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Abstract

Several computer programs that can implement the Out-of-Kilter algorithm have been writ-
ten. To date programs have been written in Fortran, Algol, Pascal, Basic, C++ and Matlab.
According to the knowledge of the author, a program to do this in R has not yet been writ-
ten. The R program written in this article can solve both the maximum flow and minimum
cost-maximum flow problems. Since the Out-of-Kilter algorithm has a network flow as input,
it can also be used to solve the flow in any problem whose information can be presented in
the form of a network flow. This includes among others the transportation problem, the
assignment problem, the shortest route problem and the caterer problem.

Key words: Network flows, Maximum flow, Minimum cost flow, Complementary slackness optimality

conditions, In-kilter, Out-of-kilter.

1 Introduction

The Out-of-Kilter algorithm is an algorithm that computes the solution to the minimum
cost flow problem in a flow network. It was published by Fulkerson (1961). When de-
termining the minimum cost flow between two points, all out-of-kilter arcs (those not
satisfying certain optimality conditions) are identified and modified. It can be shown that
once all the arcs are in kilter, a minimum cost flow has been reached.

2 A short computing history of the Out-of-Kilter algorithm

A procedure to execute the Out-of-Kilter algorithm was written by Briggs (1965). A
procedure called NETFLOW was suggested by Bray and Witzgall (1968) to determine
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the minimum cost flow in a network using the Out-of-Kilter algorithm. In 1968 they
published a correction to the original algorithm. An ALGOL procedure that executes the
Out-of-Kilter algorithm was published by Clasen (1968). The Share Distribution Agency
(1967) wrote a Fortran program that is designed to save space by arranging arcs so that
the source nodes are arranged in order.

A Fortran program called OKAY was published by Kindler (1975). The program uses the
Out-of-Kilter algorithm to allocate flows in a network to minimize its total cost of flow.
A subroutine called PACKUP constructs a packed list of arcs entering each node and a
subroutine called KILT implements the algorithm. Barr et al. (1972) did a comparative
study of computer codes for the Out-of-Kilter algorithm.

An Out-of-kilter algorithm was written in Fortran by Woolsey and Swanson (1975) and
its use was illustrated with an assignment problem. Smith (1982) wrote Pascal and Basic
programs that execute the Out-of-Kilter algorithm. Errors in these programs were pointed
out by Shen (1989). Modifications to the program were made to correct these errors. The
implementation of a user-friendly transshipment program (written in Pascal) based on the
Out-of-Kilter algorithm were described by du Preez and van der Merwe (1988). Validation
of the program, time tests and applications were also discussed.

The Out-of-Kilter algorithm was implemented by Nowicki (2014) who wrote a program in
Matlab. The data input to the program is by means of a file with the 3 matrices (cost,
upper bound, lower bound). These m × m matrices, denoted by c, u and l respectively
contain the cost, upper bound and lower bound associated with each of the arcs A =
{(i, j) ∈ m ×m}. The functions OOK (with parameters c, u and l which calculates the
optimal flow in the various arcs) and koszt (which scalculates the total cost of the optimal
solution) need to be called to get a solution. If there is only one optimal solution the
program implements the algorithm correctly, but for more than one optimal solution for
an assignment problem it gets into an infinite loop. The tie in optimal solutions can be
removed by adding small positive numbers (all different) to each of the values in the cost
matrix.

Computer solutions (in R) to maximum flow and minimum cost – maximum flow problems
are shown in the appendix.

3 The maximum flow and the minimum cost-maximum flow
problems

3.1 The maximum flow problem

Consider a network consisting of m nodes (vertices) and n arcs (edges) connecting some
of the nodes. A flow network is denoted by D = (V,E), where V is the collection of nodes
and E the collection of arcs connecting some of the nodes. An arc(i, j) ∈ E has a capacity
uij ≥ 0 (which is the number of units it can carry). Let xi,j denote the flow. The objective
is to determine the maximum flow (total number of units) that can be sent from node s
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(source) to node t (sink) i.e.,

Maximise M =
∑

(i,j)∈E

xi,j ,

subject to
∑
a∈V

xi,a −
∑
b∈V

xb,i = 0 (flow conservation constraints),

li,j ≤ xi,j ≤ ui,j , arc(i, j) ∈ E (capacity constraints).

