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Abstract
Overall availability of a chemical process is of critical importance in industry. In this paper we
evaluate the process design factors that influence the availability of a new chemical production
facility by performing computer experiments on a stochastic simulation model. Experimental
designs commonly used in the Design and Analysis of Computer Experiments (DACE) and
Classical Design of Experiments (DOE) are evaluated and compared for application by means
of simulation experiments. Furthermore, response surface and kriging models are evaluated
for the approximation of the input-output relationships. The most accurate experimental
design by approximation model combination is used to explore the design space, both in
terms of the overall availability and the percentage time offline. We illustrate how the design
and analysis of simulation experiments (DASE) are used for minimizing the risks in the
design of a new 1-octene production facility in terms of maximising the overall availability
and minimizing the percentage time offline simultaneously.

Key words: Availability, design and analysis of computer experiments, kriging, response surface

modelling, simulation experiments.

1 Introduction

Higher alpha olefins, such as 1-octene, are used commercially as co-monomers for the
production of, amongst other things, linear low-density polyethylene. The problem with
conventional linear alpha olefin technologies is that, in addition to 1-octene, a mathemat-
ical distribution of less useful olefins is also produced. Consequently the production of
1-octene via the selective tetramerisation of ethylene is of great commercial value. Per-
haps the best known homogeneous catalyst system for the tetramerisation of ethylene is
that developed by Phillips Petroleum Company which consists of a chromium source, 2,5-
dimethylpyrrole and an alkylaluminium as activator. A number of other chromium-based
homogeneous catalyst systems have also shown promise in this regard [3].
∗Corresponding author: Sasol Technology Research and Development, PO Box 1, Sasolburg, 1947,

South Africa, email: Ruan.Rossouw@sasol.com
†Sasol Technology Research and Development, PO Box 1, Sasolburg, 1947, South Africa.
‡North-West University, Vaal Triangle Campus, PO Box 1174, Vanderbijlpark, 1900, South Africa.

53



54 RF Rossouw, RLJ Coetzer & PD Pretorius

Recently, Sasol Technology engaged in the design of a new commercial ethylene tetrameri-
sation process for the production of octene. In the tetramerisation process various sec-
ondary products are also produced. The most problematic of these is a polyethylene
polymer which fouls the reactor system and necessitates periodic shutdowns for cleaning,
and consequently results in production losses due to plant unavailability.

Cleaning occurs by means of a hot solvent wash process during which the polymer is
melted or dissolved in a different solvent to the reaction solvent at 180◦C. If fouling is too
severe to be removed by this process, the unit must be opened and mechanically cleaned
by means of hydroblasting, which results in extended downtime.
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Hot wash
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AR: Activation Reactor

Devo: Devolatiliser Train
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Feed
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Figure 1: Reactor flow sheet for an ethylene tetramerisation process.

The formation of polymer can be reduced by activating the catalyst at high Aluminium
(Al) concentration [24]. Once the catalyst is fully activated, the reaction can continue
at higher efficiency and at a lower Al concentration. This equates to a reduction in co-
catalyst consumption, which is crucial in achieving an economic total catalyst package
cost.

The base case process design is to activate the catalyst in a comparatively small upfront
activation reactor and feed the product from this reactor containing fully activated catalyst
to a train of two larger main reactors in series. After exiting the main reactor train at
60◦C, the reaction product is heated in the post reactor heater before undergoing two
flashes in the devolatilisation (Devo) train to recover the unreacted ethylene for recycling
and to separate the desired product from the residual polymer. Both the heat exchanger
and the Devo units can foul with moderate to excessive polymer.

The devolatilised, polymer-free product is then sent to the product work-up train to recover
the desired 1-octene. The work-up train is not expected to foul. The base case flow sheet
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for both the reaction and hot wash processes is shown in Figure 1 [27]. It includes:

1. Three parallel, equally sized batch activation reactors, two of which are in operation
while the third is being defouled. The product from each activation reactor in
operation is sent to a main reactor train. Each activation reactor can feed either
of the two main reactor trains (one at a time). A batch charge from the activation
reactor to the main reactor occurs at constant intervals.

2. Two equally sized main reactor trains, each consisting of two reactors in series. If
one of the main reactors in series needs to be shut down, the other reactor in the
train will be shut down and cleaned as well.

3. A spare post-reactor heater plus devolatilisation unit. Each post reactor and de-
volatilisation train services the output of both main reactor trains. If a Devo unit
fouls, the associated post reactor heater must also be shut down for cleaning and
vice versa.

4. There is one hot wash system which can wash one main reactor train, one activation
reactor and one post reactor heater plus Devo unit simultaneously. It can wash any
of these sections separately or all three sections together. Thus it can simultaneously
wash sections of the process flow diagram that are in series, but not sections that
are in parallel.

The commercial plant must be designed to compensate for the unavoidable fouling, shut-
down and cleaning processes. The impact of the fouling and cleaning of key process units
on the availability of the commercial plant must therefore be quantified in order to better
assess the risks involved and to identify areas that may require design optimisation so as
to improve overall plant availability.

An industrial plant is typically part of a larger industrial complex. The plant receives feed
streams from other units in the complex, and some of the products are feeds for other
units. The consequence of this interdependence of the different units has the implication
that the plant is under an “obligation” to process a predetermined volume of feed, and to
produce the corresponding products. Not achieving this throughput has an impact on the
overall stability of the industrial complex.

