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Abstract

An application of building a system dynamics model of the way households might respond
to interventions aimed at reducing energy consumption (specifically the use of electricity)
is described in this paper. A literature review of past research is used to build an initial
integrated model of household consumption, and this model is used to generate a small num-
ber of research hypotheses about how households possessing different characteristics might
react to various types of interventions. These hypotheses are tested using data gathered from
an efficiency intervention conducted in a town in the South African Western Cape in which
households were able to exchange regular light bulbs for more efficient compact fluorescent
lamp light bulbs. Our experiences are (a) that a system dynamics approach proved useful
in advancing a non-traditional point of view for which, for historical and economic reasons,
data were not abundantly available; (b) that, in areas where traditional models are heavily
quantitative, some scepticism to a system dynamics model may be expected; and (c) that a
statistical comparison of model results by means of empirical data may be an effective tool
in reducing such scepticism.

Key words: Energy sector, system dynamics.

1 Introduction

The question of how households respond to intervention strategies aimed at reducing
energy consumption is receiving increasing attention, particularly as the awareness of the
need to curb energy consumption strengthens globally. One of the challenges facing energy
researchers is to synthesise the many results obtained from a macro-level modelling of the
impacts of interventions on consumption1 with the smaller number of studies focussing on
psychological models of energy consumption at the level of the individual or household.2

∗Energy Research Centre, University of Cape Town, Private Bag, Rondebosch, 7701, South Africa.
†Corresponding author: Department of Statistical Sciences, University of Cape Town, Rondebosch,

7701, South Africa, email: ian.durbach@uct.ac.za
1See, for example, Nässén and Holmberg (2009), Laitner (2000), Barker et al. (2007), Barker et al.

(2009), Saunders (2000), Berkhout et al. (2000), Grepperud and Rasmussen (2004), and Jaccard and
Bataille (2000).

2See, for example, Swim et al. (2009), Griskevicius et al. (2008), Gyberg and Palm (2009), Owens and
Drifill (2008), Fischer (2008), Abrahamse et al. (2005), and Abrahamse et al. (2007).
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The primary aim of the current paper is to describe how combining an operations research
(OR) model with observational survey data may help to build a model of responses to
energy interventions at the level of the household. Our modelling process uses system
dynamics (e.g. Ford, 1999; Morecroft, 2007) to synthesise the findings of previous research
into a single coherent model framework. This model is then used to investigate how a
household’s response to various energy intervention strategies may depend on the attitudes
it holds. This investigation, although exploratory in nature, yields a number of insights
into consumption behaviour that can be stated precisely in the form of research hypotheses.
These research hypotheses are tested against data gathered as part of a compact fluorescent
lamp (CFL) exchange programme conducted in Prince Albert, a town in the Karoo region
of South Africa; in doing so we evaluate the ability of the system dynamics model to
explain actual behaviour.

Our aim in presenting this case study is to contribute to the emerging literature on the
applications of operational research in development and to provide an indication of how
survey and other observational data may be integrated successfully into a system dynamics
model. From the perspective of energy research, the paper highlights the value of a
multi-criteria approach to energy modelling — one which explicitly considers the trade-
offs between the multiple conflicting objectives faced by a household when consuming
electricity.

The remainder of this paper proceeds as follows. In the next section an overview of the
main research project is given. Section 3 contains an overview of the approach used to
construct and test the system dynamics model. The model and its attributes are described
in Section 4. Section 5 gives the results obtained from the model and describes how
research hypotheses were generated from these results. Section 6 describes how survey and
consumption data were collected and used to aid the modelling process. Some implications
for modelling practice suggested by our experiences are discussed in Section 7, and the
paper closes in Section 8.

2 Overview of the SANERI rebound project

In energy research as well as in other areas of natural resource management, the rebound
effect refers to a phenomenon whereby gains in resource efficiency results in a less than
expected reduction in resource usage. The amount of the actual reduction in consumption
may be less than the technically feasible reduction, since the increased efficiency lowers
the cost of consumption for a good or service. The lower cost then results in an increase
in consumption of the good or service in question as it becomes relatively cheaper to
use (‘direct’ rebound) and also increases consumption of other energy-consuming goods
and services as disposable income increases (‘indirect’ rebound). Efficiency measures may
also increase consumption through increases in economic growth created by the new tech-
nologies (‘economy-wide’ rebound) (Berkhout et al., 2000). If rebound effects become
sufficiently large the introduction of an efficiency measure may have the paradoxical effect
of actually increasing overall energy consumption.

