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Abstract

Traditional approaches towards determining the economic production lot (EPL) size in man-
ufacturing applications assume deterministic demand, often at a constant rate. In this paper,
an optimisation model is developed for determining the EPL size that minimises production
and inventory costs of a periodic review production-inventory system under stochastic de-
mand. Adopting such a Markov decision process approach, the states of a Markov chain
represent possible states of demand. The decision of whether or not to produce additional
inventory units is made using dynamic programming. This approach demonstrates the exis-
tence of an optimal state-dependent EPL size, and produces an optimal lot sizing policy, as
well as the corresponding total production and inventory costs.
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1 Introduction

Manufacturing industries continually face the challenge of optimising production and in-
ventory levels. This is a considerable challenge when the demand for manufactured items
follows a stochastic trend. Two major problems are usually encountered: (i) determining
the most desirable period during which to produce additional units of the item in question
and (ii) determining the economic production lot (EPL) size corresponding to the best
policy in a periodic review production-inventory system when demand is uncertain.

According to Goyal [1], the EPL size may be computed each time a product is scheduled
for production when all products are produced on a single machine. The distribution of
lot size can be computed when the demand for each product is a stochastic variable with
a known distribution. This distribution is independent for non-overlapping time periods
and identical for equal time periods.

According to Khouja [2], the EPL size may be determined under conditions of increasing
demand, shortages and partial backlogging. In this case the unit production cost is a
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function of the production rate and the quality of the production process deteriorates
with increased production rate.

Daya and Hariga [3] presented a lot sizing model for a single vendor and single buyer with
stochastic demand. They relaxed the assumption of deterministic demand and assumed
the lead time to vary linearly with the lot size. The lot size comprises of a lot size-
dependent run time and constant delay times, such as moving, waiting and set-up times.
Optimality guidelines on the lot sizing policy, total production and inventory costs are,
however, not suggested.

Kampf and Kochel [4] examined the stochastic lot sizing problem where cost of waiting
and lost demand is taken into consideration. The size of the optimal economic lot size is,
however, excluded in the formulation of their model.

In this paper, a production-inventory system is considered whose goal is to optimise the
EPL size, the lot sizing policy and the total costs associated with production and holding
inventory. At the beginning of each period, a major decision has to be made, namely
whether to produce additional units of the stocked item or to cancel production and
utilise the available units in stock. The paper is organised as follows. After describing the
mathematical model in §2, consideration is given in §3 to the process of estimating the
model parameters. The model is solved in §4 and applied to a special case study in §5.
Some final remarks follow in §6.

2 Model development

The demand during each time period over a fixed planning horizon is classified as either
favourable (denoted by state F) or unfavourable (denoted by state U), and the demand
during any such period is assumed to depend on the demand of the preceding period. The
transition probabilities over the planning horizon from one demand state to another may
be described by means of a Markov chain. Suppose one is interested in determining an
optimal course of action, namely to produce additional stock units (a decision denoted
by S = 1) or not to produce additional units (a decision denoted by S = 0) during each
time period over the planning horizon, where S is a binary decision variable. Optimality is
defined such that the lowest expected total production and inventory costs are accumulated
at the end of a total of N consecutive time periods spanning the planning horizon under
consideration. In this paper, a two-period (N = 2) planning horizon is considered.

2.1 Model variables and parameters

Varying demand is modelled by means of a Markov chain with transition matrix

QS =

[ F U

F QS
FF QS

FU

U QS
UF QS

UU

]
,

where the entry QS
ij in row i and column j of the transition matrix denotes the probability

of a transition in demand from state i ∈ {F ,U} to state j ∈ {U ,F} under a given lot
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sizing policy S ∈ {0, 1}. The number of customers observed in the system and the number
of units demanded during such a transition is captured by the customer matrix

NS =

[ F U

F NS
FF NS

FU

U NS
UF NS

UU

]

and demand matrix

DS =

[ F U

F DS
FF DS

FU

U DS
UF DS

UU

]
,

respectively. Furthermore, denote the number of units in stock and the total (production,
inventory and storage) cost during such a transition by the stock matrix

Y S =

[ F U

F Y S
FF Y S

FU

U Y S
UF Y S

UU

]

and the cost matrix

T S =

[ F U

F TS
FF TS

FU

U TS
UF TS

UU

]
,

respectively. Also, denote the expected total future cost and the already accumulated total
cost at the end of time period 1 when the demand is in state i ∈ {F ,U} for a given lot sizing
policy S ∈ {0, 1} by respectively wS

i and aS
i , and let wS = [wS

F , wS
U ]T and aS = [aS

F , aS
U ]T,

where “T” denotes matrix transposition.

