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Abstract

Similar to the constrained facility location problem, the passive optical network (PON) plan-
ning problem necessitates the search for a subset of deployed facilities (splitters) and their
allocated demand points (optical network units) to minimise the overall deployment cost. In
this paper we use a mixed integer linear programming formulation stemming from network
flow optimisation to construct a heuristic based on limiting the total number of intercon-
necting paths when implementing fibre duct sharing. A disintegration heuristic is proposed
based on the output of a centroid, density-based and a hybrid clustering algorithm to reduce
the time complexity while ensuring close to optimal results. The proposed heuristics are
then evaluated using a large real-world dataset, showing favourable performance.

Key words: Integer programming, network flow optimisation, passive optical network, telecommuni-

cation network design

1 Introduction

In accordance with the current exponential growth in telecommunication network band-
width requirements, service providers are opting for optical fibre-based solutions for last-
mile deployment. With fibre interconnects moving from the backbone to the access net-
works and the accompanying large capital expenditure, optimisation of these networks
have become paramount. The main contender for these fibre-based access networks is
the Passive Optical Network (PON) [5]. A single optic fibre cable runs from a Central
Office (CO) to a cabinet housing a passive distribution unit called an optic splitter. In
the case of Fibre to the Home (FTTH), the optic signal is then distributed to a number
of smaller fibres running directly to termination points known as Optical Network Units
(ONUs) at customer premises. The PON topology is illustrated in Figure 1. Since these
fibres are installed in subterranean ducts, expensive trenches need to be dug all the way
from the CO to the customer. The problem is then to minimise the cost of connecting
customer premises to the CO by choosing appropriate locations for these splitters and
deciding which customers to connect to them.

A number of papers address this problem using both discrete optimisation and meta-
heuristic techniques. Although Li and Shen [17] incorporated fibre duct sharing into their
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Figure 1: Schematic layout of the PON topology

Random Allocation and Reallocation Algorithm (RARA) algorithm through the use of
constrained minimum spanning trees, most ignore this fundamental part in the deployment
phase of real-world networks. Since it would be impractical and expensive to dig a trench
for each individual fibre, a single duct usually contains a number of fibres that share a
part of their route to customer premises.

This paper introduces a way of using concepts from network flow optimisation to incor-
porate fibre duct sharing into a mixed integer formulation of the Passive Optical Network
Planning Problem (PONPP).

The rest of the paper is organised as follows: Work related to PONPP are discussed in
section 2, before PONPP is defined more formally in section 3. A mixed integer model is
given in section 4. The path and disintegration heuristics are given in sections 5 and 6.
Results from solving the model are discussed in section 7 before concluding the paper in
section 8.

2 Related work

PONPP has been studied for a number of years and authors typically take one of two
approaches; one based on exact models combined with valid inequalities or heuristics and
another based on meta-heuristics.

Khan [12] developed a greedy algorithm, which is based on the transformation of a popu-
lation density graph to one proportional to some Population Density Function. Minimum
distance allocation is then done on the transformed graph iteratively. Mitcsenkov et al. [22]
provides a Capital Expenditure (CAPEX) model for PONPP, which they solve for very
large problem instances using a tree-based heuristic algorithm known as the Branch Con-
tracting Algorithm (BCA). The same authors provide a general methodology to design
broadband infrastructure in [21]. Li and Shen did a comprehensive study on greenfield
PON planning in [17], introducing a heuristic called RARA which sequentially refines an
Mixed Integer Linear Programming (MILP) model solution through the use of simulated
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annealing. The model in question also takes into account the PON specifications in terms
of network reach and differential distance. The survivable PONPP has been studied thor-
oughly by Kantarci et al. [10], introducing three MILP models based on different service
availability solved using standard branch-and-bound before providing a greedy planning
heuristic in [11]. The multi-level PONPP is studied by Kim et al. [13], providing bounds
through linear relaxation as well as a two stage incremental improvement heuristic. Ouali
and Poon [23] developed a basic PONPP model and solved small test instances using
branch-and-bound.