Often li,j is taken as 0 for all (i, j).

3.2 The minimum cost-maximum flow problem

Let ci,j be a cost. If the objective is to find the minimum cost C of the maximum flow
from node s to node t the problem can be formulated as

Minimise C =
∑

(i,j)∈E

ci,jxi,j ,

subject to
∑
a∈V

xi,a −
∑
b∈V

xb,i = 0 (flow conservation constraints),

li,j ≤ xi,j ≤ ui,j , arc(i, j) ∈ E (capacity constraints),∑
i∈V

xs,i =
∑
i∈V

xi,t = M (maximum flow constraint).

4 Complementary Slackness Optimality Conditions (CSOC)
theorem

Consider a network with a set of arcs A = arc(i, j) ∈ E, where i is the “from” node
and j the “to” node. A feasible solution x∗i,j is an optimal solution of the minimum
cost flow problem if, and only if, some set of node potentials π = (π1, π2, . . . , πm) with
cπi,j = ci,j + πi − πj satisfy the following reduced cost optimality conditions for every
arc(i, j) ∈ A:

1. If cπi,j > 0, then x∗i,j = li,j .

2. If li,j ≤ x∗i,j ≤ ui,j , then cπi,j = 0.

3. If cπi,j < 0, then x∗i,j < ui,j .

5 The Kilter diagram

Below we use x∗ as a shorthand for x∗i,j . A particular solution x = x∗ to the minimum cost
flow problem will generate flows x∗i,j , (i, j) ∈ A along the arcs and node potential values
πi, i = 1, 2, . . . ,m. For each arc(i, j), cπi,j = ci,j + πi − πj can be calculated and the pair
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Figure 1: The Kilter diagram.
.

of values (x∗i,j , c
π
i,j) plotted on the kilter diagram. If the plotted point for a particular arc

is on the shaded line in the kilter diagram, the arc is labelled as “in kilter”, if not it is
labelled “out-of-kilter”. The purpose of the out-of-kilter algorithm is to bring all out-of-
kilter arcs in kilter, while not changing the kilter status of the existing in-kilter arcs. An
out-of-kilter arc can be brought in-kilter by (i) changing the flow values xi,j , (i, j) ∈ A
(horizontal axis value) or (ii) changing the reduced cost values cπi,j , (i, j) ∈ A by altering
the node potential values πi, i = 1, 2, . . . ,m. Once all the arcs are in-kilter, the solution
found is optimal.

6 Example

6.1 Problem description as a flow chart

The flow chart below shows the different routes along which luxury goods can be trans-
ported from the place of manufacture (1) to the point of sale (7). The cost per unit
(measured in thousands) and capacity (measured in thousands) are shown for each of the
arcs in the chart. The problem of interest id to find

1. The maximum number of goods that can be moved from the place of manufacture
to the point of sale.

2. The minimum cost needed to move the maximum number of goods from the place
of manufacture to the point of sale.

In the flow chart the first number in brackets refers to the cost and the second one to the
capacity (quantity of goods that can be carried).

6.2 R program to determine the maximum flow

Before calculating the minimum cost, the maximum flow needs to be known. The starting
solution is xi,j = 0,(i, j) ∈ A, πi = 0, i = 1, 2, . . . ,m. The R program for calculating the
maximum flow for a given flow chart is shown in Appendix A. Below is an explanation of
how the program works.
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Figure 2: Flow chart of routes from the place of manufacture to the point of sale.
.

