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Abstract

Portfolio decisions involve selecting a subset of alternatives that together maximize some
measure of value, subject to resource constraints. Exact methods are available to solve port-
folio decision problems, but these require time, expertise and effort that may not always
be available. In response, recent research has proposed a number of computationally sim-
ple, psychologically plausible rule-based heuristics for portfolio decision making. Simulation
studies have shown that these portfolio heuristics perform well relative to exact approaches,
but portfolio selection heuristics have yet to be applied in a real-world setting. Our study
addresses this gap by using portfolio heuristics to support the selection of research grant
proposals at a research institute in South Africa. We compare results obtained with port-
folio heuristics to those obtained using two more traditional forms of decision support, the
standard linear-additive portfolio model, and robust portfolio modelling. We found that
portfolios constructed using portfolio heuristics yielded over 90% of the value of optimal
portfolios, selected slightly different portfolios potentially useful in a sensitivity analysis
role, and were experienced as providing transparent and easy to understand decision sup-
port. Heuristic portfolios were slightly but consistently outperformed by portfolios generated
with robust portfolio modelling. Collectively, our study contributes to the growing body of
evidence supporting the use of psychological heuristics in the realm of portfolio decision-
making.
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1 Introduction

Psychological heuristics are rule-based models for making decisions that are computa-
tionally simple, make partial or incremental use of available information, and have some
psychological or cognitive plausibility as models of human decision making (Keller and
Katsikopoulos, 2016). The use of psychological heuristics in decision making is often mo-
tivated by appeals to bounded or ecological rationality (Simon, 1955, 1956; Gigerenzer
et al., 1999), meaning that although these heuristics may not always or even often lead
to an optimal solution, they lead very often to a good (or “good enough”) solution, and
perhaps even to one that is optimal once one factors in the kinds of constraints on time,
cognitive resources, and motivation that are nearly always present in real-world decisions.

Psychological heuristics have been widely studied for traditional choice problems, in which
the goal is to select one alternative from a set of n candidates. These studies have shown
that heuristics can offer surprisingly good performance relative to optimal solutions, as well
as the environmental conditions that affect heuristic performance. Decision makers have
also been shown to use heuristics, particularly if time or other resources are constrained.
However very little equivalent work exists for portfolio problems in which the goal is to
select the best subset of alternatives from the set of candidates (subject to some constraints
that mean one cannot select them all). Portfolio selection problems are especially chal-
lenging when benefits and costs are non-additive because some alternatives may interact
positively or negatively with one another, for example because they share resources or
combine favourably together.

Keisler (1996, 2004, 2008) and more recently Durbach et al. (2020) developed a number
of portfolio selection heuristics by extending traditional choice heuristics into the domain
of portfolio decisions. Durbach et al. (2020) further showed that portfolio heuristics (a)
can be competitive with theoretically optimal models, provided that interactions between
alternatives are accounted for in some way; (b) use far less information than approaches
needed to find the optimal solution information, i.e. are “frugal” in their use of information;
(c) offer a plausible explanation of the choices made by some participants in a behavioural
laboratory experiment involving hypothetical portfolio selection.

These findings provide circumstantial evidence that portfolio heuristics may be used to
support real-world decision making, especially when time and other resources are limited
and so more comprehensive approaches (e.g. multi-objective optimisation, multi-attribute
value theory) cannot be carried out. However, to date there have been no application
of portfolio selection heuristics in a real-world setting. This paper addresses this gap by
using portfolio heuristics to support the selection of research grant proposals at a research
institute in Africa, and comparing the results to those obtained using two more traditional
forms of decision support — the standard linear-additive portfolio model (Stummer and
Heidenberger, 2003) that can be structured and solved to optimality using integer pro-
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gramming; and robust portfolio modelling (Liesi6 et al., 2008), which provides upper and
lower bounds on the performance of alternatives.

Project selection provides a useful application area for evaluating heuristic-based deci-
sion support because multi-criteria methods have been widely used in this setting (see
de Souza et al. (2021); Turkmen and Topcu (2021); Mohagheghi et al. (2019) for a review).
For example, projects can be R&D projects (Hassanzadeh et al., 2012), transportation
projects (Ghaeli et al., 2003), manufacturing companies (Hu et al., 2008), investment
projects (Khalili-Damghani and Tavana, 2014), IT demands and strategic planning and
customers’ contracts (Martins et al., 2017), and oil and gas projects (Tang et al., 2017).
Methods used to select projects with deterministic evaluations include, for example, data
envelopment analysis (Cook and Green, 2000), equity models (Bana e Costa, 2001; Bana e
Costa and Lawrence, 2007; Keeney, 1992), the analytic hierarchical process (Saaty, 2004;
Subramanian and Ramanathan, 2012; Yang and Tzeng, 2011), the linear-additive portfo-
lio value model (Pisinger, 1995; Martello et al., 2000; Stummer and Heidenberger, 2003),
PROMETHEE V (de Almeida et al., 2014; de Almeida and Vetschera, 2012), ELECTRE-
TRI (Mousseau et al., 2002, 2011), and reference point methods (Stewart, 2016; Liesio,
2014). Where project evaluations are uncertain, selections have been made with robust
portfolio modeling (Liesi6 et al., 2008; Mild et al., 2015; Lindstedt et al., 2008), data en-
velopment analysis and the balanced scorecard model (Eilat et al., 2008; Greenberg and
Hegerich, 1970; Martello et al., 2000), multi-attribute utility theory (Taylor et al., 1982;
Liberatore, 1986), TOPSIS (Collan et al., 2015; Liang et al., 2018), and scenario-based
methods (Liesio and Salo, 2012; Rockafellar and Uryasev, 2000; Dentcheva and Ruszczyn-
ski, 2006). These studies have shown that decision makers have been able to integrate both
the risk and the value of projects in multicriteria methods for portfolio selection (Ghaeli
et al., 2003); to consider both current and future competence requirements (Stummer et al.,
2009); to find the best portfolio of sustainable projects (Mohagheghi et al., 2022; Khalili-
Damghani and Tavana, 2014); to quantify the degree of certainty with which each project is
selected or not in the final portfolio (Mavrotas and Pechak, 2013) and to consider multiple
constraints and inter-projects relationships to achieve the compromise between risk and
return (Tang et al., 2017).