A wide range of meta-heuristics have also been employed to solve PONPP, with genetic
algorithms (GA) being the most popular. Poon et al. [24] used a GA to identify splitter
locations, with a clustering heuristic to form PONs. Lv and Chen [20] and Kokangul and
Ari [14] address the multi-level PONPP using a GA, while Villalba et al. [29] studied
modified versions of PONPP with ring and bus topologies. Ahmad et al. [1] uses a GA
to solve PONPP, but optimises for minimum power consumption instead of minimum
deployment cost. Lakic and Hajduczenia [15] studied PONPP with the inclusion of non-
traversable obstacles through the use of convex hull mapping, which is then again solved
using evolutionary computing techniques. Finally, Xiong et al. [28] provides an algorithm
that is less vulnerable to local optima using ant colony optimisation.

PONPP is conceptually similar to the Connected Facility Location Problem (ConFL), first
introduced by Gupta et al. [9] and studied by a number of authors since. Starting from
ConFL, including trenching cost as an additional fixed cost assigned to every edge and
substituting facilities and demand points with splitters and ONUs respectively, we arrive
at the PONPP. Swamy et al. [25] provided a primal-dual 8.55-approximation algorithm
for ConFL while Gollowitzer and Ljubić [8] did a polyhedral and computational study on a
large number of formulations. Arulselvan et al. [2] introduced a multi-period incremental
formulation of the ConFL along with cover and cut-set inequalities solved using branch-
and-cut. The hop constrained ConFL was illustrated by Ljubić and Gollowitzer [18] using
a cut formulation on layered graph approach while Leitner et al. [16] studied the two-
architecture ConFL and provided a cut formulation Integer Linear Program (ILP). Finally,
Bley et al. [4] studied the survivable constrained ConFL problem and solved a number of
small instances using Bender’s decomposition in a branch-and-cut framework.

3 Problem definition

Assume an undirected graph G = {V, E} is given with edge costs ce ≥ 0, e ∈ E , a disjoint
partition J = {S,U} with S ⊂ V the possible splitter locations and U ⊂ V the set of fixed
ONU locations. The CO location is denoted by c ∈ V\J . Assume fixed deployment costs
cco ≥ 0, cs ≥ 0 and conu ≥ 0 for the CO, splitters and ONUs respectively and a splitter
capacity of κ. Furthermore, assume ct and cf is a cost per unit length of trenching and
fibre respectively.

In the case of PONPP, the objective is to find a subset of open facilities F, with every
element in U assigned to a single facility f ∈ F by distributing into Uf ⊆ U, all vertices
in Uf connected via a Steiner tree Tf rooted in f and all vertices in F connected via a
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Steiner tree T rooted in c so as to minimise the overall deployment cost

|F|cs +
∑

f∈F

cfℓ
c
f +

∑

f∈F

∑

j∈Uf

cf ℓ
f
j +

∑

e∈EU

ctℓe (1)

where ℓvu is the length of the shortest path between vertices u and v in the Steiner tree
with v as root and the set EU contains every edge used by a Steiner tree. ℓe is the
length of the edge e. The first term describes the splitter cost while the second and third
terms describe the fibre cost between CO and splitter, and splitter and Optical Network
Unit (ONU) respectively. The final term is the total trench cost.

Typically, the problem is formulated using directed arc based flows. This approach is
tractable for small data sets and for medium sized data sets if combined with strong
valid inequalities. These valid inequalities are the focus of many papers [2, 4, 16, 18] and
usually allows fast convergence. When moving to larger data sets however, the arc based
formulation suffers from memory problems due to the large number of constraints and
becomes intractable.

The above formulation can be transformed into a path-based formulation. Using con-
structed paths, this formulation automatically ensures that flow conservation holds and
therefore most of the constraints can be removed, resulting in a compact formulation.
PONPP can then be redefined using paths.

Define a commodity pair k ∈ K. The set K consists of all possible pairs of the CO and
splitters as well as all possible pairs of splitters and ONUs. For each commodity pair
k = {i, j} ∈ K, define a set P(k) ⊆ P of all non-cyclic paths between i ∈ V and j ∈ V.
Next, define a set E ⊆ E of all edges traversed in paths p ∈ P and a set P(e) ⊆ P containing
all paths that traverses edge e ∈ E. Conversely, E(p) ⊆ E is the set of all edges contained
within path p ∈ P.

