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Abstract
Debreu’s Gap Lemma is central to the proof of his fundamental result on the existence of
continuous utility functions. A short proof based on a standard textbook construction of
utility functions on countable linearly ordered sets is presented here. The proof is accessible
to students with limited mathematical background, thus making it suitable for inclusion in
elementary texts on utility theory.
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1 Introduction

In 1954, Gérard Debreu [3] stated conditions for the existence of a continuous utility
function. Ten years later, in [4], he noted an error in his original proof, and corrected this
error by proving what is now known as the Gap Lemma. In his 1964 paper Debreu [4]
introduced the following terminology: “A degenerate set is a set having at most one
element. Given a subset S of R, a lacuna of S is a non–degenerate interval of R without
points of S, but having a lower bound and an upper bound in S; a gap of S is a maximal
lacuna of S.” The Gap Lemma may now be stated.

Theorem 1 (Gap Lemma) [4] If S ⊆ R, then there is a strictly increasing function
g : S → R such that all the gaps of g(S) are open.

Debreu’s proof of Theorem 1 is quite long and complicated — it spans four pages — and is
therefore omitted from standard textbooks, such as those by Fishburn [5] and Föllmer and
Schied [6]. Nevertheless, the Gap Lemma is a fundamental result in utility theory, and a
number of alternative proofs now exist [1, 2, 7]. The aim of this paper is to present another
short proof. Though similar in form to the argument provided by Jaffray [7], the proof
provided here was constructed independently, and is simpler in execution — compare, for
example, the Lemma in §3 of [7] with Proposition 1 below. However, the main merit of
the current proof is didactic: It is based on a standard textbook construction of utility
functions on countable linearly ordered sets, and is accessible to students with limited
mathematical background, thus making it suitable for inclusion in elementary texts.
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2 Proof of the Gap Lemma

Let (Z,≤) be a countable linearly ordered set, and let {zn : n ∈ N} be an enumeration of
Z (such that zn = zm only if n = m). Consider a standard method for defining a utility
function (i.e. a strictly increasing function) f : Z → R inductively (see, for example,
Kreps [8], Chapter 3): First, let f(z0) := 1

2 , so that f(z0) ∈ (0, 1). Next, suppose that
f(z0), f(z1), . . . , f(zn) ∈ (0, 1) have already been defined, and that f is strictly increasing
on the set {z0, z1, . . . , zn}. To define f(zn+1), we consider the following three cases:

Case 1: There exist j0, j1 ≤ n such that zj0 < zn+1 < zj1 . In this case, let

f(zn+1) :=
max{f(zj) : j ≤ n, zj < zn+1}+ min{f(zj) : j ≤ n, zj > zn+1}

2
.

Case 2: zn+1 > max{zj : j ≤ n}. In this case, let

f(zn+1) :=
max{f(zj) : j ≤ n}+ 1

2
.

Case 3: zn+1 < min{zj : j ≤ n}. In this case, let

f(zn+1) :=
min{f(zj) : j ≤ n}

2
.

In all cases, f(zn+1) ∈ (0, 1) also.

This completes the inductive construction of the strictly increasing function f : Z → R.
Note that the range of f is contained in the unit interval (0, 1).

Proposition 1 Let (Z,≤) be a countable linearly ordered set, and let f : Z → R be the
strictly increasing function constructed above. Then f has the following property: If A, B
are subsets of Z which satisfy

(i) A ∪B = Z,
(ii) ∀a ∈ A ∀b ∈ B [a ≤ b],
(iii) Either A has no maximum or B has no minimum (or both),

then sup
a∈A

f(a) = inf
b∈B

f(b).