The University of Cape Town’s Energy Research Centre (ERC), with support from the
South African National Energy Research Institute (SANERI), initiated a study that aimed
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to quantify the rebound effect of energy efficiency initiatives in South Africa’s residential
sector. In addition to measuring the effect, the study aimed to identify the potential to
mitigate rebound using awareness initiatives. The approach used was to identify sites,
previously untouched by the rollout of a particular technology, and to conduct panel
surveys before and after the rollout, in combination with the collection of consumption
data, and then to analyse the impact of the intervention on energy consumption patterns.
A part of this rebound project aimed to explore the factors influencing household electricity
consumption and the likely reaction to interventions of price, awareness and technology.
It is this aspect of the project that is described here.

3 Overview of approach used

Our modelling approach can be summarised as overlapping phases of model construction,
model exploration, and model testing. We began by searching the energy-related literature
to identify which aspects of attitude and behaviour had been found to affect household
electricity consumption. Over a series of meetings these sources were integrated into
a single system dynamics model of household electricity consumption. Following this
process, a small group of energy researchers at the ERC were consulted and gave informal
feedback on the model. This feedback motivated some minor changes to the initial model.

We then generated a small number of household types (with different preferences) and
intervention scenarios, and used the model to evaluate the potential impact of each in-
tervention scenario on each household. These results were reported back to the group
and used as a basis for discussion. Some changes were again made to the model at this
stage, and the simulation process was repeated. We used the results obtained from this
modified model to generate a number of testable research hypotheses about consumption
behaviour. These hypotheses related to how households possessing different attitudinal
characteristics might respond to various interventions.

At this stage the final survey and consumption data from the real-world intervention were
collected and used to evaluate the research hypotheses. These results were again presented
to our group and used as a basis for further discussion. It was decided that the survey
results did not suggest any necessary modifications and that the model (a) appeared to
give a simple, but satisfactory explanation for the observed changes in electricity consump-
tion, and (b) provided a justification for the use of attitudinal information in electricity
consumption models. At that stage, and pending new information, the modelling process
was brought to an end.

4 A system dynamics model of electricity consumption

Figure 1 shows our system dynamics model, constructed using Vensim software (Vensim,
2010). A description of the essential aspects of the model is given below.
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4.1 The basic consumption model

Previous literature suggests that households have three main objectives when making
decisions about which electricity-consuming goods and services to use (and thus about
how much electricity3 to consume):4

• minimising the cost of consuming the electricity,
• maximising the comfort derived from electricity-consuming appliances, and
• minimising the impact of their electricity consumption on the power system and the

environment.

In our model cost is measured by multiplying the number of units of electricity consumed
by the unit price of electricity. Comfort and impact are both measured (if only indirectly)
by the number of units of electricity consumed. Not all households will accord equal
importance to all three objectives; preferences are expressed in terms of goals, which
define realistically desired levels of performance on each objective, and weights, which
define the relative importance of equal-size differences between the goal and performance
levels on each objective (e.g. Belton and Stewart, 2002).

Given a particular set of goals and weights for the three objectives, households typi-
cally find an electricity consumption level that comes closest to satisfying their aggre-
gated desires over the three objectives. Differences between current performance and
desired goals are given by δj = max {fj(C)− gj , 0} for minimising objectives, and δj =
max {gj − fj(C), 0} for maximising objectives, where δj is the deviation from the goal gj
on objective j and fj(C) is an assessment of current performance on objective j. Note
that under-achievement with respect to a goal is always positively signed and households
are indifferent to any over-achievement beyond the goals.

An equilibrium consumption level C∗ occurs where the desire to increase consumption
(and so gain more comfort) is exactly balanced by the desire to decrease consumption
(and so save money and cause less environmental damage), i.e. wcomfδcomf = wcostδcost +
wimpδimp, where wj is the weight associated with objective j. If the current consumption is
below (above) the equilibrium level C∗, then current consumption is increased (decreased)
incrementally until it reaches an equilibrium level.

4.2 External interventions

The aim of our model is to examine three broad types of intervention strategies that
have been found (at least by some studies) to lead to decreases in household electricity
consumption.

3For clarity, electricity consumption is used to refer to the number of kWh (kilowatt hours) used by a
household during a particular time period. Strictly speaking, demand is measured in kW (kilowatts) in
the case of electricity. For this paper, electricity demand refers to the demand for electricity-consuming
goods and services.