2 Data and methods

2.1 Background to the problem

We developed decision support for a South African research institute to assist with the
selection of research proposals submitted by researchers in response to periodical funding
calls made by the research institution. The setting is typical of competitive academic grant
funding schemes, whereby successful applicants receive funding that covers both their salary
and research running costs for the duration of the proposed project. Available funding is
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limited to a fixed amount, and the proportion of submitted applications that can be funded
is low. Currently, selections are made by different approaches, depending on the grant, but
typically involve two to three referees scoring each proposal against a set of criteria on a
1-5 or 1-10 scale, following which a selection panel makes its final decisions based partly
on these quantitative assessments and partly on qualitative discussion among the panel.
Depending on the funding call, proposals can be at doctoral or postdoctoral level and thus
applicants vary from postgraduate students to established researchers.

In the context of this application, we engaged with both a project manager and a research
data analyst, hereafter referred to as the decision maker. They both participated in numer-
ous decision panels and due to their roles, they were well positioned to assess the feasibility
and usefulness of the various results from our decision support system. Although we ini-
tially planned to present our decision support system to the broader research management
team, both staff members left their positions during the course of our application, mak-
ing it no longer possible to do so. Our approach was thus ultimately not implemented to
facilitate future grant selections, but we believe still represents a useful case study in the
potential usefulness of heuristic-based decision support for project selection.

The goal of the decision process was to select the subset of proposals that are, in some
sense, “best”, where this is determined by a number of factors: candidate track record,
excellence in the vision and implementation of the proposed research project, and alignment
of the proposal with strategic areas defined by the research department. There are also
interaction effects between proposals, in that some combinations of proposals would be
preferred to others based on how well they, as a group, meet the goals set by the research
institution. For example, diversity is valued both in the fields of study that are funded, and
in the candidates themselves. The decision maker’s highest-level goal is to select the best
combination of proposals, i.e. the subset of proposals that would yield the highest value to
the institute. A scientifically sound decision support system would streamline the selection
process and make it more transparent and effective. Potential areas for improvement in the
decision process include a standardised, complete set of assessment criteria, the inclusion
of project interactions, and using decision support tools to facilitate the selection process.
Our specific interest is in the use of heuristic approaches for decision support.

2.2 Problem structuring

The first step in solving a portfolio decision problem is to define the decision context, i.e. the
set of preferences, constraints and policies that have an effect on the decision makers and
stakeholders. When conducting multiple criteria decision analysis in a decision context, it is
required to first lay a foundation by structuring the problem, then identifying alternatives
and interactions between them and finally, building a model. To do this, we had a series
of online meetings, one face-to-face meeting and email exchanges with the decision maker
to guide the decision process, details of which are shown in Table 1. Face-to-face contact
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was limited due to the COVID-19 pandemic.

Session Medium Subject Duration
1 Online meeting Goals and objectives of research institution 80 min
2 Online meeting Criteria for selection of proposals 90 min
3 Face-to-face Elicitation of value tree, weights and interactions 150 min
4 Email Elicitation of value tree, weights and interactions

5 Email Introduction of the web-based application

6 Email Feedback about the web-based application

7 Email New version of the web-based application

8 Email Feedback about the web-based application

9 Email Discussion of the results

10 Online meeting Further discussion of the results 120 min
11 Email Further discussion of the results

12 Email Feedback

Table 1: Details of meetings and discussions held during the application.

2.2.1 Value tree

A key step in solving a portfolio decision problem is to define the structure of the decision
problem. In order to do this, stakeholders and decision makers need to articulate their
fundamental objectives and goals. These are also referred to as criteria and are the basis
for evaluating alternatives. We conducted a series of interviews with the decision maker to
establish a set of criteria, organised into a value tree, i.e. an hierarchy of objectives. We
then defined measurable attributes for each criterion using either quantitative or qualitative
measurement scales. Previously-used criteria and criteria used in the literature for research
proposal selection (e.g. Joshi, 2014) were used to facilitate discussion. We also used the
discussions to verify that the decision maker could express preferences for proposals based
on each criterion independently of other criteria (preferentially independent criteria), and
that the criteria in this study were unambiguous and the decision maker could also specify
a scale for each one of them, thus making them measurable and operational. The decision
maker was satisfied that the criteria capture all important aspects of the decision problem
(Belton and Stewart, 2002).