The throughput of the industrial plant is directly related to the availability and size of the
plant. It is therefore possible to compensate for availability by increasing the size of the
plant. The cost of the plant is, however, directly related to the size of the components.
From a cost perspective it is therefore beneficial to design the plant to be as small as
possible. Consequently it is of critical importance to have a reliable estimate of the
availability of the plant. This enables the process engineers to make informed decisions in
designing the plant.

Real-world systems, such as the one discussed in this paper, are so complex that analyt-
ical models of these systems are virtually impossible to solve mathematically. Numerical
computer-based simulation can be used to imitate the behaviour of the system over time.
The system depicted by the flowsheet in Figure 1 was modelled in the stochastic simulation
software Arena (of Rockwell Software [10]). The simulation model was validated against
the industrial system to prove that the model is a true representation of the physical sys-
tem. For the remainder of this article the output from the simulation model will therefore
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be assumed to be representative of and interchangeable with the expected output from
the physical system.

An estimate of overall availability was obtained by calculating the average availability
from the simulation output over a four year period. The percentage time offline was
calculated similarly. These responses were used as approximations of the true availability
of the commercial plant. The simulation model was used to evaluate the effects of different
design variables and operating philosophies on the availability. These experiments would
have been impractical or impossible to perform on a commercial plant.

Even though the simulation model makes it possible to evaluate the effects of the design
variables and operating philosophies, performing these experiments without formal sta-
tistical design and analysis procedures can waste considerable human and computer time
since stochastic simulation models are very computing-intensive models. To ensure the
proper utilisation of the time and money invested in creating the simulation model, the
methodology of the Design and Analysis of Simulation Experiments (DASE) [13, 14, 27]
was adopted to extract the maximum amount of information from the model with the
minimum number of runs.

Using the DASE methodology an approximation model of the simulation model can be
constructed that will solve virtually instantaneously. This approximation model can be
used in lieu of the original model to explore the entire design space efficiently, as illustrated
in Figure 2. Given a set of s input variables x1, . . . , xs the simulation model yields n
output variables y1, . . . , yn. An approximation model of the input-output relationships is
then constructed. The goodness-of-fit of the approximation model is evaluated with an
additional set of validation points.

The Design and Analysis of Computer Experiments (DACE) has received a lot of attention
in recent years [28, 30]. The majority of the work has, however, been performed on
deterministic computer models in contrast to simulation models. A simulation model is
more similar to a physical experiment in the sense that the outcome of each experiment
is a random value. Therefore, replications are required in order to estimate experimental
error. The simulation model is, however, still a computer model, and the benefits of
the work performed on design and analysis of computer experiments may be realised in
simulation models as well.

Therefore, in this study experimental designs commonly used in the DACE and Classical
Design of Experiments (DOE) are compared for application with simulation experiments.
Different metamodels are also evaluated for the approximation of the input-output rela-
tionships.

The optimal design by metamodel combination was used to explore the design space, both
in terms of the overall availability and the percentage time offline, and valuable insight was
gained about the industrial system. The methodology of multiple response optimisation
was then used to define an operating envelope subject to constraints for both the overall
availability and percentage time offline.

The paper is organised as follows. First we present the process variables under investiga-
tion. In §3 the experimental methodology is discussed. §4 and §5 consist of the design
of experiments, as well as the approximation models evaluated are introduced in context
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of simulation models respectively. The evaluation criteria are then discussed in §6. The
results from the evaluation of different designs and approximation models are further dis-
cussed in §7.1. In §7.2 the application of the DASE methodology to the case study is
demonstrated and discussed. Finally some conclusions follow in §8.
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...

Model

y = f(x1, x2, . . . , xs)

Approximation Model

y1

y2

y3

yn

...
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Figure 2: Computer model and experiments for an industrial system.

2 Process variables in the model

The system depicted by the flowsheet in Figure 1 was modelled in the simulation software
Arena [10]. To carry out a simulation using random inputs, such as time to failure
and time to repair, the relevant probability distributions must be specified. Then, given
that the input random variables to a simulation model follow particular distributions, the
simulation proceeds through time by generating random values from these distributions
[15] and uses these to evaluate various performance criteria.

The factors considered in the experimental study, together with their ranges, are depicted
in Table 1.

The different probability distributions used to sample the time to failure and cleaning time
are as follows. The Weibull distribution was used for the time to failure of the activation
reactor, first main reactor in series and second main reactor in series. Exponential distri-
butions were used for the time to failure for the post reactor heater plus Devo unit. Finally,
for the cleaning by means of hot wash, a normal distribution was used. The selection of
these distributions was guided by discussions with various process engineers.

In the case of the activation reactor or a main reactor fouling, it is assumed that, on aver-
age, one in thirty hot washes will be unsuccessful and that hydro-blasting will be required.
A normal probability distribution around the average is assumed. A constant turnaround
time for hydro-blasting is assumed. This includes the time taken for attempting and
abandoning the hot wash process.

In the case of the post reactor heater or Devo unit fouling, the same probability of a
hot wash being unsuccessful and hydro-blasting being required is assumed. The reactors’
failure distributions are specified as Weibull distributions. The Weibull distribution is
defined by two parameters: α and β. The parameter α is a shape parameter. If α = 1,
then the Weibull distribution coincides with the exponential distribution. The parameter
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Name Description Low High Units

Hotwash Fail Factor Number of times out of 30 hot washes that a
hotwash will be unsuccessful.

1 3 n

Hydroblasting Days Number of days down for hydro-blasting. 4 6 Days
Hotwash Average The hours for the hotwash. 12 36 Hours
Hotwash SD The standard deviation for the hotwash. 1 3 Hours
Minimum Uptime Activa-
tion Reactor

Minimum uptime for the activation reactor. 2.5 5 Days

Shape Parameter (α) for Ac-
tivation Reactor Uptime

Shape parameter for the Weibull distribution
used to approximate the activation reactor up-
time.