4See, for example, Ek and Söderholm (2010), Swim et al. (2009), Griskevicius et al. (2008), Gyberg and
Palm (2009), Mehlwana and Qase (1996), Birol and Keppler (2000), Abrahamse et al. (2005), Abrahamse
et al. (2007), Caird et al. (2008), Wall and Crosbie (2008), Bladh and Krantz (2008), Fischer (2008), Levine
et al. (n.d.), and Owens and Drifill (2008).
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Figure 1: System dynamics model of household energy consumption.
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These three interventions can be categorised as:

1. Price interventions. These attempt to reduce electricity demand by increasing the
effective unit price of electricity;

2. Efficiency interventions. These attempt to reduce electricity consumption by in-
troducing new technologies which require less electricity to fulfil the same service
(relative to a former, less efficient technology);

3. Information interventions. These attempt to reduce electricity demand by provid-
ing households with information about environmental issues related to electricity
use, more frequent and effective billing information, or emphasising individual and
collective responsibility for sustainable electricity use.

The modelling of each of the interventions is described below.

4.2.1 Price interventions

Price increases naturally affect the unit price of electricity, without affecting any other
part of the model. If the unit cost of electricity is increased by (100 × t)%, the new cost
incurred by the household is (1 + t)rC, where r is the per-unit cost of electricity.

4.2.2 Efficiency interventions

The introduction of a new, more-efficient technology decreases the amount of electricity
required by a household in order to perform some activity. From the household’s point of
view, the same basic activity is being performed, but less electricity is being used doing so.
It is therefore necessary to make a distinction between what might be termed the amount
of electricity demanded (or perhaps apparent electricity consumption, denoted D) and the
amount of electricity consumed (or actual electricity consumption, denoted C). The former
measures the consumption of electricity-consuming services, rather than the consumption
of electricity per se, and affects assessments of comfort and environmental impact. The
latter measures the actual amount of electricity consumed, and affects assessments of cost.
With the introduction of an efficiency intervention using (100 × s)% as much electricity
as an old technology, the amount of electricity consumed is C = sD.

Efficiency interventions have the additional complexity that the service provided by the
new technology might often not be precisely the same as previously experienced. There
may also be teething problems upon the introduction of new technologies as users become
accustomed to technologies that have remained the same for many years, with outright re-
jection and subsequent reversion to old technology being a possibility for some consumers.
Levels of comfort are therefore given by f2(C) = pD, where the new technology is judged
to offer a service only (100× p)% as good as the previous technology. Efficiency interven-
tions also affect assessments of cost, since less electricity is being used to provide the same
level of service. Currently incurred cost is given by f1(C) = (1 + t)rsD.
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4.2.3 Information interventions

Information interventions operate by exerting an influence on the relative importance (i.e.
the weights wj) attached to the three objectives rather than the current evaluation of
impact (so f3(C) = C). The effect on the objectives is likely to depend on the type of
intervention used. For example, feedback contrasting household electricity spending with
historical figures or neighbourhood norms may increase the relative importance of the cost
objective. More overt campaigns highlighting the damage caused by wasteful consumption
may have the effect of increasing the weight associated with the impact goal at the expense
of the weights for the other two objectives. We therefore allow information interventions
to change any of a household’s weights (changes in goals may also be modelled, but that
is not done here), but only to a limited degree.

A maximum change is specified for the weight on the cost and environmental impact
objective (weights sum to one, so that the comfort weight is indirectly influenced by
changes to the other two). This maximum change essentially captures the salience of
the information campaign through its ability to change a household’s perceptions. While
an information campaign is running, a household’s weights will slowly change, from the
initial weights, up to the maximum allowable change (provided that the intervention runs
for long enough). Once an intervention ceases, the preferences start to fall back to their
initial values. Exponential smoothing, which results in the decreasing marginal changes
as the time following the introduction (or ceasing) of an intervention elapses, is used to
model these changes.

Assessments of current cost f1(C), comfort f2(C), and impact f3(C) may be substituted
into earlier expressions to find δj , which may, in turn, be substituted into the basic equi-
librium equality. A household’s choice of how much electricity to use is therefore guided
by the selection of a demand level D satisfying

wcomf (max{gcomf − pD, 0}) = wcost (max{(1 + t)rsD − gcost, 0})
+ wimp (max{D − gimp, 0}) .