2.2.2 Construction of partial value functions

Partial value functions convert attribute measurement scores to an underlying value scale
(Belton and Stewart, 2002). This serves two main purposes. The first is to ensure that
within any criteria two equal-size differences in value (comparing, say 0-10 and 10-20) are
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equally preferred by the decision maker, since this cannot be assumed to hold at the scale
of the attributes themselves (0-10 vs 10-20 previous publications, for example). The second
is to place all criteria onto the same measurement scale, facilitating further aggregation.

Each proposal is scored on every attribute by multiple referees. We denote the rating
of proposal j = 1,...,n on criterion ¢ = 1,...,m by referee r = 1,...,0 by x;;.. For
confidentiality and data privacy reasons, the institution did not want to use the data from
an actual application round, and so we generated a second set of scores with n = 24,
m = 11, and o = 3 and similar properties to the original data, showed these to the
decision maker, and led them through the process described here. We assessed partial
value functions using the direct-rating method (Eisenfuhr et al., 2010). The best and
worst values on each criterion were specified, and then all alternatives were ranked from
best to worst based on the decision maker’s preference regarding their performance. We
used a local measurement scale, so that the best-performing alternative received a score of
100 and the worst-performing alternative a score of 0. The decision maker then assigned a
score between 0 and 100 to each remaining alternative based on a subjective comparison
with the best and worst alternatives. Mean value scores across referees are shown in Table
9.

2.3 Criterion weights

Weights of criteria in MCDA are a scaling constant reflecting both the scale of the criterion
and its importance, and are necessary because the same size difference in value (say, 10
value units) cannot be assumed to be equally valued by the decision maker (whereas equal-
sized weighted value differences are). We used the swing method to assess weights, a
widely used and accepted approach for weight assessment (Belton and Stewart, 2002).
The decision maker first ranked criteria from most to least important based on the value
assigned to the improvement (or “swing”) from the worst to the best level of achievement
on that criterion. The swing deemed most important or valuable was assigned a weight
of 100, following which the relative value of swings on other criteria were established by
comparison against that largest swing. We assessed weights within families of criteria
(higher-level objectives), followed by a comparison of the most highly weighted criterion
in each family, and using worst-to-best swings as a basis for that comparison. Criterion
weights were standardised to sum to one.

2.4 Interactions between projects

Based on initial discussion with the decision maker, we modelled interactions between
projects by defining a multiplicative interaction factor +;, that increases the value of any
portfolio with n proposals that have an excellent score on criterion i, with the cutoff for
“excellent” performance on each criterion assessed by the decision maker. This is similar to
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the way Liesié (2014) builds multiattribute value functions for portfolio decision analysis,
with the interaction benefit increasing with the number of good alternatives iy > v;(;—1)-
Following Stummer and Heidenberger (2003), we define Ag, k = 1,..., K to be interaction
subsets, with each interaction subset containing a set of projects that possess an interaction.

2.5 Assessment of portfolio value

Ignoring for now the presence of multiple referees, so that we can write attribute scores
as x;; rather than z;;-, the standard linear-additive portfolio model (Stummer and Hei-
denberger, 2003; Jaszkiewicz, 2002; Martello et al., 2000) specifies the overall value of a
portfolio of projects P as:

n k
max V(P) =V (z1,...,2n) = ijZj + Z Bygx, (1)
j=1 k=1

where z; = Y " w;z;; the weighted additive value of projects j across all criteria, By, is
the incremental change in value if all of the projects in interaction subset Ay are chosen,
zj, j = 1,...,n are binary variables indicating whether project j is included (z; = 1) in
the portfolio or not (2; = 0), and gi, k = 1,..., K are binary variables indicating whether
all the projects in interaction subset Ay are included (g = 1) in the portfolio or not
(9x = 0). Thus z; and By, are benefits potentially accruing to portfolio P, and z; and g
are binary decision variables indicating whether or not these benefits are included or not.
For our application we define incremental values By, = (> jeA x), where A is the union
of interaction subsets Aj and +;, is the multiplier associated with interaction subset Aj.

The sum of these is then Zszl Brgr = (X en)) Zszl VinGk-

As an illustrative example, suppose a decision maker selects a portfolio made up of projects
{3,17,19,23} whose z;; values are shown in Table 2. The individual aggregated scores x;
of each of these projects is 63.6, 71.6, 76.8, and 70.6 respectively. The total contribution of
individual projects to overall portfolio value is thus 282.7. If there are no interactions then
no further calculations are needed and this is the final overall portfolio value. However
suppose that an excellence threshold of 90 is used on all criteria. Then projects 17 and 19
are both excellent on criterion C1, and projects 17, 19, and 23 are excellent on criterion
C3 (Table 2, bold). Each of these defines an interaction subset, i.e., Ay = {17,19} and
Ay = {17,19,23}, with the union A = {17,19,23}. Suppose further that the interaction
multiplier associated with these interactions are v12 = 0.07 and 33 = 0.05. The incremen-
tal benefit accruing from Aj is y12(z17 + 219 + 223) = 0.07(71.6 +76.9 4+ 70.6) = 15.3, while
that accruing from As is y33(z17 + 219 + x23) = 0.05(71.6 + 76.9 + 70.6) = 11.0. Overall
portfolio value is thus 282.7+15.3+11=309.
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Ci Cy C3 Cp Cy; C¢ C; Cg Co Cp Cn 1z