2.2 Finite-period dynamic programming formulation

Recalling that demand can either be in state F or in state U , the problem of finding an
EPL size may be expressed as a finite period dynamic programming model. Let cn(i)
denote the optimal expected total production and inventory costs accumulated during
periods n, n + 1, . . . , N given that the state of the system at the beginning of period n is
i ∈ {F ,U}. The recursive equation relating cn and cn+1 is

cn(i) = min
S

{
QS

iF (TS
iF + cn+1(F)), QS

iU (TS
iU + cn+1(U))

}
, i ∈ {F ,U}, n = 1, 2, . . ., N (1)

together with the final conditions cN+1(F) = cN+1(U) = 0. This recursive relationship
may be justified by noting that the cumulative total production and inventory costs TS

ij +
cn+1(j) resulting from reaching state j ∈ {F ,U} at the start of period n + 1 from state
i ∈ {F ,U} at the start of period n occurs with probability QS

ij .

Clearly,
wS = QS(T S)T, S ∈ {0, 1}, (2)
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where “T” denotes matrix transposition, and hence the dynamic programming recursive
equations

cn(i) = min
S

{
wS

i + QS
iFcn+1(F) + QS

iUcn+1(U)
}

, i ∈ {F ,U}, n = 1, 2, . . . , N − 1, (3)

cN (i) = min
S

{
wS

i

}
, i ∈ {F ,U} (4)

result, where (4) represents the Markov chain stable state.

3 Computing QS, T S and pS

The demand transition probability from state i ∈ {F ,U} to state j ∈ {F ,U}, given lot
sizing policy S ∈ {0, 1} may be taken as the number of customers observed with demand
initially in state i and later with demand changing to state j, divided by the sum of
customers over all the states. That is,

QS
ij =

NS
ij

NS
iF + NS

iU
, i ∈ {F ,U}, S ∈ {0, 1}. (5)

When demand outweighs on-hand inventory, the cost matrix T S may be computed by
means of the relation

T S = (cp + ch + cs)(DS − Y S),

where cp denotes the unit production cost, ch denotes the unit holding cost and cs denotes
the unit storage cost. Therefore,

TS
ij =

{
(cp + ch + cs)(DS

ij − Y S
ij ) if DS

ij > Y S
ij

0 if DS
ij ≤ Y S

ij

(6)

for all i, j ∈ {F ,U} and S ∈ {0, 1}.

A justification for expression (6) is that DS
ij−Y S

ij units must be produced in order to meet
the excess demand. Otherwise production is cancelled when the demand is less than or
equal to the on-hand inventory.

The EPL size when demand is initially in state i ∈ {F ,U}, given lot sizing policy S ∈
{0, 1}, is

pS
i = (DS

iF − Y S
iF ) + (DS

iU − Y S
iU ), i ∈ {F ,U}, S ∈ {0, 1}. (7)

The following conditions must, however, hold:

1. pS
i > 0 when DS

ij > Y S
ij , and pS

i = 0 when DS
ij ≤ Y S

ij ,
2. S = 1 when cp > 0, and S = 0 when cp = 0,
3. cs > 0 when shortages are allowed, and cs = 0 when shortages are not allowed.

4 Computing an optimal strategy

The optimal EPL sizing strategy is found in this section, for each time period separately.
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4.1 Optimisation strategy during period 1

When the demand is favourable (i.e. in state F), the optimal lot sizing policy during
period 1 is

S =

{
1 if w1

F < w0
F

0 if w1
F ≥ w0

F .

The associated total production and inventory costs and EPL size are then

c1(F) =

{
w1
F if S = 1

w0
F if S = 0

and

pS
F =

{
(D1
FF − Y 1

FF ) + (D1
FU − Y 1

FU ) if S = 1
0 if S = 0,

respectively. Similarly, when the demand is unfavourable (i.e. in state U), the optimal lot
sizing policy during period 1 is

S =

{
1 if w1

U < w0
U

0 if w1
U ≥ w0

U .

In this case the associated total production and inventory costs and EPL size are

c1(U) =

{
w1
U if S = 1

w0
U if S = 0

and

pS
U =

{
(D1
UF − Y 1

UF ) + (D1
UU − Y 1

UU ) if S = 1
0 if S = 0,

respectively.

4.2 Optimisation strategy during period 2

Using the dynamic programming recursive equation (1), and recalling that aS
i denotes the

already accumulated total cost at the end of period 1 as a result of decisions made during
that period, it follows that

aS
i = wS

i + QS
iF min

{
w1
F , w0

F
}

+ QS
iU min

{
w1
U , w

0
U
}

= wS
i + QS

iFc1(F) + QS
iUc1(U).

Therefore, when demand is favourable (i.e. in state F) the optimal lot sizing policy during
period 2 is

S =

{
1 if a1

F < a0
F

0 if a1
F ≥ a0

F ,
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while the associated total production and inventory costs and EPL size are

c2(F) =

{
a1
F if S = 1

a0
F if S = 0

and

pS
F =

{
(D1
FF − Y 1

FF ) + (D1
FU − Y 1

FU ) if S = 1
0 if S = 0,

respectively. Similarly, when the demand is unfavourable (i.e. in state U), the optimal lot
sizing policy during period 2 is

S =

{
1 if a1

2 < a0
2

0 if a1
2 ≥ a0

2.