4.3 Additional model features

In addition to the basic consumption model and models of the three intervention programs
described above, a number of additional features were included in the full model, but at
this stage do not play a role in any of the results, because they are held constant or
set to null values. Specific features include: households only becoming aware of their
spending periodically (i.e. through some billing mechanism), with the inter-invoice period
potentially affected by an intervention; capacity for increases in a particular household’s
electricity demand being limited (for example, by the number of electricity-consuming
devices owned) and the determination of this capacity for consumption itself being an
outcome of the decision-making process. The intention is that, when the basic model is
validated against further empirical data, these additional elements may be useful as a
means of fine-tuning the basic model.
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5 Model results and formulation of hypotheses

Our primary aim is to use the system dynamics model to develop qualitative hypothe-
ses relating responses to efficiency interventions to household attitudes. We do this by
exploring the possible effects of different intervention strategies on the consumption of
electricity for four household ‘types’ which differ broadly in their attitudes. Although the
model returns a quantitative output, our view is that because of the difficulty of reliably
measuring attitudinal inputs like goals and weights in a short survey, comparisons between
survey and model results should be based on qualitative rather than quantitative hypothe-
ses. This means that the precise values used to model the simulated interventions and
household types are less important than the general characteristics which they impart.
We performed sensitivity analyses around each of the values used to establish that our
hypotheses and conclusions are not sensitive to the precise values used.

The simulated interventions are:

1. No intervention (baseline).
2. A 10% increase in the per-unit price of electricity.
3. A 10% efficiency saving (with no dissatisfaction with the new technology).
4. A 10% efficiency saving (with satisfaction with the new technology 90% of the old).
5. A ‘feedback’-type awareness campaign: this has the effect of increasing the weight

allocated to the cost objective by 10%.
6. A ‘greening’-type awareness campaign: this has the effect of increasing the weight

allocated to the environmental impact objective by 10%.
7. A joint price and efficiency (no dissatisfaction) intervention (interventions 2 and 3

together).
8. A joint price and ‘feedback’ information intervention (interventions 2 and 5 together).
9. A joint price and ‘greening’ information intervention (interventions 2 and 6 together).

10. A joint efficiency (no dissatisfaction) and ‘feedback’ information intervention (inter-
ventions 3 and 5 together).

11. A joint efficiency (no dissatisfaction) and ‘greening’ information intervention (inter-
ventions 3 and 6 together).

The four different household types are ones in which:

1. Cost is viewed as relatively more important than comfort, with no importance at-
tached to environmental impact (wcost = 0.7, wcomf = 0.3 and wimp = 0).

2. Cost is viewed as relatively more important than comfort, with a small but non-zero
weight for environmental impact (wcost = 0.7, wcomf = 0.2 and wimp = 0.1).

3. Cost is viewed as relatively more important than comfort, with no importance at-
tached to environmental impact (wcost = 0.3, wcomf = 0.7 and wimp = 0).

4. Cost is viewed as relatively more important than comfort, with a small but non-zero
weight for environmental impact (wcost = 0.3, wcomf = 0.6 and wimp = 0.1).

The same goals (gcost = 60, gcomf = 90 and gimp = 30) are used for each household;
because all results are to be expressed in relative terms (i.e. percentage changes), the
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actual units of measurement are not important, and have been expressed on a scale from
0 to 100. The magnitudes of the goals affect the equilibrium consumption level but do not
influence the relative effects of the interventions.

The relative effects of each intervention on the amount of electricity consumed are shown in
Table 1. Because of the distinction between electricity consumed (essentially, the amount
of electricity required from a supplier in order to perform certain activities) and electricity
demanded (a measure of the number/type of activities performed), the relative effects of
interventions on electricity demanded are also shown in Table 1, in parentheses. These
and other exploratory results formed the basis for a number of discussions with a group
of energy researchers also working on the project. The purpose of these discussions was
to establish whether the results of the model were consistent with existing knowledge, to
identify any problem areas in the model, and to use the model to generate new insights
into potential responses to interventions.

As examples, we consider the rebound effects observed for both the price and efficiency
interventions. According to the model, the reason underlying rebound responses to price-
based interventions is that price interventions increase the gap between the cost goal and
the currently incurred cost, while leaving the gap between the comfort goal and current
comfort unchanged. This provides an incentive to immediately decrease the demand for
electricity, while the comfort goal acts as a counterweight to this incentive and induces
some resistance to change. The model is thus able to exhibit known empirical behaviour
(analogous to demand-price elasticity) while providing a parsimonious explanation for that
behaviour.