P3 70 60 70 70 75 80 70 70 50 45 0 63.6
P17 90 70 90 80 80 90 80 60 40 50 0 71.6
P19 90 70 90 70 80 80 70 70 70 50 100 76.8
P23 80 67 90 70 80 70 80 75 70 50 0 70.6

wj 0.13 0.11 0.11 0.10 0.10 0.09 0.09 0.08 0.08 0.07 0.05

Table 2: Inputs to an illustrative example of a calculating overall portfolio with interaction
multipliers. The weighted additive value of project j across all criteria is given by x;. Values
in bold are deemed excellent (> 90), generating the interaction subsets 4; = {17,19} and
Ay = {17,19,23}, which are assumed to have corresponding multipliers 712 = 0.07 and
~v33 = 0.05 respectively (see Table 4). Overall portfolio value is (63.6 4+ 71.6 4+ 76.9470.6) +
0.07(71.6 + 76.9 4 70.6) + 0.05(71.6 + 76.9 + 70.6) = 309.

2.6 Portfolio selection

Portfolios were selected using three different methods: an integer programming solution of
the linear-additive portfolio value model with average (over referees) project scores, robust
portfolio modeling, and portfolio heuristics, with the decision maker shown the results from
all three methods. In addition, we asked the decision maker to select portfolios without
facilitation, i.e. without looking at the portfolios suggested by the above methods, but by
only considering the average profile of the projects, the weights attached to the criteria and
specified interaction values. Portfolios were selected in the four-, five-, and six-proposal
settings i.e., a maximum of four, five and six projects, respectively, could be selected at
once in each round.

2.6.1 Solution by integer programming

Formulation of the linear-additive portfolio value model as an integer programming model
is standard (Stummer and Heidenberger, 2003), maximizing (1) subject to constraints on
resources. We solved the problem assuming that either four, five, or six projects could be
selected. We used the mean of the ratings across referees to represent the score associated
with each project on each criterion, i.e., z;; = 23:1 xijr/3, when three referees are involved.

2.6.2 Robust portfolio modelling

The robust portfolio model (RPM) extends the standard portfolio optimisation model
above to cases where weights or scores are uncertain. Here, we assume uncertainty arises
due to the use of multiple referees that may not provide the same rating.

The RPM model presented by Liesio et al. (2008) models portfolio selection in the presence
of incomplete performance score and weight information. The set of feasible scores is given
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as S; = {X eR™MN X <X L Y} where X and X are the lower and upper bounds of
the score interval, respectively. Here, lower and upper scores correspond to the worst and
best assessment given by a referee. Weights can be treated similarly, but are assumed
known with certainty here. RPM identifies the set of non-dominated portfolios consistent
with scores in S;, where portfolio P dominates portfolio P’ if and only if the value of
portfolio P for the lowest performance scores X is higher than the value of portfolio P’
for the highest performance scores X. Liesio et al. (2008) presents an algorithm in which
pairwise comparisons are conducted to construct the set of the non-dominated portfolios.
A partial enumeration of portfolios is made possible by the elimination of portfolios that
cannot become non-dominated. In this application, we were able to enumerate all portfolios
because of the reasonable size of the portfolio selection problem. We identified portfolios
that were non-dominated — these are the RPM portfolios.

In order to assess the quality of portfolios, RPM defines a project’s core index C1I; as
the proportion of non-dominated portfolios that include that project. Based on this index,
projects can be classified as core (they are part of every non-dominated portfolio, CI; = 1),
borderline (they belong to some non-dominated portfolios but not to all, 0 < C'I; < 1) and
exterior (they belong to none of the non-dominated portfolios, CI = 0). A portfolio made
up of core alternatives is thought to be more robust than other portfolios.

2.6.3 Heuristics

We selected portfolios using two heuristics identified as promising in Durbach et al. (2020):
unit value with synergy and added value. These are both extensions of the unit value
heuristic, which adds projects in descending order of their value-to-cost ratios until the
resource constraint is reached, with values based on individual project values only. We
assume equal costs for all projects, so that projects are effectively ranked by their values
only.

The Unit Value with Synergy heuristic adds projects according to the unit value heuristic,
but restricts the pool of available projects to those involved in at least one positive interac-
tion, i.e. projects are sorted by their marginal value-to-cost ratios and added in this order.
Projects are added until the set is exhausted. Then, if any space in the portfolio remains,
it adds alternatives from outside the set, again using the unit value heuristic to do so.

The Added Value heuristic adds the project whose inclusion would lead to the largest
increase in overall portfolio value per unit cost. Gains include both marginal values of the
project and interaction values resulting from a combination of projects being simultaneously
part of the portfolio. The added value heuristic searches across projects not added yet to
see whether their inclusion would complete any interaction subset.
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2.6.4 Comparison of selection approaches

We assessed the quality of portfolios produced by heuristic methods and RPM against
optimal portfolios by calculation the proportion of the optimal portfolio value achieved
using these two approaches, and by calculating the proportion of projects in the optimal
portfolio that were selected by heuristic methods or RPM.