Two additional constraints are applicable to PONs: maximum and differential network
reach. The total length of fibre connecting the CO with an ONU j ∈ U through a splitter
i ∈ S, i.e. the network reach, may not exceed a threshold ℓtotalmax due to optic loss. To avoid
synchronisation issues between ONUs, the difference between the maximum and minimum
network reach for a splitter i ∈ S may not exceed ℓdiffmax [5].

With paths representing fibre cables and edges representing trenches, PONPP then be-
comes the search for a subset of deployed splitters such that

• each ONU connects to one and only one splitter via a single path,

• each splitter connects to the CO via a single path,

• a maximum of κ ONUs can connect to a single splitter,

• the maximum and differential network reach constraints are satisfied and

• the sum of the deployment, path and edge costs are minimised.
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The non-cyclic paths in set P would typically be calculated by forming Steiner trees rooted
at c and i ∈ S with Steiner nodes i ∈ S and j ∈ U respectively. Another approach would be
to start with a reduced subset of paths and use column generation to generate additional
columns (paths) until no columns exist with negative reduced costs. In our approach, the
paths will be generated once at the onset using a heuristic specific to PONPP. Hence, the
set P will be treated as a parameter in the formulation.

4 Mixed Integer Formulation

From the above problem, a MILP model can now be formulated. Let yp indicate the usage
of the path p ∈ P and xe the usage of edge e ∈ E. Let ψi indicate the deployment of
splitter i ∈ S. ksoij ∈ K denotes the commodity pair of splitter i ∈ S and ONU j ∈ U while
kcsi ∈ K denotes the commodity pair of the CO and splitter i ∈ S. Parameter ℓp denotes
the total length of path p ∈ P while the variables ℓmin

i and ℓmax
i denote the minimum and

maximum network reach for splitter i ∈ S respectively. Let ℓe be the length of edge e ∈ E.
As done by Li and Shen [17], the introduction of a binary if-then variable dij , i ∈ S, j ∈ U
and a large value, ∆, allows the formulation of PONPP as follows:

(PONPP ) min cco +
∑

i∈S

ψics + |U|co+
∑

e∈E ctℓexe +
∑

p∈P cfℓpyp (2)

s.t.
∑

i∈S

∑

p∈P(ksoij )

yp = 1, ∀j ∈ U (3)

∑

j∈U

∑

p∈P(ksoij )

yp ≤ κψi, ∀i ∈ S (4)

∑

p∈P(e)

yp ≤ ∆xe, ∀e ∈ E (5)

ℓmin
i −

(

∑

p∈P(kcsi )

ypℓp +
∑

p∈P(ksoij )

ypℓp

)

≤ ∆dij , ∀i ∈ S,∀j ∈ U (6)

(

∑

p∈P(kcs
i
)

ypℓp +
∑

p∈P(kso
ij
)

ypℓp

)

− ℓmax
i ≤ ∆dij , ∀i ∈ S,∀j ∈ U (7)

∑

p∈P(ksoij )

yp ≤ ∆(1− dij), ∀i ∈ S, ∀j ∈ U (8)

ℓmax
i ≤ ℓtotalmax , ∀i ∈ S (9)

ℓmax
i − ℓmin

i ≤ ℓdiffmax, ∀i ∈ S (10)

yp ∈ {0, 1}, ∀p ∈ P (11)

xe ∈ {0, 1}, ∀e ∈ E (12)

ψi ∈ {0, 1}, ∀i ∈ S (13)

dij ∈ {0, 1}, ∀i ∈ S, j ∈ U (14)

Contraint set (3) ensures that each ONU connects to a splitter via a path while (4) limits
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the maximum number of ONUs per splitter as well as sets the splitter usage variable
ψi. The inequalities in (5) ensures that all edges of used paths are marked used as well.
To ensure numerical stability, the values of ∆ are set as small as possible, in this case
∆ = |P(e)|. Constraints (6)) and (7) sets the minimum and maximum network reach
parameters for each splitter while equation (8) activates the previous two constraints only
when paths between commodities are used. Finally, the inequalities (9) and (10) implement
the global PON fibre distance constraints.

The constraint set (5) can be substituted with 0 ≤ yp ≤ xe,∀p ∈ P,∀e ∈ E(p) to strengthen
the model relaxation, but this increases the number of constraints of the model and there-
fore the memory required to solve dramatically. For this paper, (5) will be left as is to
ensure model tractability for large instances.