More importantly, the model also suggests results that (to our knowledge) have not been
shown empirically. It can be shown that in order to restore a balance between objectives
following a price intervention, demand must decrease until the ratio of new to old demand is
given by (wcomf+(1+t)wcost+wimp)−1, provided that the change in demand does not result
in any of the goals being fully achieved. The expression simplifies further to (1+twcost)−1,
because of the constraint that weights must sum to one. Therefore, households that
place a greater importance on cost relative to comfort will experience larger decreases in
electricity demand following price interventions, which is why the simulated rebound is
greater in households placing more weight on the comfort objective and is unaffected by
the environmental impact weight (which we increased at the expense of comfort weight,
leaving wcost unchanged). The model suggests that increasing wimp at the expense of wcost
would reduce the impact made by price-based interventions. This suggests the following
two research hypotheses:

Hypothesis 1: For price interventions, greater rebound effects are experienced in house-
holds for whom cost is relatively unimportant.

Hypothesis 2: Increasing the importance of the impact objective at the expense of the
cost objective would reduce the impact made by price-based interventions.

In contrast the reason for rebound responses to efficiency interventions is that the effi-
ciency saving decreases the gap between the cost goal and the current cost, while leav-
ing the comfort gap unchanged. This provides an incentive to increase the amount of
electricity demanded. It can be shown that in the case of satisfying efficiency interven-
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tions, a balance between objectives will be restored when demand rises by a factor of
(wcomf + swcost + wimp)−1, which simplifies to [1− (1− s)wcost]−1. This factor increases
in wcost, suggesting that households that place a greater importance on cost relative to
comfort will experience greater increases in demand. This result is the opposite of that
obtained for price interventions, and can be expressed in the form of the following hypoth-
esis:

Hypothesis 3: For efficiency interventions, greater rebound effects are experienced in
households for whom cost is relatively important.

Through discussion and reasoning through the model in a similar manner to that just
described, a number of further hypotheses were established. These are listed without
further motivation below:

Hypothesis 4: Greater rebound effects are experienced if an efficiency intervention in-
volves a technology that does not deliver as satisfying a service as before. If the new
technology is more satisfying, negative rebound is possible.

Hypothesis 5: Rebound effects occurring as a result of unsatisfactory new technology
decrease as more weight is placed on environmental issues.

The use of a literature survey of previous research in conjunction with discussion sessions to
construct a preference-based system dynamics model of household electricity consumption,
and the use of this model as a basis for generating further discussion around a set of testable
hypotheses, forms what came to be known as the ‘first phase’ of the project.

6 Integrating survey data into the system dynamics model

In the ‘second phase’ of the modelling approach to be described in this section, data
collected from an actual intervention are used to test several of the hypotheses above,
with a view to evaluating the model and refining it further should this prove necessary.

6.1 Survey details

The data used for testing the model come from an observational study involving a free (to
the consumer) CFL light bulb exchange program conducted in Prince Albert, a town in the
Western Cape province of South Africa. The exchange is part of the South African utility
provider Eskom’s national Demand Side Management (DSM) programme. Prince Albert
was chosen as a study site due to its relative isolation, and since it was one of the only
remaining towns that had not yet seen a CFL exchange, so that baseline consumption and
survey data could be collected. The timing of the intervention was also known. The town
contains a mix of high and low-income households that have historically been separated.
Most of the households rely on electricity for all end-uses with some of the wealthier
households having access to alternative energy sources (solar water heating, photovoltaics
and LPG) while the poorer households derive some of their heating requirements from
wood fuel when money for electricity runs out.

In June 2008, all households in Prince Albert participated in a program in which they were
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offered free CFLs in exchanged for their regular (incandescent) light bulbs. CFLs consume
an average of 20% of the electricity that incandescent bulbs do. The data collected and
prepared consists of electricity payment records from 1 November 2007 to 31 October 2009,
and a panel of surveys that took place in June 2008, September 2008 and September 2009.
Consumption and survey data are available for a total of 122 households. All households
included in our study are on a ‘pre-paid’ electricity system, i.e. when they wish to purchase
electricity they do so by purchasing a number of units (determined by the household) from
vendors. Some households qualify for a free monthly quota of electricity (‘free basic units’),
which are also recorded at the time of a first purchase in a particular month. The payment
and free electricity records have been used to estimate a monthly electricity consumption
figure for each household, expressed as the average number of units of electricity consumed
per day over the course of each month.