1 3

Scale Parameter (β) for Ac-
tivation Reactor Uptime

Scale parameter for the Weibull distribution
used to approximate the activation reactor up-
time.

2 4

Main Reactor Fail Factor Number of times out of 15 main reactor fail-
ures that the main reactor will fail in a shorter
time period.

0 2 n

Minimum Uptime Main Re-
actor

Minimum uptime for the main reactor. 4 8 Days

Shape Parameter (α) for
Main Reactor Uptime

Shape parameter for the Weibull distribution
used to approximate the main reactor uptime.

1 3

Scale Parameter (β) for
Main Reactor Uptime

Scale parameter for the Weibull distribution
used to approximate the main reactor uptime.

2 4

Minimum Uptime Post Re-
actor/Devo

Minimum uptime for the Post Reac-
tor/Devolatilization.

8 12 Days

Mean Uptime Post Reac-
tor/Devo

Average uptime for the Post Reac-
tor/Devolatilization.

13 15 Days

Hotwash Parallel or Series Indicates whether the hotwash can treat every-
thing in parallel or only the equipment that are
in series. This is a categorical variable, i.e. it
can only have discrete values. Series is coded
as 0, and parallel as 1.

0 1

Table 1: Input variables and ranges used in the experimental design process.

β is a scale parameter. Possible applications of the Weibull distribution are the time to
complete some task or the time to failure of a piece of equipment; it is used here as a crude
model in the absence of data [15]. A change in α generally alters a distribution’s properties
(e.g. skewness) more fundamentally than a change in location or scale parameter β [15].
There are many other distributions available which could be used for the different units
([15], Chapter 4). However, these distributions were applied with the current problem and
yielded acceptable results.

3 Experimental methodology

The methodology that was used to compare the different experimental design by approx-
imation model combinations is presented in Figure 3. The methodology is presented as
a tree diagram with branches and nodes. Each experimental design and approximation
model is presented as a node in the tree. Phase 2 was performed for each screening branch,
but due to space constraints it is only shown for the D-Optimal branch. The approxima-
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tion models were fitted to each of the second phase designs. Therefore, the response
surface and kriging models were fitted to 25 design combinations. The objective was to
determine the most accurate model in the final stage of the tree diagram for predicting
the availability of the plant.
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Figure 3: Methodology used for comparing different design and approximation model combi-

nations.
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4 Design of experiments

Computer-based simulation and analysis are used extensively in engineering to predict the
performance of a system or product. These computer models can be either deterministic
or random in nature. The design and analysis of (deterministic) computer experiments
is currently undergoing extensive research [28, 29, 30]. Stochastic simulation models are,
however, random in nature. The DASE is discussed in [13]. In this paper four designs from
the DOE (fractional factorial designs, Plackett-Burman designs, central composite designs
and D-optimal designs), and two space filling designs from the DACE literature (uniform
designs and Latin hypercube designs) were compared for application in the DASE.

As the number of factors k increases, the number of runs in a 2k factorial design required for
a complete replicate of the design rapidly outgrows the resources of most experimenters. If
the experimenter can reasonably assume that certain high-order interactions are negligible,
information from the main effects and low-order interactions may be obtained by running
only a fraction of the complete factorial experiment. These are denoted as 2k−p designs,
where p is the fraction (2p fraction). These fractional factorial designs are among the most
widely used types of designs for product and process design [22].

Plackett-Burman designs, attributed to [25], are two-level fractional factorial designs for
studying k = N − 1 variables in N runs, where N is a multiple of 4. If N is a power of 2,
these designs are identical to two-level fractional factorial designs. However, for N = 12,
20, 24, 28 and 36, Plackett-Burman designs are sometimes of interest. More specifically,
these designs cannot be represented as cubes; they are sometimes called non-geometric
designs ([16], [22, p. 319]).

The D-optimal criterion minimises the generalised variance of the parameter estimates in
a linear model [1]. Specifically, it minimises the determinant of (XTX)−1, where X is
the expanded design matrix having one column for each coefficient to be estimated in the
model. For any candidate designX∗, the D-efficiency ofX∗ is defined as |X∗TX∗|/|XTX|
relative the optimal design X.

The central composite design (CCD) consists of three points: a 2k−p two-level factorial or
fractional factorial design, a set of 2k star points at a distance α =

√
k from the centre

of the design, and n0 centre runs. Lucas [19] stated that the use of the central composite
design is the routine ’production run’ of the applied statistician. He also showed in [20]
that composite designs perform well in terms of the D-efficiency measure. Due to its
practical usage, and the flexibility it offers in design, the CCD will be considered for
evaluating design efficiencies.

DACE was developed from the methodology of the design and analysis of physical exper-
iments. However, the theories of DOE [22] and of response surfaces [23] are based on the
fact that an observation in a physical experiment is affected by variability due to the effect
of a number of independent factors and random variability. In contrast, computer exper-
iments are deterministic and yield the same result from repeated runs. Therefore, space
filling experimental designs are employed for computer experiments. Latin hypercubes
and uniform designs are examples of different types of space filling designs [30].