Due to space limitations, the model in question incorporates only the fundamental con-
straints inherent to PONPP. For a more complete model that includes refinements such
as economies of scale, network coverage and non-symmetrical fibre costs, refer to [26].

5 Paths heuristic

It is evident that the set P will include an infeasible number of paths for large graphs.
Consider now how the paths are generated as a preprocessing step for each commodity
k ∈ K. As a first step, P(k) contains the shortest path between commodity pair k. In this
formulation of PONPP, the aim of generating additional longer paths to include in P(k)
is to increase the possibility of edges being shared between paths of different commodities.
However, it should be evident that during the generation procedure, a point exists where
generating a longer path will not result in a decrease in the objective function value. This
point is reached when the total additional fibre cost exceeds the cost saved if an additional
trench segment is shared. As this path generation process is independent of the fixed costs
cs, conu and cco, the only relevant costs involved are cf and ct. This reasoning is stated
formally in proposition 1.

Proposition 1 Let p∗ ∈ P(k) be the shortest non-cyclic path between commodity pair
k ∈ K with length ℓp∗. For PONPP as defined by (2)–(14), the set of paths Q(k) ⊂ P(k)
will not be found in the minimal solution, where ℓq > (1 + ct/cf )ℓp∗ ,∀q ∈ Q(k).

Proof: The cost of a shortest path p∗ ∈ P(k) with no fibre duct sharing is given by its
trenching and fibre components, i.e. cp∗ =

∑

e∈E(p∗) ctℓe + cf ℓp∗ . It follows that any fibre

duct sharing will result in a longer path p+ with length ℓp+. Let Es ⊆ E(p∗) be the edges
path p+ shares with other paths. Therefore, the total cost of path p+ can be given by
cp+ =

∑

e∈E(p∗) ctℓe −
∑

e∈Es
ctℓe + cfℓp+ . It is evident that if cp+ > cp∗ , path p

+ will not
be used in the minimal solution. Substituting and simplifying:

cfℓp+ −
∑

e∈Es

ctℓe > cf ℓp∗ (15)
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The maximum sharing that can occur is if all edges are shared, i.e. Es = E(p∗). Fur-
thermore, from the definition of a path, it is evident that ℓp∗ =

∑

e∈E(p∗) ℓe. Substitut-
ing into equation (15), we arrive at cfℓp+ − ctℓp∗ > cfℓp∗ , which can be rearranged to
ℓp+ > (1 + ct/cf )ℓp∗. �

o2

o1s
a b c

d e f

o2

o1s
a b c

d e f

Shortest  path

Exist ing path

Shared path

Figure 2: Fibre duct sharing opportunity when allowing for longer paths.

Figure 2 illustrates the significance of Preposition 1 by means of an example. The most
edges that can be shared by a path between s and o1 is to share edges (s,d), (d,e) and
(e,f) with the existing path between s and o2. If however the cost saved by sharing those
edges exceed the extra cost incurred to use a longer path, the path will not be selected in
the minimal solution. In fact, since no two commodities can have both the same source
and destination nodes, proposition 1 tends to be conservative.

Using this proposition, all paths that are ct/cf times longer than the shortest path p∗ will
not be calculated since they will not be used in the minimal solution. In practice however,
civil restrictions ensure even greater diminishing returns when deviating from the shortest
path. This is due to the fact that trenches are made alongside roads which are usually
the only access to customer premises. In these cases, the only opportunities for fibre duct
sharing exist at road junctions where fibres can be routed together on one side of the road
if possible.

For smaller data sets, the number of paths generated for P(k) can be adjusted through the
use of a k shortest simple path algorithm such as Yen’s algorithm [6,30]. These algorithms
typically start from a shortest path and sequentially add additional edge segments with
least weight to form longer paths. Unfortunately, they usually have time complexities
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that increase linearly with both k and |V|, adding substantial preprocessing time as more
paths are generated. It is therefore necessary to minimise the paths generated to increase
computational performance.

In the case of larger data sets, we will also determine the performance when including
only the shortest path (k = 1) in the model, effectively using opportunistic fibre duct
sharing when shortest paths take a similar route. With k = 1, the much faster Dijkstra’s
algorithm can be used, increasing preprocessing performance. This special case, where
k = 1, will henceforth be called the shortest path heuristic (SPATH).