2.7 Decision support system

We developed a web-based application implemented in R Shiny to provide support to the
decision maker in choosing the best set of projects. The application consisted of seven
tabs that provide the user with instructions, data input and manipulation capability, and
implementation of the approaches above, and displaying of results.

Three tabs provide instructions and basic functionality to the user. An initial landing page
gives a general description of the application and the remaining tabs, lists the portfolio
selection methods used by the application, briefly describes the results provided, and finally
includes instructions for users. An upload tab allows the user to upload input files in Excel
format, containing the scores of projects, interaction values and labels. This requires a
fixed format input that is described on the instructions tab. It also allows the user to view
and adjust weight values, that are displayed as input sliders. A display tab provides the
user with a visual summary of the input data, prior to optimisation. Slider bars provide
the user with control over (a) which criterion is shown and (b) which projects are shown.
Weights, scores, and interaction values are all shown via charts or tables.

Another four tabs are the core of the application and provide portfolio selections. Three
tabs provide the user with the portfolios selected by heuristics, RPM, and the linear-
additive portfolio value model respectively. These methods are only run once the user
clicks a Run button. The sheets show the projects selected, and information about each of
the projects and the overall portfolio value. A fourth tab allows the user to construct their
own portfolios through the use of checkboxes, again displaying the projects selected, and
information about each of the projects and the overall portfolio value. This allows the user
to experiment with any selected portfolios and conduct sensitivity analysis. In all four of
these tabs the user can change the number of projects allowed in the portfolio.

3 Results

3.1 Problem structuring
3.1.1 Value tree

The assessed value tree (Table 3, first two columns) contained four higher-level criteria
(applicant quality, proposal quality, relevance of proposal, and equity). Applicant and
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proposal quality could be further broken down into four and five attributes, while proposal
relevance and equity could each be measured directly with a single attribute. Criteria were
defined as follows:

e Recognition of prior work: A grant applicant who has received a number of awards for
their research work or for their academic achievements is highly recognised. Achieve-
ment on this criterion is measured by the number of awards received by the grant
recipient.

e Quality of publications: the quality of the applicant’s publications are rated based on
the substance of their publications. Achievement on this criterion is measured by the
number of letters/communications, articles, supplementary articles, review articles
or research notes published by the applicant. Each of the outputs denotes a given
degree of contribution to the research field.

e Impact of prior work: the impact of prior research work in terms of the number
of publications and the number of citations. A combination of both the number of
publications and the number of citations provides a scale to measure achievement on
this criterion.

e Mentorship: this criterion assesses whether the applicant has shown the ability to
supervise, teach or tutor students. It is measured by the number of students being
supervised, taught or tutored.

e Potential impact of proposal: A research proposal can fall within either applied or
pure research. If it is applied research, the aim may be to inform policies and seek
to find a solution for an immediate problem facing society, or an industrial /business
organisation. The impact of the proposal, in this case, is to bring about socio-
economical and environmental changes. If it is pure research, the aim is to bring
a deeper understanding of the theoretical aspects of a phenomenon and formulate
a theory. The impact of the proposal, in this case, is mainly knowledge creation.
Achievement on this criterion is measured according to whether the project falls
within applied or pure research and whether it has potential to be published.

e Feasibility & risk: The feasibility and risk associated with a proposal is based on
the applicant’s academic strength and likelihood of completing the project. The
selection panel would evaluate the methodology and decide whether the applicant
could implement the project within the time frame. Achievement on this criterion
is measured by the likelihood for the applicant to complete the project based on
previous related work, clarity of definition of the project, etc.

e Scientific merit: A research proposal should represent good science. A good research
proposal entails both clear research objectives and questions and pertinent hypothe-
ses. Reputation is key for a science institution. They would not want to be associated
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with any project that would damage their brand if the methodology was found to be
wrong or end results turned out to be scientifically incorrect. Achievement on this
criterion is rated based on problem design, methodology, objectives and potential
contribution to knowledge. A project that does well on each of these items is highly
scored.

e Novelty: A proposal should generate knowledge and uncover hidden information.
This would indicate the likelihood of the final results being published or contribute
to solving a pressing problem. Achievement on this criterion is measured by the
degree of novelty of a project: whether it is groundbreaking, i.e. it opens up entire
new areas of research or whether it repeats existing research or extends it.

e Respond to a challenge in Africa: the degree to which proposal directly addresses
a challenge in Africa. The project receives a score based on whether it is purely
theoretical or whether it is still theoretical but has a limited applied aspect or whether
it is applied research and gives a solution to a practical problem.

e Focus areas: Most funding calls are made with specific aims and objectives in mind,
expressed as themes. Proposals should clearly specify how they align with these
objectives. Achievement on this criterion is measured by the degree to which the
proposal is aligned with the thematic areas outlined in the call for funding proposals:
Science, Technology, Engineering and Mathematics.

e Gender: this criterion aims to redress the imbalance between men and women in the
research field. Often women are at a distinct disadvantage in the African context,
having less opportunities than men and facing more obstacles than men in their
pursuit of a career, especially in sciences. The same criterion was used in Belton and
Stewart (2010).