Since uniform designs were introduced in the early 1980s by Fang [5], it has become very
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popular. The design points of a uniform design are uniformly scattered on the experimental
domain. It is a type of fractional factorial design with an added uniformity property.
According to Fang [6], the uniform design is superior to other designs because many other
design criteria are simultaneously optimised together with minimisation of the discrepancy
criterion. A considerable advantage of uniform designs is that less information is required
of the underlying model. A large number of different uniform designs are available at
the website [7], and they are specified by the notation Un(qk), where U denotes uniform
design, n the number of runs, k the number of factors and q the number of levels. See
[6, 8] for the theory and application of uniform designs.

4.1 Screening experiments

The importance of factors depends on the experimental domain. The users should supply
information on this domain, including realistic ranges of the individual factors and limits
on the admissible factor combinations (e.g. some factor values must add up to 100%).
Therefore, in practice, user involvement is crucial for the application of screening methods
[13].

For this study the 14 variables and ranges are shown in Table 1. The following designs
were evaluated for the screening phase. Designs with approximately 20 runs were chosen.

1. 214−10 Fractional factorial design. The effects of 14 factors are evaluated in only 16
runs. The design was created using Design Expert [32].

2. Placket-Burman design with 20 runs. In this case study an N = 20 run Plackett-
Burman design in 19 factors was applied during the screening phase. This is the
smallest Plackett-Burman design equal to or larger than 14 factors. After construct-
ing the design in the 19 factors, columns 15 to 19 were removed (these columns
are not required because there are only 14 factors present in this study). Plackett-
Burman designs are often applied as screening designs in the design and analysis of
simulation experiments [13, 14, 15].

3. U20(414) uniform design.
4. Latin hypercube design with 20 runs. The design was created using the lhs package

in R [26].
5. D-optimal design with 15 runs. The design was created using Design Expert [32].

For each of the designs the simulation model was executed only once at each design point.
Another approach would have been to replicate each design point, for instance, five times
and to use the average response value of the designs. Only one replication was used because
the goal of this study was specifically to assess the most efficient (smallest number of model
runs) experimental design strategy for simulation experiments. During the screening phase
there can literally be hundreds of factors, and adding replications on each design point
can increase the computer time of the study prohibitively.

The outputs for all the designs are summarised in Table 2. The numbers in the table
indicate the relative sizes of the absolute values of the effects of the factors [22, p. 68].
This gives an indication of the relative importance of the factors. The values marked with
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Fractional Plackett- Maximin
Factorial Burman D-Optimal Uniform LHS

HotwashFailFactor 3* 3* 13 3* 3*
HydroblastingDays 5* 6* 5 4* 7
HotwashAverage 1* 1* 1* 1* 1*
HotwashSD 9 12 11 12 9
ActivationReactorMin 7* 13 12 6 14
ActivationReactorAlpha 6* 11 10 9 10
ActivationReactorBeta 11 9 4* 13 11
MainReactorSmallFailFact 8* 5* 3* 8 4*
MainReactorMin 2* 2* 2* 2* 2*
MainReactorAlpha 14 10 6 11 12
MainReactorBeta 4* 7* 8 14 8*
PostReactorMin 13 14 7 7 6*
PostReactorMean 10 8 14 10 13
HotWashParralel 12 4* 9 5* 5*
R-Squared 0.99 0.97 0.97 0.94 0.98

Table 2: Summarised results from the screening experiments.

an asterisk were found to be statistically significant for each design from the analysis of
variance [22, p. 60].

The following may be observed from Table 2. The order of highest impact of the first
three values are mostly similar, but for the rest of the factors the designs differ. The
number of significant variables also differ for all five of the designs in this screening study.
For example, the D-optimal design yielded only 4 significant factors, compared to the
Resolution III fractional factorial design which yielded 8 significant factors. Note the
R2 values, i.e. the percentage variance explained by the model, are very high for all the
designs.

4.2 Interaction/second-order experiments

During this phase experimental designs were evaluated on the sets of variables which
were identified as significant from the different screening designs (Phase One). Note that
for each branch in Figure 3 different variables were found to be significant. Therefore,
different variables and numbers of experiments were used for the second phase designs
of the different branches. The designs evaluated during this phase are shown in Table 3.
Twenty-five design combinations were investigated during this phase (See Figure 3).

Generally, during the second phase of a sequential design process, interaction designs are
employed, and the data are checked for curvature [23]. If curvature is present, a third
phase follows where second-order models are fitted. In this study, the curvature was found
to be insignificant for all the designs and models evaluated. A central composite design
was, however, included in this phase, because it is a well-known and widely used design.
The results are discussed in §7.1.
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Fractional Latin Central
Factorial Uniform Hypercube D-Optimal Composite

Fractional Factorial [8] 28−2 [64] U48(48) [48] [48] [42] [54]
Uniform [5] 25−1 [16] U48(45) [20] [20] [21] [42]
Latin Hypercube [7] 27−1 [64] U48(47) [48] [48] [34] [78]
D-Optimal [4] 24−0 [16] U20(44) [20] [20] [16] [21]
Plackett-Burman [7] 27−1 [64] U48(47) [48] [48] [34] [78]

Table 3: Table of designs used in the second phase experiments. Column names are phase 1

designs, and row names are phase 2 designs. In the row names the number in brackets denotes

the number of significant variables, and in the table the number in brackets denotes the number

of experiments performed.

5 Approximation models

The response surface and kriging models used in this study are outlined in this section.

5.1 Response surface models

Response surface methodology (RSM) is a collection of mathematical and statistical tech-
niques useful for the modelling and analysis of problems in which a response of interest is
influenced by several variables and the objective is to optimise the response [22].

Response surface modeling postulates a model of the form

y(x) = f(x) + ε, (1)

where y(x) is the unknown function of interest, and f(x) is a known polynomial function
of x ∈ χ, where χ is the design space. Here ε is a random error, which is assumed to be
normally distributed with zero mean and common variance σ2 [22].