6 Disintegration heuristic

Since real-world PON data are usually grouped into interconnected neighbourhoods, a
disintegration of the input data into clusters should give good computational performance
while staying close to the global minimal solution. As the central office is global to all
clusters only splitter and ONU nodes are clustered, or the set D = U ∪ S. A number of
methods exist to cluster the PON data sets, including centroid, density and hybrid cluster-
ing. Each method is implemented and compared with respect to efficacy of computational
effort distribution as well as numerical performance.

6.1 Centroid clustering

Firstly, to test centroid clustering, the common k means algorithm [19] is used. This
simple algorithm minimises intra-cluster distances by minimising the sum of Euclidian
distances between each point assigned to cluster i, and the cluster mean µi. Generically,
the technique can be stated as follows:

min
D

k
∑

i=1

∑

xj∈Li

||xj − µi||
2 (16)

The k means algorithm provides the k output sets L1,L2, . . . ,Lk, where D = L1 ∪ L2 ∪
· · · ∪ Lk. The algorithm is promising since it provides roughly equi-sized clusters which is
useful for effective division of computational complexity.

6.2 Density clustering

The Density Based Spatial Clustering of Applications with Noise (DBSCAN) algorithm
was introduced in 1996 by Ester et al. [7] and is by far the most commonly cited density-
based clustering algorithm in literature. The algorithm incrementally creates clusters by
adding points within a distance ǫ from any point already in the cluster. Another parameter
MinPts determines the minimum number of points a cluster should consist of, discarding
all isolated points as noise. In our implementation, this parameter is set to zero to avoid
noise classification. The algorithm provides K output sets for which the following holds:
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{Li : |Li| ≥ MinPts | ∃ (xj , xk)x 6=j ∈ Li :
√

||xj − xk||2 ≤ ǫ} ∀i = 1, . . . ,K (17)

Since density estimates are used to cluster the data, these techniques are good at captur-
ing neighbourhoods of roughly equal density and should therefore ensure that equi-dense
clusters are not bifurcated, ensuring improved numerical performance.

6.3 Hybrid clustering

In 1982, Wong et al. [27] introduced a hybrid clustering approach that combines the
computational performance of k means with density-based clustering advantages. Given
a required number of clusters K, the algorithm executes two steps; a preliminary k means
clustering with k ≫ K, followed by an iterative step that analyses and combines the output
clusters at each iteration according to a density measure function ϕ untilK clusters remain.
k is usually proportional to the number of observations N and can be approximated as
k ≈ 7( N

log(N) )
1

3 .

In the algorithm, two preliminary clusters, Lu and Lv, are considered adjacent if the
midpoint between the centroids µu and µv is closer to either µu or µv than any other
cluster mean using Euclidian distance. Define the intra-cluster sum of squares di:

di =
∑

j∈Li

||xj − µi||
2 (18)

Then the density measure function ϕ in two dimensions is given as:

ϕ(Lu,Lv) =











du + dv +
1

4
(|Lu|+ |Lv|)||µu − µv||

2

(|Lu|+ |Lv|)2
if Lu is adjacent to Lv

∞ otherwise

(19)

At each iteration of the algorithm, the cluster pair for which (19) is a minimum is combined
until the required number of clusters remain.

6.4 Cluster post-processing

To ensure a feasible solution exists for each cluster, valid clusters are built from the output
of each of the clustering algorithms. These clusters, defined in definition 2, contain both
splitters and ONUs and have enough splitters to serve all ONUs contained within the
cluster. The minimum split ratio is defined as the capacity of a splitter, κ.

Definition 2 (Valid cluster) Given a set of splitters S 6= ∅, a set of ONUs U 6= ∅ and
a minimum split ratio κ, a set L ⊆ U ∪ S,L 6= ∅ is said to be a valid cluster iif

κ|L ∩ S| ≥ |L ∩U|. (20)



10 Authors’ identities suppressed: Blind refereeing copy

A number of possibilities exist when encountering invalid clusters, the most basic of which
is to simply combine the invalid cluster with another cluster until all clusters are valid. A
more sophisticated approach is to combine an invalid cluster with its nearest neighbour
in terms of inter-cluster centroid distance, i.e. at every iteration, an invalid cluster Li is
combined with its nearest neighbour Li

NN as defined in (21).