3.1.2 Weights

Weights were reasonably equally distributed across criteria, with the most important cri-
terion, impact of prior work, receiving a weight a little under three times as large as the
least important criterion, gender (w = 0.13 vs w = 0.05, as seen in the Cumulative Weights
column in Table 3). Out of the families of criteria, applicant rating was rated most impor-
tant, followed by proposal quality, relevance of proposal, and gender equity. All criterion
weights are shown in Table 3.

3.1.3 Interaction effects

Elicited values of +;,, are shown in Table 4. For instance, on the criterion “Impact of prior
work”, v19 = 0.07 for 2 projects, v13 = 0.10 for 3 projects, y14 = 0.12 for 4 projects, etc. A
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Cumulative Relative

Family of Criteria Criteria Weights Weights
Applicant quality Recognition of prior work 0.08 0.19
Quality of publications 0.11 0.28
Impact of prior work 0.13 0.31
Mentorship 0.09 0.22
Proposal quality Potential impact of proposal 0.09 0.20
Feasibility and risk 0.11 0.25
Scientific merit 0.08 0.18
Novelty 0.07 0.15
Respond to a challenge in Africa 0.10 0.23
Relevance of proposal Focus area 0.10 0.10
Equity Applicant gender 0.05 0.05

Table 3: Criteria swing weights. Cumulative weights are weights standardised across all
criteria to sum up to 1, while relative weights are weights standardised within families of
criteria.

threshold of 90 was used to identify excellent projects on each criterion. Based on this, the
sets of projects with excellent average scores on criteria ¢ and thus for which interaction
effects exist are (see Table 9 for scores):

e Impact of prior work: {15,17,19}
e Quality of publications: {6,20}
o Feasibility and risk: {9,10,13,14,15,17,19, 20, 21,22, 23, 24}

e Respond to a challenge in Africa: {14,17,18,22}

Interaction subsets A; are formed whenever any two or more of the projects in the four
sets above are included in a portfolio. The interaction set A is the union of all interaction
subsets Aj and represents all projects involved in interactions.

3.2 Selected portfolios

Left unsupported, the decision maker selected projects by sorting projects by their weighted
average value and selecting projects until they reached the desired number of projects, in
the four-, five-, and six-proposal settings. This approach is equivalent to the Unit Value
heuristic. In the current application, Unit Value portfolios are the same as those selected
using the Unit Value with Synergy (see Tables 5 to 7), although this would not be true in
general.
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Imp. of Qual. of Feasib Resp. to Focus

n | work public. & risk chal. area  Recognit.
0 0 0 0 0 0 0

1 0 0 0 0 0 0

2 0.07 0.05 0.03 0.02 0.01 0.01

3 0.10 0.07 0.05 0.03 0.02 0.01

4 0.12 0.09 0.06 0.04 0.03 0.02

5 0.13 0.11 0.08 0.06 0.03 0.02

6 0.15 0.13 0.09 0.07 0.04 0.03

Table 4: Interaction between projects generate value benefits, also called interaction ben-
efits. An interaction benefit is a factor of the sum of weighted additive value of projects
involved in interactions. The interaction value (v;;,) increases with the number of projects
(n) in the portfolio that have an excellent score on a given criterion.

Heuristic solutions achieved over 90% of the value of the optimal portfolio (Table 5 to 7).
The Added Value heuristic performed better than the Unit value with Synergy heuristic, re-
turning 99%, 97%, and 95% of the optimal value for portfolios of four, five, and six projects
respectively (the corresponding performance of the Unit Value with Synergy heuristic was
93%, 90%, and 95%. This relatively excellent performance was achieved despite selecting
quite different projects to the optimal portfolio. The Added Value heuristic selected three
of four optimal projects (75%) in the four-proposal setting, and three of five and four of
six optimal projects (60% and 67%) in the five- and six-proposal settings respectively. The
corresponding performance of the Unit Value with Synergy heuristic was again lower: 50%,
40%, and 67% of projects in the optimal portfolio were selected in the four-, five-, and
six-proposal settings.

On average RPM solutions, also known as non-dominated solutions, performed better than
heuristic solutions. The latter scored an average of 95% of the value of the optimal portfolio
whereas the former scored an average of 99%. For each problem size, we observed that
the optimal portfolio was among RPM portfolios but not among heuristic solutions. RPM
solutions also had more projects in common with optimal solutions in terms of portfolio
composition than heuristic solutions. RPM solutions had on average 89% of the projects
contained in optimal portfolios, while heuristic portfolios contained 60%. For problems
involving five projects, we observed that the RPM portfolio was the same as the optimal
portfolio.