The inkilter function takes the flow (xi,j), lower capacity (li,j), upper capacity (ui,j) and
cost (ci,j) of each arc as input and, if necessary, adjusts the flow to bring the arc “inkilter”.
The flow is adjusted according to the “inkilter” specification of the kilter diagram.

The first part of the main program is the definition of the network. This consists of

• The arcs numbered from 1 to 15.

• The starting and end nodes for each of the arcs.

• The costs, upper and lower capacities of each of the arcs.

The remainder of the program is about adjusting the flow (xi,j) and cπi,j for each arc
(i, j) until each arc has an xi,j and cπi,j values that satisfy the CSOC. Once this done the
xi,j , (i, j) ∈ A and πi, i = 1, 2, . . . ,m values are printed.

Output

arc= 1 from= 1 to= 2 upper bound= 6 cost 0 flow= 6

arc= 2 from= 1 to= 3 upper bound= 7 cost 0 flow= 7

arc= 3 from= 1 to= 4 upper bound= 11 cost 0 flow= 5

arc= 4 from= 2 to= 3 upper bound= 4 cost 0 flow= 1

arc= 5 from= 3 to= 2 upper bound= 3 cost 0 flow= 0

arc= 6 from= 2 to= 6 upper bound= 13 cost 0 flow= 5

arc= 7 from= 3 to= 4 upper bound= 7 cost 0 flow= 0

arc= 8 from= 3 to= 5 upper bound= 8 cost 0 flow= 7

arc= 9 from= 3 to= 6 upper bound= 7 cost 0 flow= 1

arc= 10 from= 4 to= 5 upper bound= 5 cost 0 flow= 5

arc= 11 from= 5 to= 4 upper bound= 9 cost 0 flow= 0
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arc= 12 from= 6 to= 3 upper bound= 2 cost 0 flow= 0

arc= 13 from= 5 to= 7 upper bound= 12 cost 0 flow= 12

arc= 14 from= 6 to= 7 upper bound= 8 cost 0 flow= 6

arc= 15 from= 7 to= 1 upper bound= 24 cost -1 flow= 18

node 1 p= 0

node 2 p= 1

node 3 p= 1

node 4 p= 0

node 5 p= 1

node 6 p= 1

node 7 p= 1

6.3 Differences between the R program to determine maximum flow and
that to determine minimum cost-maximum flow

The R program for solving the maximum flow problem differs from that of the minimum
cost - maximum flow problem in the way the network is defined. These differences are
discussed in Table 1.

Similarities
(1) The arcs are numbered from 1 to n.
(2) Except for the arc that connects the sink
to the source, all arcs have a lower bound of
0.
(3) For both programs the lower and upper
bounds are equal for the arc that connects
the sink to the source.

Differences
(1) For the maximum flow problem all the
costs associated with the arcs are the same.
For the minimum cost – maximum flow
problem the costs are different.
(2) For the maximum flow program the
lower and upper bounds of the arc that
connect the sink to the source are taken
as maximum (outflow from source, inflow
into the sink). For the minimum cost –
maximum flow problem this is taken as the
maximum flow obtained from the maximum
flow program.
(3) For the maximum flow problem the unit
cost for the sink to the source arc is -1. For
the minimum cost - maximum flow problem
it is taken as 0.

Table 1: Similarities and differences between the network definitions of the maximum flow
and minimum cost - maximum flow problems.