Li
NN = min

Lj

||µi − µj ||
2 (21)

This process continues until all clusters are valid or only a single cluster remain. This will
ensure that if the original set D is valid, which needs to be true for a feasible solution to
be found to the original problem, the resulting clusters will also be valid.

It should be mentioned that the efficacy of the clustering process depends not only on the
underlying structure of the data, but also on the splitter capacity κ. When moving to
cluster sizes smaller than the splitter capacity, the cluster bounds will intersect the splitter
reach, resulting in potentially inflated deployment costs. Therefore the cluster sizes should
ideally be some factor M > 1 larger than the splitter capacity κ. The clustering process is
also influenced by the amount of excess capacity available. If the original dataset contains
just enough splitter capacity to connect all ONUs, the probability of a cluster being invalid
is high, decreasing the efficacy of the process. Therefore, ideally, κ|S| ≫ |U| should hold
for the dataset to ensure efficient operation.

7 Computational results

The model given in (2)–(14) is implemented using C++ and IBM ILOG CPLEX Concert
extensions. It is then solved on a quad core Intel Core i7 at 2.67 GHz with 16 GiB
main memory running Windows. Deterministic parallel processing is enabled to increase
computational performance.

7.1 Path heuristic

Firstly, the path heuristic efficiency can be tested by varying the number of shortest paths
between 1 (opportunistic fibre duct sharing) and 100. This is done using three small data
sets containing less than 160 ONUs each, with parameters as in Tablet 1. These data
sets were constructed using small subsets of real-world data sets generously provided by
atesio GmbH [3]. Table 2 contains the results, with P k the number of shortest paths, ts
the time to solve and MEMp the peak memory consumption in MiB during the test. The
GAPb % is calculated according to the best known integer bound for each of the data sets,
which were calculated using a standard arc flow formulation running for 3 hours each.
The best bound optimality gaps are given in the GAPℓ % column of Tablet 1, with SRavg

showing the average split ratio available. In this case, the relative differences is important
to determine the typical influence fibre duct sharing can have on the objective function
value, and how the addition of extra paths affect both the computational effort and the
deployment cost.
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Table 1: Small dataset parameters.

Instance |U| |S| |V| |E| SRavg LBb GAPℓ (%)

city 154 154 11 640 736 14 3,870.14 3.12
sub 112 112 9 449 490 12.44 2,957.58 0.00
med 136 136 8 415 447 17 4,273.30 0.82

Table 2: Numerical and computational results for path heuristic test.

Instance P k OBJ (1000 R) GAPb (%) ts (s) MEMpeak

city 154 1 3,979.43 2.75 0.87 93
10 3,898.78 0.73 12.94 252
20 3,884.49 0.37 67.97 676
40 3,880.83 0.28 291.28 1,721

100 3,872.05 0.05 1,991.12 3,780

sub 112 1 3,016.02 1.94 0.93 85
10 2,957.58 0.00 7.36 178
20 2,957.58 0.00 19.31 303
40 2,957.58 0.00 44.60 522

100 2,957.58 0.00 65.56 1,158

med 136 1 4,316.12 0.99 0.96 95
10 4,277.89 0.11 13.60 360
20 4,273.30 0.00 30.92 486
40 4,273.30 0.00 83.27 1,039

100 4,273.30 0.00 193.26 1,509

The results support the notion of diminishing returns as more shortest paths are introduced
into the model, with deployment cost savings only improving by 2 % on average when
moving from k = 1 to k = 100 and with most of the savings attained when moving from
the shortest path to k = 10. While the typical memory requirements increase linearly
with k, the computational effort required increases exponentially. Therefore, it might be
deemed worthwhile to use a lower number of paths that will result in good bounds without
requiring an infeasible time to solve, especially when solving large instances. It should be
noted that almost all of the instances were solved in a fraction of the time with comparable
or equivalent numerical performance to the best calculated bound. In the case of sub 112,
optimality was attained in just a few seconds compared to the 1.5 hour computation time
of the arc flow formulation.