Core indices are shown in Table 8. Projects {15,17,19} had a mean score of 1, being part
of every RPM portfolio and were therefore strongly recommended by RPM. These projects
were also part of every optimal portfolio (Table 5 to 7). Projects that were part of optimal
portfolios, i.e., projects {6, 15,17,19, 20,22} stood out from the rest. They scored 80 or 90
points on two or three of the most important criteria: recognition of previous work, quality
of publications and impact of prior work. When they performed below 80 points on any of
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Portfolio Selected projects % Opt. Nopt
Optimal 15,17,19,22} 100 4
Unsupported {14, 19, 20, 22} 93 2
Added Value  {15,19,20,22) 99 3
UV w Synergy  {15,19, 20,22} 93 2
RPM1 {9,15,17,19} 96 3
RPM?2 (14,15,17,19} 99 3
RPM3 {15,17,19,20} 100 3
RPM4 {15,17,19,22} 100 4
RPM5 (15,17,19,23) 98 3
RPMG6 {15,17,19,24} 97 3

Table 5: Four-project portfolios selected using linear-additive portfolio value model (Op-
timal), robust portfolio modeling (RPM) and portfolio heuristics (Added Value and Unit
Value With Synergy), with the proportional value achieved by each porfolio (% Opt =
percentage of the value achieved by the optimal portfolio) and the number of projects in
common with the optimal portfolio (Nopt).

Portfolio Selected projects % Opt.  Nop
Optimal 16,15,17,19,20] 100 5

Unsupported {1,14, 19, 20, 22} 90
Added Value {14, 15,19, 20, 22} 97
UV w Synergy  {1,14,19,20,22} 90
RPM1 {6,15,17,19,20} 100

Ot N W N

Table 6: Five-project portfolios selected using linear-additive portfolio value model (Op-
timal), robust portfolio modeling (RPM) and portfolio heuristics (Added Value and Unit
Value With Synergy), with the proportional value achieved by each porfolio (% Opt =
percentage of the value achieved by the optimal portfolio) and the number of projects in
common with the optimal portfolio (Nopt).
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Portfolio Selected projects % Opt.  Nopt
Optimal {6,15,17,19, 20,22} 100 6
Unsupported  {1,14,15,19, 20, 22} 95 4
Added Value  {1,14,15,19,20,22} 95 4
UV w Synergy {1,14,15,19, 20, 22} 95 4
RPM1 {6,9,15,17,19,20} 97 5
RPM2 {6,14,15,17,19,20} 99 5
RPM3 {6,15,17,19,20,22} 100 6
RPMA4 {6,15,17,19, 20,23} 99 )
RPMS5 {6,15,17,19,20,24} 98 5

Table 7: Six-project portfolios selected using linear-additive portfolio value model (Op-
timal), robust portfolio modeling (RPM) and portfolio heuristics (Added Value and Unit
Value With Synergy), with the proportional value achieved by each porfolio (% Opt =
percentage of the value achieved by the optimal portfolio) and the number of projects in
common with the optimal portfolio (Nop).

the three criteria, they compensated for this by performing exceptionally well (90 points)
on the other two criteria (See Table 9).

Projects
Size P6 P9 P14 P15 P17 P19 P20 P22 P23 P24
4 0 017 0.17 1 1 1 0.17 0.17 0.17 0.17
) 1 0 0 1 1 1 1 0 0 0
6 1 0.2 0.2 1 1 1 1 02 02 0.2

Ave. 0.67 0.12 0.12 1.00 1.00 1.00 0.72 0.12 0.12 0.12

Table 8: Core index of projects defined as the relative frequency at which each project
appears across RPM portfolios, also known as non-dominated portfolios, for portfolios
of different sizes. A score of 1 indicates that the project is found in every non-dominated
portfolio and a score of 0 indicates that the project is not found in any of the non-dominated
portfolios.
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3.3 Sensitivity Analysis

Sensitivity analyses were conducted in two ways: first by varying criterion weights and
regenerating portfolios, and then by manually removing and adding projects from the
selected portfolios. The first of these assessed whether selected portfolios would still be
optimal even if the decision maker’s preferences were to change. The second was a more
open-ended exploration of the set of available portfolios.

The decision maker developed five scenarios translating the weight changes they wished to
make. Initial and subsequent weights are shown in Table 10. Initial weights (weight set 1)
lead to the following optimal portfolios for sizes four to six, respectively: {15,17,19,22},
{6,15,17,19,20} and {6,15,17,19,20,22}. We subsequently computed optimal portfolios
using the other weights (weight sets 2 to 6) and observed the resulting portfolios as displayed
by the application. In each instance (weight sets 2 to 6), the resulting portfolio was the
same as the initial one for five and six proposal-solutions. For 4 proposal-solutions, we got
a different portfolio in weight set 5: project 22 was dropped and replaced by project 20. We
note that project 20 had a higher mean core index than project 22 (Table 8). Based on this,
the decision maker was satisfied that portfolio {6,15,17,19,20} and {6,15,17,19, 20,22}
(5 and 6 proposal-solutions) were robust choices. Portfolio {15,17,19,22} (4 proposal-
solution) was almost robust and only ceased to be the optimal solution when the last two
sets of weights were applied, these being fairly extreme, e.g. the first criterion gets a weight
worth 40% to 50% of total impact of weights. For this reason, we believe that this portfolio
should still receive favorable consideration.