6.4 R program to determine the minimum cost - maximum flow: Output

arc= 1 from= 1 to= 2 upper bound= 6 cost 5 flow= 6

arc= 2 from= 1 to= 3 upper bound= 7 cost 7 flow= 7

arc= 3 from= 1 to= 4 upper bound= 11 cost 6 flow= 5

arc= 4 from= 2 to= 3 upper bound= 4 cost 4 flow= 0
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arc= 5 from= 3 to= 2 upper bound= 3 cost 0 flow= 2

arc= 6 from= 2 to= 6 upper bound= 13 cost 1 flow= 8

arc= 7 from= 3 to= 4 upper bound= 7 cost 1 flow= 0

arc= 8 from= 3 to= 5 upper bound= 8 cost 5 flow= 5

arc= 9 from= 3 to= 6 upper bound= 7 cost 7 flow= 0

arc= 10 from= 4 to= 5 upper bound= 5 cost 5 flow= 5

arc= 11 from= 5 to= 4 upper bound= 9 cost 0 flow= 0

arc= 12 from= 6 to= 3 upper bound= 2 cost 0 flow= 0

arc= 13 from= 5 to= 7 upper bound= 12 cost 10 flow= 10

arc= 14 from= 6 to= 7 upper bound= 8 cost 8 flow= 8

arc= 15 from= 7 to= 1 upper bound= 18 cost 0 flow= 18

node 1 p= 0

node 2 p= 7

node 3 p= 7

node 4 p= 6

node 5 p= 12

node 6 p= 8

node 7 p= 22

Appendix A: R code to calculate the maximum flow in a
network flow

inkilter<-function(flow,low,high,cst){

inkilter<-FALSE

changeup<-0

changedown<-0

if (cst>0) {

if (flow<low) changeup<-low-flow

if (flow==low) inkilter<-TRUE

if (flow>low) changedown<-flow-low

}

if (cst==0) {

if (flow<low) changeup<-high-flow

if ((flow>=low)&(flow<=high)) {

inkilter<-TRUE

changeup<-high-flow

changedown<-flow-low

}

}

if (flow>high) changedown<-flow-low

if (cst<0) {

if (flow<high) changeup<-high-flow

if (flow==high) inkilter<-TRUE

if (flow>high) changedown<- flow-high

}
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return(list(inkilter,changeup,changedown))

}

# Define network

arclist <- data.frame(

arc = c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15),

i= c(1,1,1,2,3,2,3,3,3,4,5,6,5,6,7),

j = c(2,3,4,3,2,6,4,5,6,5,4,3,7,7,1),

l = c(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0),

h= c(6,7,11,4,3,13,7,8,7,5,9,2,12,8,24),

c = c(0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1)

)

attach(arclist)

arcs<-15

nodes<-7

inf<-9999

# Prepare a, b and x arrays

a<-rep(0,arcs)

b<-rep(0,arcs)

x<-rep(0,arcs)

p<-rep(0,nodes)

# Initialize flow and pi values

infeasible<-FALSE

# Check for Out of Kilter arcs

for (arc in 1:arcs) while(!inkilter(x[arc],l[arc],h[arc],c[arc]

+p[i[arc]]-p[j[arc]])[[1]]&(!infeasible)){

plus<-inkilter(x[arc],l[arc],h[arc],c[arc]+p[i[arc]]-p[j[arc]])[[2]]

minus<-inkilter(x[arc],l[arc],h[arc],c[arc]+p[i[arc]]-p[j[arc]])[[3]]

repeat {

if (plus>0) {

s<-j[arc]

t<-i[arc]

a[s]<-t

b[s]<-plus} else {

t<-j[arc]

s<-i[arc]

a[s]<- -t

b[s]<- minus

}

for (node in 1:nodes) if (node!=s) a[node]<-0

repeat {

newlabels<-0

for (arc1 in 1:arcs) if (((a[i[arc1]]==0)&(a[j[arc1]]!=0))|

((a[i[arc1]]!=0)&(a[j[arc1]]==0))){

ok<-inkilter(x[arc1],l[arc1],h[arc1],
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c[arc1]+p[i[arc1]]-p[j[arc1]])[[1]]

plus<-inkilter(x[arc1],l[arc1],h[arc1],

c[arc1]+p[i[arc1]]-p[j[arc1]])[[2]]

minus<-inkilter(x[arc1],l[arc1],h[arc1],

c[arc1]+p[i[arc1]]-p[j[arc1]])[[3]]

if ((a[i[arc1]]!=0)&(plus>0)){

newlabels<-newlabels+1

a[j[arc1]]<-arc1

b[j[arc1]]<-min(b[i[arc1]],plus)