The final survey conducted in September 2009 covered a range of issues relating to the
intervention and energy usage in general5. Our analysis makes use of a small part of
the survey capturing household preferences for different aspects of electricity consumption
and satisfaction with the CFL light bulbs. Households were asked to rate how important
each of the factors ‘cost of electricity’, ‘usefulness and enjoyment’ (comfort), and ‘impact
on environment’ were in their decisions of how much electricity to consume prior to the
intervention. Responses were recorded on a scale from 1 (not important at all) to 10 (very
important). These responses were scaled to sum to one within each household in order
to provide estimates of weights on the cost, comfort, and impact objectives respectively.
While this is admittedly a fairly crude form of importance weight measurement, a more so-
phisticated measurement brings its own problems — specifically stronger user-involvement
and greater surveyor training. This, in conjunction with an already lengthy survey and
the fact that our work formed a relatively minor part thereof, motivated the use of a sim-
ple and direct measurement question. Satisfaction with the intervention was measured by
asking respondents to rate the effect of the intervention on the following five aspects, on a
scale from 1 (very negative effect) to 10 (very positive effect): money saved on electricity;
ability to use lights; quality of light in my home; my responsibility for the environment;
my awareness of energy matters. An overall satisfaction score was calculated by taking
the average rating over these five questions.

In addition to the efficiency (CFL exchange) intervention, there were two nationwide
increases in the price of electricity, on 1 July 2008 and 1 July 2009. The exact magnitude
of the increase for a household is fairly complicated and depends on the tariff category
(which, in turn, depends on historical usage) a household falls into, but were of the order
of 25% and 35%, respectively. Because the data captures monetary spend as well as units
consumed, it was possible to calculate relative price increases for each household over time.

6.2 Tests of research hypotheses

Our research hypotheses (stated in Section 5) can be expressed in statistical terms and
tested via formal hypothesis testing. All hypotheses are tested by means of linear re-

5Two earlier surveys were also conducted, in June 2008 and September 2008. Neither of these surveys
contained questions regarding preferences for different aspects of electricity consumption or satisfaction
with the intervention. We therefore do not make use of them here.
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gression models using a random intercept to account for between-household heterogeneity
in electricity consumption. The dependent variable in all cases is the natural logarithm
of consumption, which transforms the outcome to one that is normally distributed. The
independent variables that are included in the model differ depending on the hypothesis
to be tested. The models for the various hypotheses are as follows:

Hyp 1: ln(Cit) = β0 + β1PCit + β2wcost,i + β3PCitwcost,i + µi + εit,
Hyp 2: ln(Cit) = β0 + β1PCit + β2(wimp,i − wcost,i) + β3PCit(wimp,i − wcost,i) + µi + εit,
Hyp 3: ln(Cit) = β0 + β1EIit + β2PCit + β3wcost,i + β4EIitwcost,i + µi + εit,
Hyp 4: ln(Cit) = β0 + β1EIit + β2PCit + β3satit + µi + εit,
Hyp 5: ln(Cit) = β0 + β1EIit + β2PCit + β3wimp,i + β4EIitwcost,i + µi + εit,

where i indexes household and t indexes time/month, Cit denotes the average daily con-
sumption by household i during month t, PCit denotes the price change (as a percentage
of the original baseline price), EIit denotes an indicator for efficiency intervention, wcost,i
denotes an importance weight for the cost objective, wimp,i denotes an importance weight
for the impact objective, satit denotes satisfaction with an intervention (set to zero prior
to the intervention), µi denotes the random effect for household i distributed N(0, σ2

µ),
and εit denotes the random error term distributed N(0, σ2

ε ).

Different sub-samples of time or households are used for some of the hypotheses. Hy-
potheses 1 and 2 refer to the impact of price-interventions only. As a result, attention is
confined to the months after the CFL exchange in June 2008 — considering months prior
to this period would confound the effect of price and efficiency interventions. To account
for seasonal effects, consumption in July to October 2008 (a ‘before’ period) and July to
October 2009 (a period ‘after’ the second price increase) was considered. This allows for
the testing of the impact of a price increase independent of the earlier efficiency interven-
tion. Hypotheses 3 and 4 are tested using the full sample. Hypothesis 5 refers to rebound
effects occurring as a result of unsatisfying new technology. Attention is restricted to those
households giving relatively poor satisfaction ratings to the exchanged CFLs. A cut-off of
6 (out of 10) was used, which reduces the sample to the 21 (out of the total 122) most
dissatisfied households.

Results of the hypothesis tests are shown in Table 2. In each column the variable to
which the hypothesis applies is stated, and the direction of the effect suggested by the
system dynamics model is given. Regression coefficients for all effects in each regression
model are given, with standard errors indicated in parentheses. The parameter estimate
corresponding to the variable of interest for each hypothesis test is highlighted in boldface,
and p-values associated with each (one-sided) hypothesis test are given in the final row of
the table. Hypotheses 1, 2, 3 and 5 are all strongly supported by the data, and there is
weak support for hypothesis 4.