7.2 Disintegration heuristic

The three clustering methods are compared using a real-world GIS-mapped dataset con-
taining 6,698 nodes and 7,660 edges, called CityNet [3]. This dataset contains a total of
2,190 splitters and ONUs to be clustered. Cluster metrics are then calculated, including
the average intra-cluster distance diavg, average cluster size |L|avg, cluster size standard
deviation |L|dev, maximum cluster size |L|dev and number of valid clusters |Li|valid. Table
3 shows the clustering results, as well as the clustering processing time tc.
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Table 3: Clustering algorithm comparison.

Algorithm tc (ms) diavg |L|avg |L|dev |L|max |Li|valid

k means k = 10 7 174.05 219.00 60.39 358 10
k = 20 14 121.87 109.50 59.59 257 20
k = 30 17 98.31 73.00 50.33 240 30
k = 50 25 75.37 43.80 42.85 237 50

DBSCAN ǫ = 80 9 112.05 182.50 412.33 1,395 12
ǫ = 50 37 72.78 54.75 196.07 1,150 40
ǫ = 30 93 43.06 19.38 56.70 404 113
ǫ = 20 251 31.41 10.27 9.55 81 216

Hybrid K = 10 8 165.57 219.00 487.32 1,593 10
K = 20 14 122.92 109.50 256.28 1,175 20
K = 30 15 103.35 73.00 129.32 697 30
K = 50 22 77.55 47.61 44.43 240 46

Looking at the clustering results, the strengths of each method is apparent. Firstly, as
expected, the k means algorithm provides equi-sized clusters, with the lowest maximum
cluster size and low cluster size deviation. DBSCAN delivers very low average intra-cluster
distances, illustrating its efficacy in correctly clustering dense regions. Unfortunately,
the maximum cluster sizes and cluster size deviations of DBSCAN is large, which will
negatively impact computational effort distribution. Wong’s hybrid clustering has slightly
better average intra-cluster distances in theK = 10 scenario in comparison to k means with
the same number of clusters, showing some improvement with the introduction of density-
based clustering. Like DBSCAN however, the hybrid method suffers from high cluster size
deviations and large maximum cluster sizes. Finally, k means provided no invalid clusters
in any of the cases, whereas the hybrid method started deviating at K = 50.

Even with this relatively large dataset, all clustering methods performed amicably, com-
pleting the clustering in a few milliseconds. Overall, it seems as though the standard k
means algorithm will provide the best computational effort distribution and the lowest
overall computation time due to its low maximum cluster size value.

Next, CityNet is solved through the use of a modified version of the Branch Contracting
Algorithm (BCA) heuristic proposed in [21]. BCA is chosen since this heuristic explicitly
includes elements of fibre duct sharing through a tree-based clustering method. The
authors claim performance of 10–15 % deviation from optimal with very fast computational
speed. Since the original article does not specify values for Q, a grouping factor, the
algorithm is run with all practical values for Q, i.e. 0 < Q ≤ κ, taking the minimum
objective value. Next, since BCA is randomly initialised, it is run 20 times for each Q
value, again noting the minimum objective value. This ensures a fair comparison with the
proposed path and disintegration heuristics.

It should be noted that the last step of BCA requires a heuristic Steiner tree implementa-
tion to connect all splitters to the central office. Since the details of this heuristic are not
clear from the original article, the algorithm is modified to connect splitters through short-
est path routes to the central office, sharing fibres as possible. This produces an upper
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bound on the true BCA objective value. BCA without any connecting fibres between the
central office and splitters (BCANoF) is also tested to provide a lower bound and ensure
the modification does not produce biased results.

The model was solved incorporating the shortest path heuristic (SPATH) with no disinte-
gration and a 1 hour time limit. Then, the clustering scenarios defined in Tablet 3 above
were solved using the shortest path heuristic. k means results are denoted with k10 to
k50, DBSCAN with DB20 to DB80 and the hybrid clustering results with H10 to H50.
The optimality gap (GAPb) is specified in terms of the best upper bound found among
all the instances. For the instance that produced the best bound the normal branch and
bound optimality gap is given. Peak memory usage in MiB during the tests is given by
MEMpeak. If the total time to solve, tsolve, exceeds the time limit, a > sign is placed next
to the value. Finally, the number of splitters deployed is given in the SPs column.

Table 4: Numerical and computational results for the CityNet dataset.

