is investigated. The IP generates the optimal
solution of 583 cycles in 118.91 seconds that have to be traversed. No metaheuristic is
able to improve on the GR solution within the predetermined time restriction. However,
the solution is within 99.49% also very close to the best solution and the lower bound for
this example is at 555 cycles.

Figure 5 suggests the combination of the stops metric with GR-GD-hybrid, the non-
identical stops metric with GR as well as the stops ratio metric with GR, because of
the minimum number of total cycles traversed generated by these combinations. This is
supported by the lowest total computational times for these algorithms as illustrated in
Figure 6.

6.3 Statistical analysis

A regression analysis per location metric supports the application of location-based metrics
as approximations for walking distance before picker routing. The correlation between the
objective value per metric and the number of cycles traversed is evaluated. This results in
R2 = 0.783 for stops, R2 = 0.784 for non-identical stops and R2 = 0.776 for stops ratio.
This shows a strong correlation between all metrics and final walking distance. While the
approximation purpose of each metric is validated, the regression analysis does not provide
a basis for comparison of metrics, since the objective values of all metrics are expressed in
different units.
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Further inferential statistics are necessary to investigate the influence of metrics and al-
gorithms on the solution. Chiarandini et al. [8] propose either a univariate model for
analysing solution quality and computational time or a bivariate model combining both
measurements. This analysis will focus on the solution quality in terms of total number
of cycles traversed for all 50 picking lines, since the computational time has shown to be
suitable for an application in the operations of the Retailer’s DC. Therefore, A Welch-
ANOVA with a Games Howell post-hoc test, that is robust to the equality of means, is
used to analyse if there is a statistical difference by applying the three picking location
metrics. Furthermore, a two-way ANOVA investigates the additional influence of the
algorithm [49].

In Table 3, the Welch-ANOVA is statistically significant (F (2, 102) = 3 419.293, p =
3.3682E-94) emphasising the influence of each metric on the number of cycles traversed.
The post-hoc Games Howell test shows that the difference in cycles traversed is significantly
lower when using N (24 240± 29.993, p = 5.1011E-9) and R (24 230± 16.90, p = 5.1012E-
9) compared to T (24 693 ± 30.937) [30, 50]. Nevertheless, the two-way ANOVA reveals
no significant influence on the number of cycles traversed through the interaction between
metrics and algorithms (F (12, 84) = 0.047, p = 1.00) [31, 51].

Sum of squares df Mean square F p

Welch-ANOVA

Between metrics 4 883 348.648 2 2 441 674.324 3 419.293 3.3682E − 94**
Within metrics 72 836.914 102 714.087

Two-way ANOVA

Metrics 4 883 348.648 2 2 441 674.324 2 844.117 6.9709E − 78**
Algorithms 241.962 6 40.327 0.047 1.00
Metrics × algorithms 480.952 12 40.079 0.047 1.00
Error 72 114.00 84 858.50

Note: Two asterisks indicate significance at the 5% level or below.

Table 3: Welch-ANOVA on metrics and two-way ANOVA on metrics and algorithms.

Descriptive statistics are used to compare the best combinations of picking location met-
rics and their corresponding algorithms based on the homogeneous unit of total number
of cycles traversed for all 50 sample picking lines. These combinations are depicted in
Figure 4a. In general, N and GR as well as R and GR combined perform better in terms
of minimum number of cycles traversed when compared to the T and GR-GD hybrid
combination.

Moreover, stops ratio shows lower measures of central tendency than non-identical stops
with a mean of 24 230 compared to 24 240 as illustrated in Table 4b. Comparing the mea-
surements of variability between R and N, the range between maximum and minimum
total number of cycles traversed is 32.5% smaller for R. Furthermore, the standard devi-
ation of R is almost half the size of N resulting in smaller variance and thus providing a
metric-algorithm combination that seems more stable than N. Therefore, this comparison
suggests choosing the combination of stops ratio metric and greedy random heuristic to
introduce order batching to a unidirectional cyclical picking line.
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(a) Box-whisker plot for each combination.

T+GR-GD N+GR R+GR

Mean 24 693 24 240 24 230
Median 24 687 24 243 24 229
Range 76 77 52
Std.Dev. 30.937 29.993 16.900
Variance 957.104 899.558 285.600

(b) Descriptive statistics.

Table 4: Comparison between best combinations of metric and algorithm.

7 Conclusion

In this paper order batching has been introduced to a unidirectional cyclical picking line
as deployed in the layout of a South African retailer’s DC. Three location-based order-to-
route closeness metrics have been proposed to approximate the walking distance before
picker routing and thus identify compatible orders. The picking location metrics include
stops counting all locations a picker has to stop and pick for an order, non-identical stops
counting the locations a picker has to stop to pick for only one order and stops ratio de-
scribing the ratio between non-identical and combined stops. The assignment problem of
grouping orders in batches of size two has been solved with exact, greedy and metaheuris-
tic solution approaches. The exact solution approaches take too much computational time
to allow for an integrated optimisation approach. Therefore, four greedy heuristics in-
cluding a top-down, bottom-up, random and smallest entry search approach as well as six
metaheuristics namely an iterated local search, a variable neighbourhood search, a variable
neighbourhood descent, a tabu search, a simulated annealing and a great deluge algorithm
have been applied to 50 sample picking lines. The picking lines have been recorded from
real life data and vary in size by number of orders and SKUs. The algorithms terminate
after a reasonable computational time restriction to allow for a real life application. All
metrics and algorithms have been tested in different combinations to identify the best
combinations reducing the total number of cycles traversed. This results in the best com-
binations of stops and greedy random-great deluge, non-identical stops and greedy random
as well as stops ratio and greedy random.

These best combinations are then compared in terms of minimum number of cycles tra-
versed for all 50 picking lines. The stops ratio and greedy combination shows the lowest
average of 24 230 cycles within the five test runs. Therefore, this combination is recom-
mended to be applied if order batching is introduced to a unidirectional cyclical picking
line. Compared to the FIFO benchmark of 25 451 cycles through applying random batch-
ing, this is 4.80% less walking distance. If batching is not introduced to the unidirectional
cyclical picking line using this combination, pickers have to walk approximately 48.13%
further. Additionally, this combination is only 3.74% higher than the absolute lower bound
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of reducing 50% of the walking distance. The reduction in walking distance through the
combination of stops ratio and greedy random heuristic can be translated into time savings
leading to a direct decrease of picking cost.

The analysis of the generated results indicate two findings. Firstly, the metric applied
plays a more important role than the algorithm used to group the orders into batches.
Secondly, the more information about the location of the items of an order is available,
the better the results in terms of minimum number of cycles traversed. Therefore, future
work should incorporate more information in the metric about the specific layout of a
unidirectional cyclical picking. This could help to find an even better approximation of
walking distance and thus get even closer to the lower bound of saving 50% of walking
distance by picking two orders at a time.
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