} else { if ((a[j[arc1]]!=0)&(minus>0)){

newlabels<-newlabels+1

a[i[arc1]]<- -arc1

b[i[arc1]]<- min(b[j[arc1]],minus)

}

}

}

if((newlabels==0)|(a[t]!=0)) break

}

if (a[t]!=0){

node<-t

change<-b[t]

if (a[s]>0){

x[arc]<-x[arc]+change

} else {

x[arc]<-x[arc]-change

}

repeat{

arc1<-abs(a[node])

if (a[node]>0){

node<- i[arc1]

pm <-1

} else {

node<-j[arc1]

pm<- -1

}

x[arc1]<- x[arc1]+pm*change

if(node==s) break

}

} else {

del<-inf

infeasible<-TRUE

for (arc1 in 1:arcs)

if (((a[i[arc1]]==0)&(a[j[arc1]]!=0))|

((a[i[arc1]]!=0)&(a[j[arc1]]==0))){

accept<-((x[arc1]<h[arc1])&(x[arc1]>l[arc1]))

if ((c[arc1]+p[i[arc1]]-p[j[arc1]]>0)&((accept)|
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(x[arc1]==l[arc1]))){

del<-min(del,c[arc1]+p[i[arc1]]-p[j[arc1]])

infeasible<-FALSE

}

if ((c[arc1]+p[i[arc1]]-p[j[arc1]]<0)&

((accept)|(x[arc1]==h[arc1]))){

del<-min(del,-(c[arc1]+p[i[arc1]]-p[j[arc1]]))

infeasible<-FALSE

}

}

if ((c[arc1]+p[i[arc1]]-p[j[arc1]]<0)&

((accept)|(x[arc1]==h[arc1]))){

del<-min(del,-(c[arc1]+p[i[arc1]]-p[j[arc1]]))

infeasible<-FALSE

}

if ((c[arc1]+p[i[arc1]]-p[j[arc1]]<0)&

((accept)|(x[arc1]==h[arc1]))){

del<-min(del,-(c[arc1]+p[i[arc1]]-p[j[arc1]]))

infeasible<-FALSE

}

if (del==inf){

del<-abs(c[arc]+p[i[arc]]-p[i[arc]])

if ((x[arc]>=l[arc])&(x[arc]<=h[arc]))infeasible<-FALSE

}

if (infeasible){

print("There is no feasible flow")

} else {

for (node in 1:nodes) if (a[node]==0) p[node]<-p[node]+del

}

}

if(infeasible | inkilter(x[arc],l[arc],h[arc],

c[arc]+p[i[arc]]-p[j[arc]])[[1]]) break

}

}

if(!infeasible){

for (arc in 1:arcs) cat("arc= ",arc," from= ",i[arc],"to= ",j[arc],

" upper bound= ",h[arc]," cost ",c[arc]," flow= ",x[arc],"\n")

for (node in 1:nodes) cat(" node ",node," p= ",p[node],"\n")

}
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Appendix B: Changes to the R code for maximum flow to
calculate the minimum cost-maximum flow

The network definition section for the minimum cost-maximum flow program is changed
to the following. All the other command remain the same.

arclist <- data.frame(

arc = c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15),

i= c(1,1,1,2,3,2,3,3,3,4,5,6,5,6,7),

j = c(2,3,4,3,2,6,4,5,6,5,4,3,7,7,1),

l = c(0,0,0,0,0,0,0,0,0,0,0,0,0,0,18),

h= c(6,7,11,4,3,13,7,8,7,5,9,2,12,8,18),

c = c(5,7,6,4,0,1,1,5,7,5,0,0,10,8,0)

)

attach(arclist)

arcs<-15

nodes<-7
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