6The coefficient for wimp,i is the same magnitude but oppositely signed to the coefficient for wcost,i
because a single coefficient is estimated for the difference wimp,i−wcost,i (see the model formulation). The
same will be true of the two interaction terms involving PCit.
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Variable Hyp 1 Hyp 2 Hyp 3 Hyp 4 Hyp 5
Hypothesis PCitwcost,i PCitwimp,i EIitwcost,i satit EIitwimp,i
H0(Null) β ≥ 0 β ≤ 0 β ≤ 0 β ≥ 0 β ≤ 0
H1(Model) β < 0 β > 0 β > 0 β > 0 β > 0

PCit 0.10 (0.16) −0.21 (0.04) −0.11 (0.04) −0.10 (0.04) 0.15 (0.11)
EIit −0.11 (0.08) 0.06 (0.02) 0.37 (0.19)
wcost,i −0.48 (0.77) −0.50 (0.46) −0.67 (0.70)
wimp,i −0.506 (0.46) 1.23 (1.62)
satit −0.02 (0.02)
PCitwcost,i −1.01 (0.43) −0.59 (0.22)
PCitwimp,i 0.59 (0.22)
EIitwcost,i 0.52 (0.23)
EIitwimp,i −1.48 (0.60)
Constant 2.13 (0.26) 2.01 (0.23) 2.01 (0.23) 1.80 (0.06) 1.41 (0.53)
σµ 0.58 0.58 0.62 0.62 0.79
σε 0.28 0.28 0.43 0.43 0.54

p for test 0.009 0.003 0.012 0.110 0.007

Table 2: Results of hypothesis tests for five hypotheses regarding changes in electricity con-

sumption behaviour occurring in different household types in response to price and efficiency

interventions.

7 Discussion

This section contains a discussion on our experience of modelling household responses for
energy efficiency interventions as described in this paper.

7.1 Use of empirical data to generate confidence in system dynamics
models

Following the hypothesis tests one further meeting took place to discuss the results and
their implications for the final model. There was some surprise that the model had been
well-supported by the data, given the complexity of the hypotheses (all but one involved
interactions of some sort), the relatively crude approach used to measure preferences, and
the amount of variability present in the consumption figures. The support provided by the
data generated confidence in the underlying model and a sense that the model had been
‘validated’. This led to greater acceptance of the model’s structure (particularly the use of
preferences for different household objectives that distinguish this model from many other
energy models) and a greater willingness to explore and accept the other implications of
the model (i.e. those that were not part of the hypothesis tests).

The role that data can play in inspiring a sense of confidence in a fairly qualitative system
dynamics model such as ours was perhaps the most interesting aspect of our experience.
Acceptance and trust of the final model by those involved in its construction is a basic
requirement of a successful modelling process — validation as “the process of establish-
ing confidence in the soundness and usefulness of a model” (Forrester and Senge, 1980).
System dynamics practitioners often prefer more qualitative tests of validity to statis-
tical tests (Forrester and Senge, 1980; Barlas, 1996; Coyle and Exelby, 2000), but our
experience has been that a statistical comparison against empirical data (where possible
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and in conjunction with other checks) can be effective in achieving the acceptance of a
model. The comparison need not be particularly detailed — in this application it was as-
sessed whether the direction of a small number of non-trivial effects implied by the model
matched those observed empirically. In fact, for the types of problems for which system
dynamics (or even ‘softer’ OR) methods are usually applied, it would seem important not
to base comparisons on overly detailed quantitative predictions of behaviour.

Ideally comparisons between an initial model and empirical data would be used as a com-
plement to further discussion and modelling. One might expect differences between model
output and empirical findings to provide a stimulus for further modelling by identifying
behaviour that the model is unable to account for and areas of the model that are ques-
tionable. In the application considered here, no real discrepancies between model output
and empirical data arose, and so further modelling was deemed, at this point in time,
unnecessary. As further implications are explored and other data become available, this
may change.

7.2 Use of system dynamics to explore unusual points of view

In our case, the focus on relatively abstract preferences for cost, comfort, and environ-
mental impact constituted an ‘unusual’ point of view. In the analysis of energy systems,
consumer response is usually captured through elasticity parameters derived from econo-
metric models of energy demand in the economy, with little focus on the micro-level
response. Attitudinal information, particularly regarding preferences, is relatively rare in
energy research, although it is increasingly being advocated. One of the challenges facing
those advocating attitudinal approaches is to motivate for the collection of such data,
which tends to be expensive relative to the collection of behavioural data like electricity
consumption, prices, etc. In our application system dynamics proved to be a valuable tool
for generating such motivation, and it was only following the construction of the initial
model that a decision was made to collect attitudinal data as part of the project. Given
the usefulness of these data, the collection of attitudinal data may prove easier to motivate
for in the future. Our experience suggests that the system dynamics approach is especially
useful in cases where, for historical or economic reasons, advancing a particular point of
view through traditional modelling approaches is difficult. This has some significance in
developmental applications, where empirical data are not always readily available or are
prohibitively expensive to collect.