Proof: Suppose that A, B are subsets of Z satisfying (i), (ii) and (iii). Clearly

sup
a∈A

f(a) ≤ inf
b∈B

f(b) (1)

by (ii). Suppose now that strict inequality holds in (1). We shall obtain a contradiction.
Choose ε so that 0 < ε < infB f(b)− supA f(a). Furthermore, choose a0 ∈ A and b0 ∈ B
such that supA f(a)− ε ≤ f(a0) ≤ supA f(a) and infB f(b) ≤ f(b0) ≤ infB f(b) + ε. Since
a0, b0 ∈ Z, there are n, m ∈ N such that a0 = zn and b0 = zm. If A has no maximum,
there must be an element zk ∈ A such that zk > a0 = zn and k > n, m . Similarly, if B has
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no minimum, there is an element zk ∈ B such that zk < zm = b0 and k > n,m. In either
case, we have found an integer k > n, m such that a0 = zn < zk < zm = b0. Choose k
to be the least such integer. By construction of f , we must have that f(zk) = f(a0)+f(b0)

2 .
But (

sup
A

f(a)− ε
)

+ inf
B

f(b) ≤ f(a0) + f(b0) ≤ sup
A

f(a) +
(

inf
B

f(b) + ε
)

and thus f(zk) lies between

supA f(a) + infB f(b)
2

− ε

2
and

supA f(a) + infB f(b)
2

+
ε

2
.

By the choice of ε, it is now clear that supA f(a) < f(zk) < infB f(b). However, by (i) we
see that zk belongs either to A or to B, a contradiction. �

Before we commence with the proof of the Gap Lemma, we introduce some further ter-
minology. If (X,≤) is a linear ordering, then a subset Z ⊆ X is said to be order dense
if whenever x < y in X, there is an element z ∈ Z such that x ≤ z ≤ y. If a < b in X,
then we say that a is the predecessor of b (and that b is the successor of a) in X if the set
{x ∈ X : a < x < b} is empty.

Proof of Theorem 1: Let S ⊆ R. It is easy to see that there are at most countably
many pairs a, b ∈ S such that b is a successor of a (in S), for between any two real numbers
there is a rational number, and the set of rational numbers is countable. Thus the set
Z ′ := {a ∈ S : a has a successor in S} is countable. Now let {In : n ∈ N} enumerate all
those open intervals with rational endpoints such that In ∩ S 6= ∅. For each n, choose
sn ∈ In ∩ S, and let Z ′′ := {sn : n ∈ N}. Then Z := Z ′ ∪ Z ′′ is a countable dense subset
of S. Construct a utility function f : Z → R as above, and define g : S → R as

g(s) := sup
z∈Z, z≤s

f(z).

It is clear that g is a utility function, and that g is an extension of f .

Let G be a gap in g(S), and let ` = inf G and u = sup G. To show that G is open, it suffices
to show that `, u 6∈ G. Define A := {z ∈ Z : f(z) ≤ `} and B := {z ∈ Z : f(z) ≥ u}.
Because G is a gap, properties (i) and (ii) of Proposition 1 are satisfied. Since

sup
z∈A

f(z) ≤ ` < u ≤ inf
z∈B

f(z),

property (iii) must fail, so that A has a maximum element a0, and B a minimum element b0.
Because G is a gap (i.e. a maximal lacuna), it is clear that f(a0) = ` and f(b0) = u. Thus
`, u ∈ g(S), i.e. `, u 6∈ G. �

3 Final remarks

In the proof of the Gap Lemma, we defined

g(s) = sup
z∈Z, z≤s

f(z),
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where Z is a countable dense subset of S which contains all predecessor-successor pairs.
We claim also that

g(s) = inf
z∈Z, z≥s

f(z). (2)

For let A = {z ∈ Z : z ≤ s} and let B = {z ∈ Z : z ≥ s}. Then properties (i) and (ii) of
Proposition 1 are satisfied. Thus, if

sup
z∈A

f(z) < inf
z∈B

f(z),

then property (iii) must fail, i.e. A must have a maximum a0, and B must have a minimum
b0. We cannot have a0 = b0; so, by properties (i) and (ii), b0 is a successor of a0 (in S),
which implies that a0, b0 ∈ Z. Since a0 ≤ s ≤ b0, we see that s ∈ Z, which immediately
yields

sup
z≤s

f(z) = f(x) = inf
z≥s

f(z),

a contradiction.

Furthermore, from (2) it follows that the map g : S → R is continuous if (S,≤) is endowed
with its order topology.
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