In most RSM problems, the form of the relationship between the response and the indepen-
dent variables is unknown. Thus, the first step in RSM is to find a suitable approximation
for the true functional relationship between y and the set of independent variables. Usu-
ally, a lower-order polynomial in some region of the independent variables is employed.
If the response (y) has a linear relationship with the independent variables (x1, . . . , xk),
then the approximating function is the first-order model

ŷ = β̂0 +
k∑

i=1

β̂ixi. (2)

If there is curvature in the system, then a polynomial of higher degree must be used, such
as the second-order model

ŷ = β̂0 +
k∑

i=1

β̂ixi +
k∑

i=1

β̂iix
2
i +

k∑ ∑
i<j

β̂ijxixj . (3)

Obviously, it is unlikely that a polynomial model will be a reasonable approximation of
the true functional relationship over the entire space of the independent variables, but for
a relatively small region they usually work quite well [22].
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The parameters, β̂0, β̂i, β̂ii, and β̂ij , i 6= j = 1, 2, . . . , k, of the polynomials in (2) and (3)
are determined by means of least squares regression which minimises the sum of squares
of the deviations of the predicted values, ŷ(x), from the actual values, y(x). The least
squares estimates are obtained from

β̂ = [XTX]−1XTy, (4)

where X is the model matrix of sample data points, XT is its transpose, and y is a column
vector containing the values of the response at each sample point [22].

If the model is sufficiently accurate, it is applied to search the design space for improved
or optimal solutions. Myers and Montgomery [23, Chapter 1, p. 10–11] give a detailed
discussion on the phases of response surface modelling.

5.2 Kriging

Kriging is an interpolation technique that was originally developed in the field of geostatis-
tics. Sacks et al. [28] initiated the application of kriging to DACE where it postulates a
combination of a regression part and a stochastic part,

y(x) = fT(x)β + Z(x). (5)

Here x is a vector of design variables, y(x) is the unknown response function, fT (x)β the
known (usually polynomial) regression function of x, β the p× 1 vector of parameters to
be estimated, f(x) the vector containing the functions of x expanded for the polynomial
model, and Z(x) the realisation of a stochastic process with zero mean, variance σ2, and
non-zero covariance. While fT (x)β approximates the design space, Z(x) creates “localize”
deviations or departures so that the kriging model interpolates the nt data points [9].

The covariance matrix of Z(x) is given by

Cov[Z(xi), Z(xj)] = σ2R(R(xi,xj)), (6)

where R is the correlation matrix, and R(xi,xj) the correlation function between any two
of the sampled nt data points xi and xj . Here R is an nt × nt symmetric matrix with
ones along the main diagonal. The correlation function R(xi,xj) needs to be specified by
the user. Several correlation functions may be used and are discussed in [30]. Throughout
this paper, the Gaussian correlation function

R(xi,xj) = exp

[
−

nd∑
k=1

θk(xik − xjk)2
]

(7)

is employed, where nd is the number of design variables, θk is the unknown correlation
parameters used to fit the model, and xik and xjk are the kth components of sample data
points xi and xj .

Predicted values of the response y(x) at untried values of x are given by

ŷ(x) = fT(x)β̂ + rT(x)R−1(y(x)− F (x)β̂), (8)
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where y(x) is the column vector of length nt containing the sample values of the response,
and F (x) the nt×p matrix of design points. Here rT(x) is the correlation vector between
an untried x and the sampled data points {x1, . . . ,xnt}, and is defined as

rT(x) = [R(x,x1), R(x,x2), . . . , R(x,xnt)]
T. (9)

The vector
β̂ = (F (x)TR−1F (x))−1F (x)TR−1y(x) (10)

is used in (8). The variance between the underlying model β̂ and y is estimated as

σ̂2 =
(y(x)− F (x)β̂)TR−1(y(x)− F (x)β̂)

nt
. (11)

The maximum likelihood estimates (MLE’s) of θk in (7) used to fit the model are found by

maximising − ns ln(σ̂2) + ln|R|
2

. (12)

Any values for θk will create an interpolative model but the “best” kriging model is found
by solving the k-dimensional unconstrained non-linear optimisation problem in (12) [31].

6 Evaluation criteria

The comparisons between the different designs and approximation models were performed
by sampling additional validation points to assess the accuracy over the region of interest.
For each set of validation points, the maximum absolute error (MAX) and the root mean
square error (RMSE) were computed as

MAX = max
i∈{1,...,ne}

{|yi − ŷi|} (13)

and

RMSE =

√∑ne
i=1(yi − ŷi)2

ne
(14)

respectively, where ne is the number of additional validation points. While RMSE provides
good estimates of the “global” error over the region of interest, MAX gives a good estimate
of the “local” error by measuring the worst error within the region of interest. A good
approximation will have low RMSE and MAX values [17].

7 Results and discussion

Two approximation models for the input-output relationship are compared in this section,
namely response surface models (see §5.1) and kriging models (see §5.2).
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7.1 Design and model comparison

For each of the designs in §4.2 a response surface model and kriging model were fitted to
the data from the simulation experiments. The response surface model was fitted using
Design Expert [32]. The kriging model was fitted using the DACE toolbox [18] in
Matlab [21]. A twenty-run random Latin hypercube design was used as validation grid,
created with the lhs [2] package in R [26].

For each approximation model in Phase 3 (Figure 3), the plant availabilities were predicted
by means of the response surface and kriging models for the validation grid. The root
mean square error (14) and maximum absolute error (13) values for the predictions were
calculated.