7.3 Importance of understanding attitudes and preferences underlying
energy consumption

From the perspective of energy research, a useful finding is how a simple model of household
preferences is able to capture quite sophisticated dynamics in consumption, particularly
in terms of responses to different intervention scenarios. Several researchers have called
for more emphasis on psychological models of energy consumption, and for a greater
accounting for the attitudes and decisions underlying energy-related behaviour rather than
a direct focus on the behaviour (Swim et al., 2009; Griskevicius et al., 2008; Gyberg
and Palm, 2009; Abrahamse et al., 2005; Abrahamse et al., 2007; Fischer, 2008; Owens
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and Drifill, 2008). The system dynamics model described above is largely based on this
emerging psychology. The results provide support for the three primary criteria identified
by most researchers as important determinants of energy consumption — labelled in this
paper as cost, comfort, and impact objectives — and suggest that these three criteria, if not
exhaustive, are at least sufficient to explain several observed responses to interventions,
and together with the satisfaction derived from an intervention are able to collectively
provide simple and quite intuitive explanations for several important aspects of rebound
behaviour.

8 Conclusion

A case study of a modelling process undertaken in order to better understand how house-
holds might go about deciding (if only implicitly) how much electricity to consume was
presented in this paper. No definitive model of household consumption exists, and there
is still much that needs to be learned about the drivers of behaviour at the household
level. System dynamics and soft OR methods are well suited to applications such as this,
where the problem definition is somewhat vague and subject to differing interpretations,
and a major aim of the process is to gain a better understanding of the system and what
forms possible solutions might take. The approach that was followed may be summarised
as follows:

1. Identify which aspects of attitude and behaviour have been found in the literature
to affect household electricity consumption.

2. Integrate these findings into a single conceptual model of household electricity con-
sumption, using system dynamics as an aid to the construction of such a model.

3. Generate a small number of household types (with different preferences) and in-
tervention scenarios, and use the model to evaluate the potential impact of each
intervention scenario on each household. Use these results as a basis for discussion.

4. Use the results obtained from the initial model to generate a small number of testable
research hypotheses about consumption behaviour. These hypotheses related to how
households endowed with different attitudinal characteristics might respond to a
particular intervention.

5. Use survey data to evaluate the research hypotheses. Use the results of these hy-
pothesis tests as a basis for further discussion and modification of the model, where
necessary, until the stakeholders are satisfied that the aims of the modelling process
have been achieved.

A summary of the authors’ experience of applying the above process is that:

1. The inclusion of attitudinal elements (and, in particular, preferences for conflicting
energy-related attributes) enabled quite sophisticated dynamics in electricity con-
sumption to be captured, in terms of responses to different intervention scenarios,
and to provide fairly simple explanations for this behaviour.

2. A soft OR approach (in this instance, system dynamics) proved useful in exploring
the behaviour of a complex system which is as yet not well understood, and for which
comprehensive data are not readily available.
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3. The main benefits of using such an approach were those that are usually claimed:
that it provided a basis for structuring the collective thoughts and ideas of a group of
stakeholders, and for integrating different information on various parts of the system.

4. Although a benefit of the soft OR approach is that it allows one to explore the
impact of potential scenarios on the system, in application areas where modelling
has traditionally been predominantly quantitative or where an unusual point-of-view
of the system is taken, confidence in the extrapolations may be limited.

5. The use of empirical data to test a small number of relatively simple but non-trivial
predictions made by the model was an effective tool in reducing skepticism around
the model. Ideally, differences between model output and empirical findings should
be used to stimulate further discussion and modelling modification by identifying
behaviour which the model is unable to account for and areas of the model that are
questionable.

The model presented here provides a useful basic model for the preferential and other
attitudinal drivers underlying electricity consumption. There remain a number of more
sophisticated elements of consumption behaviour that may be included as a means of fine-
tuning the basic model. We have mentioned a small number of these: different invoicing
mechanisms, the determination of capacity constraints on consumption, and varying the
length and frequency of information campaigns. As the literature around energy con-
sumption grows, it will likely become possible to develop more comprehensive models of
consumption capable of explaining some of the more subtle aspects of behaviour. Our
results suggest that attitudinal elements may be expected to play an important role in
such models.
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