Instance tsolve (s) OBJ (mil R) MEMpeak GAPb (%) SPs

SPATH >3,600 53.430 12,837 10.32* 78

BCA (UB) 2.11 76.676 5,627 43.51 68
BCANoF (LB) 1.99 60.869 5,164 13.92 131

k10 212.77 55.111 508 3.15 79
k20 70.45 56.249 321 5.28 81
k30 50.68 56.751 321 6.21 79
k50 31.76 58.819 319 10.09 89

DB80 >3,600 54.526 8,520 2.05 83
DB50 >3,600 58.111 4,962 8.76 100
DB30 1,250 66.856 420 25.13 149
DB20 8.06 83.442 445 56.17 219

H10 >3,600 55.217 12,613 3.34 82
H20 >3,600 56.905 7,549 6.50 82
H30 >3,600 57.935 3,656 8.43 86
H50 37.23 59.081 298 10.58 88

* Optimality gap between best upper integer and best lower relaxation bound

From the numerical results in Tablet 4 it is clear that the BCA heuristic is much faster
than the clustering methods, but produces an increase of up to 44 % in objective value.
It should however be noted that the time to solve for BCA is specified as the time to
complete one iteration. To get the minimum values for BCA, the algorithm was run
for approximately 40 minutes with the various parameters. Another observation is the
variance in BCA due to its random initialisation. Given a fixed Q value, the heuristic
gave solutions with objective values varying by up to 12 %. Therefore it is critical that
the algorithm is run a number of times to ensure a good solution is produced.

Computation times for the clustering methods are consistent with the maximum cluster
size values obtained in Tablet 3, with maximum values of over ±700 resulting in a sub-
optimal run at the end of the 1 hour time limit. In this regard, the standard k means
algorithm produces the best results by far considering the number of valid clusters, showing
its efficacy in computational effort distribution for PONPP.
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Peak memory usage values are once again consistent with the maximum cluster size values,
as this determines the largest sub-problem. k means produced excellent numbers across
the board, with H50 just managing to produce the lowest memory usage of 298 MiB.
Most of the instances compared favourably to the memory usage of BCA, which peaked at
around 5 GiB due to the memory required to build and maintain the initial tree, although
there are a number of optimisations than can be implemented to reduce this value.

As for objective function values, SPATH produced the best upper bound with R 53.43 mil,
with DB80, k10 and H10 all producing good values within approximately 3 %. Due to
the low average intra-cluster distance of DBSCAN, it produces the best bound of the
clustering methods in 1 hour. Comparing the standard k means algorithm with the hybrid
algorithm, the k means algorithm gave slightly better bounds under the time constraint.
Similar objective values for SPATH and the clustering indicates that the best clustering
instances does not introduce errors of more than 14 %, although the actual error margin
may be much lower.

8 Conclusion

In this paper two heuristic techniques were incorporated into a MILP model of PONPP,
allowing for the optimisation with the inclusion of fibre duct sharing. The numerical
and computational results of the path heuristic in small scale tests showed promising
performance, with drastically reduced computation times and less than a 3 % gap in
comparison with the best calculated bounds across all data sets. This could indicate
that in practice, paths that are much longer than the shortest path rarely result in lower
deployment cost, indicating that fibre duct sharing opportunities may be limited in real-
world deployments with civil restrictions.

Given the numerical results, both SPATH and the clustering methods outperforms BCA
by quite a margin, even when BCA is given the best possible chance, producing up to
44 % lower objective values. Time complexity wise, the heuristics dramatically reduce
computation time, although BCA is still faster by an order of magnitude. However, in
practice, this discrepancy is reduced since BCA needs to be run a number of times to
produce a good solution.

Overall, the heuristics proved to be very capable at solving PONPP with high accuracy
and with fast computation times. The results suggest that the standard k means algorithm
is best suited for clustering PONPP, providing very good bounds at a fraction of both
the computational effort and memory required. Unfortunately, worse than claimed perfor-
mance for BCA suggests that it may be unsuitable for practical and inherently clustered
data sets such as CityNet.

Following this research, a more connectivity-aware clustering method can be investigated
to take advantage of the nature of PONPP. Also, the estimation of the true distance from
optimum for CityNet would be interesting to determine the effectiveness of the SPATH
heuristic when applied to large instances. Also, the data sets can be preprocessed to reduce
its complexity through edge substitution, as is done in a large number of other studies.
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