The general trends for the root mean square error and maximum absolute error were found
to be the same. Therefore, due to space constraints, only the results for the root mean
square error are discussed here.

The calculated root mean square errors are shown in Figures 4 and 5 for the response
surface model and kriging model results, respectively. The vertical axis represents the
criterion values, and the horizontal axis represents the interaction designs.
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Figure 4: Plot of root mean square error (RMSE) values for the response surface model

predictions (Screening designs: FF = Fractional Factorial Design, UNI = Uniform Design, LHS =

Latin Hypercube Design, DOPT = D-Optimal Design, CCD = Central Composite Design, PB =

Plackett-Burman Design).

From Figures 4 and 5 it may be observed that the lowest criterion values for both the
response surface models and the kriging models originate from the Plackett-Burman and
maximin Latin hypercube screening designs.
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Figure 5: Plot of root mean square error (RMSE) values for the kriging model predictions

(Screening designs: FF = Fractional Factorial Design, UNI = Uniform Design, LHS = Latin Hy-

percube Design, DOPT = D-Optimal Design, CCD = Central Composite Design, PB = Plackett-

Burman Design).

Using effective and efficient screening designs are of great practical importance. In an
industrial experimental design study, the screening results are the building blocks for the
follow-up experimental phases. If the incorrect factors are used in the follow-up phases, it
may lead to misleading and suboptimal findings.

From Figures 4 and 5 it may also be observed that the lowest criterion values for the
response surface models originate from the fractional factorial and D-optimal second phase
designs for both the Plackett-Burman and maximin Latin hypercube screening branch.
The central composite design also yields comparable results. For the kriging models it
may be observed that the lowest criterion values are obtained from the uniform second
phase designs for the Plackett-Burman screening branch, and all the second phase designs
yield comparable results for the maximin Latin hypercube design. Therefore, it may
be concluded that the space filling designs (the uniform design and the maximin Latin
hypercube design) are more effective for fitting kriging models than for fitting response
surface models.

To illustrate the consistency of the results we replicated the experiment for the Plackett-
Burman screening design five times. More specifically, response surface models were con-
structed for each of the five replications for each of the Phase 2 designs. The validation
grid was then predicted with each of the five response surface models. The results are
summarised in Table 4.

The trend in the root mean square errors between the different designs is consistent with
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Lower Upper
Design Mean SE 95% CI 95% CI

Fractional Factorial 0.91 0.02 0.85 0.97
Uniform 1.01 0.02 0.96 1.06
Latin Hypercube 1.08 0.10 0.81 1.36
D-Optimal 0.96 0.03 0.89 1.03
Central Composite 1.04 0.03 0.95 1.14

Table 4: Summary of the root mean square error (RMSE) values of the response surface models

for the Plackett-Burman screening design.

that illustrated in Figure 4, although the confidence intervals do overlap. Furthermore,
the narrow width of the confidence intervals illustrates that the comparisons for each of
the interaction designs will yield the same conclusions, i.e. the fractional factorial design
is the most accurate interaction design in the second phase. Therefore, replicating the
experiment will result in the same conclusion regarding the designs and models.

Kriging models and linear regression models share a common mathematical framework
consisting of regressors and errors, but the emphasis is quite different. Linear regression
focuses entirely on the regressors and their coefficient estimates, and makes simplistic as-
sumptions about the errors (independence). In contrast, kriging makes simplistic assump-
tions about the regressors (just a constant term) and focuses entirely on the correlation
structure of the errors. Thus, regression and kriging are probably best thought of as di-
ametric opposites. Regression is about estimating regression coefficients that (together
with the assumed functional form) completely describe what the function is. Kriging is
about estimating correlation parameters that describe how the function typically behaves.
Kriging makes predictions by interpolating and extrapolating from the data in a way most
consistent with the estimated typical behavior [9].

Overall the difference between using the response surface models (§5.1) and the kriging
models (§5.2) are not as pronounced. It would, however, seem that the response surface
models give slightly better results. This could possibly be due to the random nature of
stochastic simulation models. Each design point of the simulation model is a sample from
a population. Therefore, there exists uncertainty around the actual value of the response
at the specific design point. As discussed earlier, kriging models are interpolation models
and are built on the assumption that the values of the design points are deterministic, i.e.
two replications of the design point should yield the same response value.

To conclude, the overall best branch of the tree in Figure 3 is the Plackett-Burman design
for Phase 1, the fractional factorial design for Phase 2, and the response surface model for
Phase 3, both in terms of the root mean square error (14) and the maximum absolute error
(13) criteria. This result might be specific to the case study. However, it is provided as a
general recommendation for the design and analysis of simulation experiments in industry.

7.2 Overall plant availability

Typical questions in a study such as the one presented here, centres around the risk of
decisions. The engineers need to compare the risks associated with different scenarios.
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Risk is extremely difficult to quantify if the design space is not well understood. The
application of the response surface model in (15) for quantifying risk is discussed in this
section.

The model is given by

y = 81.74− 1.99x1 − 1.29x2 − 5.58x3 − 1.20x4 + 3.26x5 + 1.06x6

+ 1.60x7 − 0.49x1x2 + 0.42x1x3 + 0.46x1x7 + 0.54x2x7 + 0.74x3x5

− 0.52x5x6 − 0.37x5x7, (15)

where y = Availability, x1 = HotwashFailFactor, x2 = HydroblastingDays, x3 = Hot-
washAverage, x4 = MainReactorSmallFailFact, x5 = MainReactorMin, x6 = MainReac-
torBeta and x7 = HotWashParralel. The values are coded as xi = 2(vi − v̄)/Range(v)
where vi is the actual value, and v̄ the mean.