In this case the associated total production and inventory costs and EPL size are

c2(U) =

{
a1
U if S = 1

a0
U if S = 0

and

pS
U =

{
(D1
UF − Y 1

UF ) + (D1
UU − Y 1

UU ) if S = 1
0 if S = 0,

respectively.

5 Case study

In order to demonstrate use of the model in §2–4, a real-case application from Nice House of
Plastics, a manufacturer of plastic utensils in Uganda, is presented in this section. Plastic
jerry cans are among the products manufactured by this company, and the demand for
these cans fluctuates from month to month. The company wants to avoid over-producing
when demand is low or under-producing when demand is high, and hence seeks decision
support in terms of an optimal lot sizing policy, the associated production-inventory costs
and specifically a recommendation as to the EPL size of plastic jerry cans over a two-week
period.

5.1 Data collection

A sample of 30 customers was used. Past data revealed the following demand pattern and
stock levels of jerry cans during the first week of the month when demand was favourable
(F) or unfavourable (U): If additional jerry cans are produced during week 1, then the
customer matrix, the demand matrix and the stock matrix are given by

N1 =
[ F U

F 20 10
U 5 25

]
, D1 =

[ F U

F 40 10
U 60 20

]
and Y 1 =

[ F U

F 37 30
U 30 5

]
,
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respectively, while if additional jerry cans are not produced during week 1, these matrices
are

N0 =
[ F U

F 15 15
U 10 20

]
, D0 =

[ F U

F 25 15
U 80 40

]
and Y 0 =

[ F U

F 10 20
U 40 10

]
,

respectively. In either case the unit production cost (cp) is $2.00, the unit holding cost
per week (ch) is $0.50, and the unit shortage cost per week (cs) is $1.00.

5.2 Computation of model parameters

Using (5) and (6), the state transition matrix and the cost matrix for week 1 are

Q1 =
[ F U

F 0.67 0.33
U 0.17 0.83

]
and T 1 =

[ F U

F 10.5 0
U 105 52.5

]
,

respectively, for the case where additional jerry cans are produced during week 1, while
these matrices are given by

Q0 =
[ F U

F 0.5 0.5
U 0.33 0.67

]
and T 0 =

[ F U

F 10.5 0
U 60 45

]
,

respectively, for the case where additional jerry cans are not produced during week 1.
When additional jerry cans are produced (S = 1), the matrices Q1 and T 1 yield the costs

w1
F = (0.67)(10.5) + (0.33)(0) = $7.04,

w1
U = (0.17)(105) + (0.83)(52.5) = $61.43.

However, when additional jerry cans are not produced (S = 0), the matrices Q0 and T 0

yield the costs

w0
F = (0.50)(22.5) + (0.50)(0) = $11.25,

w0
U = (0.33)(60) + (0.67)(45) = $49.95.

5.3 The optimal strategy and EPL size

Since 7.04 < 11.25, it follows that S = 1 is an optimal lot sizing policy for week 1 with
associated total production and inventory costs of $7.04 and an EPL size of 40 − 37 = 3
units if demand is favourable. Since 49.95 < 61.43, it follows that S = 0 is an optimal
lot sizing policy for week 1 with associated total production and inventory costs of $49.95
and an EPL size of 0 units if demand is unfavourable.

If demand is favourable, then the accumulated production and inventory costs at the end
of week 1 are

a1
F = 7.035 + (0.67)(7.035) + (0.33)(49.95) = $28.23,

a0
F = 11.25 + (0.50)(7.035) + (0.50)(49.95) = $39.74.
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Since 28.23 < 39.74, it follows that S = 1 is an optimal lot sizing policy for week 2
with associated accumulated production and inventory costs of $28.23 and an EPL size of
40− 37 = 3 units in the case of favourable demand.

However, if demand is unfavourable, then the accumulated production and inventory costs
at the end of week 1 are

a1
U = 61.43 + (0.17)(7.035) + (0.83)(49.95) = $104.09,

a0
U = 49.95 + (0.33)(7.035) + (0.67)(49.95) = $85.74.

Since 85.74 < 104.09, it follows that S = 0 is an optimal lot sizing policy for week 2 with
associated accumulated production and inventory costs of $85.74 and an EPL size of 0
units in the case of unfavourable demand.

When shortages are not allowed, the values of S, cn(i) and pS
i may be computed for

i ∈ {F ,U} in a similar fashion after substituting cs = 0 into the matrix function T S =
(cp + ch + cs)(DS − Y S).

6 Conclusion

A production-inventory model with stochastic demand was presented in this paper. The
model determines an optimal lot sizing policy, production-inventory costs and the EPL
size of a given product with stochastic demand. The decision of whether or not to pro-
duce additional stock units is modelled as a multi-period decision problem using dynamic
programming over a finite planning horizon. The working of the model was demonstrated
by means of a real case study.
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