One way to quantify the risk in designing for a desired availability is to calculate the area
of the design space for which the availability is at least as large as the design availability
over the total design space. For the current process it is not possible to calculate this
area analytically, but it can be approximated by means of random sampling techniques.
Specifically, uniform random data were generated for all the variables in the design space,
and the availability was predicted by means of the approximation model at each point.
More specifically, one million uniform random values were generated for each factor (Ta-
ble 1). For the “Hotwash Parallel or Series” factor the values below 0.5 were combined to
create “Hotwash Series”, coded as 0, and values greater than 0.5 were combined to create
“Hotwash Parallel” coded as 1. The response surface model in (15) was used to predict
the plant availability for each of the factor combinations.

Let L denote the desired percentage availability. Then the probability that the availability
for a given set of random input variables x, A(x), is greater than or equal to L% availability
may be defined as

P (A(x) ≥ L) ' 1
r

r∑
u=1

I(ŷ(xu) ≥ L | x ∈ χ), (16)

where I is the indicator function and χ is the design space (Table 1). In other words, the
number of values above a certain availability divided by the total number of simulations is
an approximation of the percentage of design space that satisfies the criterion. The mean
variable values which satisfies a given L% availability may be calculated as

x̄ =
1
r0

r∑
u=1

xuI(ŷ(xu) ≥ L | x ∈ χ), (17)

where

r0 =
r∑

u=1

I(ŷ(xu) ≥ L | x ∈ χ). (18)

The plot in Figure 6 was generated by identifying the number of data points that yield
an availability greater than or equal to the specified availability (L%), specified on the
horizontal axis, and the number of points that satisfy this criterion divided by the total
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number of points (r = 1 000 000), specified on the vertical axis. This gives an approxi-
mation of the percentage of the design space that is covered by the data greater than or
equal to the specified availability on the horizontal axis.
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Figure 6: Percentage design space above percentage availability target.

The means of the variables which satisfies the specified target were calculated using (17)
and are summarised in Table 5. For example, at an availability target of L = 92.5% the
mean of the factor values are depicted for the generated data which yield a predicted
availability greater than or equal to 92.5%. The “Percentage of Total Design Space”
column gives an approximation of the percentage of the design space that is covered by
the data greater than or equal to the availability target (L%).

The information in Figure 6 and Table 5 may be used to better understand the design
space and constraints. Figure 6 may be used to obtain a realistic value for the risk
involved in designing for a given availability (L%). If this availability is only satisfied
by a small percentage of the design space it is concluded that the risk of not obtaining
that availability in the commercial process is too high. Similarly, Table 5 may be used to
obtain an indication of the sensitivity of the availability to the different process variables.
If the mean value of the process variable is very close to the upper or lower limit of its
range, then it indicates that the availability target is very sensitive to that specific process
variable. These process variables are utilised in further optimisations in order to improve
the availability of the process.

7.3 Percentage time offline

In addition to the overall availability, the percentage of the time that the plant is at
0% availability (offline) was calculated from the simulation output. This percentage has
practical significance, because during these periods, the plant cannot receive any feed,
and no output is produced. Considering that a new plant in a refinery is integrated into
the overall system, the feed will have to be diverted to another unit, or stored in a buffer
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during periods of plant unavailability. If the output from the operational plant is processed
by another unit, the receiving unit will have to receive alternative feed, or source the feed
from a buffer. If no such flexibility is available, these units will have to shut down during
this period. Buffers are expensive equipment, and the cost is related to the size of the
buffer. The percentage of time that the total plant is offline should therefore be minimised.
The approximation model for the percentage time offline is given by

y′ = 1.77 + 0.20x1 + 0.19x2 + 0.34x3 + 0.10x4 − 0.32x5 − 0.089x6 − 0.26x7

− 0.046x1x3 − 0.053x1x7 − 0.097x2x7 + 0.078x3x4 − 0.065x3x5 + 0.13x3x7

+ 0.043x5x6 + 0.054x5x7, (19)

where the variables have the same meanings and are encoded in the same way as before.

Let L′ denote the desired percentage of time offline. Then the probability that the time
offline for a given set of random input variables x is less than or equal to L′% is defined
as

P (O(x) ≤ L′) ' 1
r

r∑
u=1

I(ŷ(xu) ≤ L′ | x ∈ χ). (20)

The mean variable values which satisfies a given L′% time offline value may be defined as

x̄ =
1
r0

r∑
u=1

xuI(ŷ(xu) ≤ L′ | x ∈ χ), (21)

where

r0 =
r∑

u=1

I(ŷ(xu) ≤ L′ | x ∈ χ). (22)

Figure 7 depicts the percentage of time offline below the specified time offline (L′%) on
the horizontal axis, and the percentage of design space that satisfies the criterion on the
vertical axis. This gives an approximation of the percentage of the design space that is
covered by the data for a percentage of time offline lower than or equal to the specified
value. The means of the variables which satisfy the specified target are summarised in
Table 6. For example, at an offline target of L′ = 1% the means of the factor values
that yield percentage time offline values lower than or equal to 1% are depicted. The
“Percentage of Total Design Space” column gives an approximation of the percentage of
the design space that is covered at the specified percentage time offline target value.

7.4 Multiple response optimisation

For the process design it was required to find the region of design space where both the
percentage time offline and overall availability are within an acceptable range. As an
illustration, the following criteria are specified:

• Percentage time offline between 0 and 1%, and
• Total availability between 90 and 100%.
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Figure 7: Percentage design space below percentage time offline targets.

One approach is to construct a graphical overlay plot. The optimised results depicted in
Tables 5 and 6 were used to set the factor levels for the graphical overlay plot. Figure 8
depicts the overlay plot for the average time to hotwash and the minimum uptime for the
main reactor satisfying the different criteria. Alternative methods such as the Derringer
and Suich desirability function approach may be used for multiple response optimisation
[4].

This plot may be used to aid design decisions regarding the average time to hotwash,
given a minimum uptime for the main reactor. For instance, given a minimum uptime for
the main reactor of 7 days, the target average time to hotwash must be approximately
between 12 and 14 hours in order to satisfy the criteria. It is always beneficial to have a
range of options available, as this allows for flexibility in deciding on the most practical
and cost effective factor levels for the process design.

8 Conclusions

In this study experimental designs commonly used in the DACE and in DOE were com-
pared for application by means of simulation experiments. Different metamodels were also
evaluated for the approximation of the input-output relationships.

The optimal design by metamodel combination was used to explore the design space, both
in terms of the overall availability and the percentage time offline, and valuable insight
was gained about the industrial system. The models in (15) and (19) were then used to
define an operating envelope subject to constraints on both the overall availability and
percentage time offline.
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Offline Target 11.00 10.00 9.00 8.00 7.00 6.00 5.00 4.00 3.00 2.00 1.00

Hotwash Fail
Factor

2.00 2.00 2.00 1.99 1.98 1.96 1.93 1.87 1.82 1.75 1.43

Hydroblasting
Days

5.00 5.00 5.00 4.99 4.98 4.96 4.92 4.86 4.82 4.82 4.66

Hotwash 24.01 24.01 24.00 23.95 23.83 23.59 23.17 22.39 20.65 17.46 14.19
Average
Main Reactor
Fail Factor

1.00 1.00 1.00 1.00 0.99 0.98 0.96 0.93 0.89 0.87 0.82

Min Uptime
Main Reactor

6.00 6.00 6.00 6.01 6.04 6.11 6.24 6.42 6.60 6.73 7.23

Main Reactor
Beta

3.00 3.00 3.00 3.00 3.01 3.02 3.03 3.05 3.08 3.12 3.27

HotWash 1.00 1.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00
Parallel
Percentage of
Total Volume

100.00 99.99 99.92 99.52 98.02 94.03 85.31 69.49 46.98 22.36 3.16

Table 6: Mean values of factors for different percentage time offline targets.

The Plackett-Burman and maximin Latin hypercube designs were found to be the best
screening designs for the case study discussed; both these designs are easy and convenient
designs to implement. Most modern statistical design packages should include these de-
signs. Choosing between these two designs would mostly be a matter of personal preference
and modelling considerations. A possible benefit of the Latin hypercube family of designs
is that it can be created for any number of runs and factor levels. The Plackett-Burman
design would, however, be beneficial if setting the factor levels in a simulation model is
not trivial. For the Latin hypercube designs each design point is at a different factor level,
whereas for the Plackett-Burman designs the factor levels are only varied at their upper
and lower levels. In some simulations a large amount of modelling effort and coding is
involved in setting the factors at each level of the design. For these kinds of models the
Plackett-Burman design could be advantageous.

During the second phase of the design process the fractional factorial design, the D-optimal
design and the central composite design yielded comparable results when fitting response
surface models. If curvature is observed in the design space, the central composite design
or second-order D-optimal design should be used. For the kriging model all the designs
gave comparable results. An interesting observation is that the two space filling designs
(the maximin Latin hypercube design and the uniform design) performed better with the
kriging model compared to the response surface model.

Response surface models and kriging models differ in their ease of use. Kriging models
are much more difficult to fit and to interpret. Interpreting the optimal θ values for the
model is also very difficult. Furthermore, it would be problematic to release the model
to a client, or use the model as ’n “black box” in a current simulation model. Response
surface models are, however, easy to fit with most statistical packages. The coefficients
are easy to interpret, and it is trivial to build the approximation model into a simulation
model, or any other software to release to a client.

The response surface model constructed on the fractional factorial design was used to
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Figure 8: The feasible area for percentage time offline between 0 and 1%, and availability

between 90 and 100%.

analyse the case study, and to make recommendations to the design engineers. The case
study consists of 14 factors, and it would have been extremely difficult to develop a good
understanding of such a complex system without the use of simulation and design of experi-
ments. The resulting approximation model was used to explore the design space effectively
and efficiently, and to gain valuable insight about the system under investigation. These
results were used to decide on what factors to focus on in further experimental work in
the pilot plant, and to make informed decisions about the sizing of the reactors.

The overall availability and percentage time offline criteria were evaluated simultaneously
in order to identify a feasible operating region of the average time to hotwash and the
minimum uptime for the main reactor which satisfies a dual criterion. This is a powerful
technique which may be used to find an optimal compromise between multiple response
criteria [4, 11, 12].

Building a simulation model is a difficult and time consuming process. It is therefore only
natural to expect the maximum amount of value to be gained from the model. Therefore, it
is recommended that experimental design techniques must be used to enhance the quality
and quantity of information and understanding that can be extracted from simulation
models. This ensures that the returns on the time and money invested in building the
model are maximised. As was demonstrated in the industrial case study in this paper,
once the approximation models are obtained, they can be employed for design exploration
and optimisation. An experimental design and analysis strategy should form a critical
part of any simulation study, if possible.
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