Sets Cl Cg Cg C4 05 06 07 Cg Cg CIO CH

1 0.13 0.11 0.11 01 01 0.09 0.09 0.08 0.07 0.07 0.05
02 011 011 01 0.1 0.09 0.09 0.05 0.05 0.05 0.05
0.2 013 0.13 0.12 0.1 0.07r 0.07 0.05 0.06 0.05 0.03
03 02 01 0.09 0.08 0.07 006 0.04 0.03 0.02 0.01
04 03 02 003 0.01 0.01 001 0.01 0.01 0.01 0.01
0.5 03 0.07 005 0.02 0.01 001 0.01 0.01 0.01 0.01

S O = W N

Table 10: Sets of weights used during sensitivity analysis. Initial weights are shown in the
first row.

The second aspect of the sensitivity analysis was done by the selection and deselection of
projects in order to improve the initial portfolio selected by the decision maker without
facilitation. The decision maker had the following question in mind: Can I improve on
my initial portfolio by adding and dropping projects? The decision maker used the se-
lection/deselection feature found on the web-based application to conduct the sensitivity
analysis. At each step, they either added or removed projects. The decision maker ex-
plained that they followed a process of trial and error to improve their portfolio, but they
were guided by the overall values of portfolios as displayed by the web-based application,
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which include interaction values. The decision maker was able to generate many portfolios,
among which was the optimal portfolio. The decision maker retained the optimal portfolio
as their best portfolio because it had the maximum overall value among the generated
portfolios.

4 Discussion

In a recent literature review spanning the years 2006 to 2019, Liesio et al. (2021) found
that roughly half of the decision support systems use exact algorithms, leading to (globally)
optimal solutions, whereas the other half use approximate algorithms, leading to reasonably
good solutions without guarantees of optimality. The vast majority of software deal with
MCDA problems involving the selection of a single, best alternative from a larger set of
potential options. There are only a handful of software applications that deal with portfolio
decision making, some of which involve interactions and sensitivity analysis: HiPriority,
PROBE, Expert Choice, DPL 8, etc. Weistroffer and Li (2016). Where interactions are
required, optimisation and approximate algorithm need these to be exhaustively assessed,
which is a substantial undertaking for a decision maker. On their part, portfolio heuristics
have the advantage of adding projects sequentially, and thus of processing information
incrementally. This means that not all interaction information is required. Decision support
based on portfolio heuristics may thus be reasonable under similar conditions to the use
of heuristics in general — when environmental conditions are such that time, cognitive, or
motivational resources are limited.

We emphasize that where an approach returning an optimal portfolio of projects can be
implemented, e.g. linear-additive portfolio value model, there is little doubt that this should
be the preferred course of action. However, that will not always be feasible, and in those
cases heuristic decision support may be better than no support at all. In our application,
portfolios returned by heuristics were of a high quality, achieving most of the overall value of
the optimal portfolio and performing similarly or slightly worse than the robust portfolio
model. An interesting result was that heuristics chose a different set of projects to the
optimal portfolio, but performed nearly as well as the optimal portfolio. Since they are
straightforward to compute, these alternative heuristic portfolios might be generally useful
as a basis for discussion or for sensitivity analysis even if the optimal approach can be used.

In our application, the use of heuristic-based decision support was experienced as useful.
We observed that for each problem, the decision maker selected the Unit Value portfolios
instead of optimal portfolios when selecting without facilitation. This suggests that the
decision maker was not able to account for interactions in their selections. This highlights
the value of the decision support that explicitly include interaction values, even if heuristic-
based.

In the feedback, the decision maker reported that the web-based application was intuitive



128 Kantu and Durbach

and easy to use. They also found the visualisation of project data and portfolio solutions
in both graphical and tabular format useful. In their view, the application made it easy to
assess interaction benefits and identify optimal portfolios. They found the ability to select
projects at will and determine the size of portfolios to be useful features. They observed
that the web-based application reduces processing time for the selection of projects, and
removes a lot of manual processes used in the past and speeds up the process of identifying
the best projects among the set of available projects. Finally, based on their previous
experience in selecting portfolios of projects, they concluded that the web-based application
reduces the associated biases in the unfacilitated selection of projects. Developing and
maintaining general software for decision support is a substantial undertaking beyond the
scope of this paper, but for the purposes of this application the feedback we received
suggested that the developed support system was experienced as useful.

One aspect that we have not discussed in detail is the opportunity for the decision maker
to learn about their preferences and the decision problem that they face. This is a key goal
for decision support (Belton and Stewart, 2002), and optimal or traditional multicriteria
approaches offer quite different opportunities for learning than heuristic-based decision sup-
port. In traditional multicriteria approaches the decision maker primarily learns through
the elicitation process, as they are asked to provide inputs like weights, value functions
or other preference information, project interactions, and then through interrogation of
results, especially through sensitivity analysis. Heuristics require less input information
and thus potentially offer less opportunities for learning, although the reduced information
allows for a better understanding of those inputs that are assessed. Incremental assess-
ment of information is also likely beneficial for learning, as the decision maker is exposed
to relationship between inputs and outputs (portfolios) earlier in the process than with
traditional approaches. As mentioned, the fact that heuristics are so quick to use and
heuristic portfolios are easy to generate mean that they may be useful for learning about
alternative portfolios in a sensitivity analysis setting, even when an optimal approach is
used to select the portfolio. For the same reasons, it may also be advantageous to show
portfolios constructed using heuristics to the decision maker.

5 Conclusions

This paper reports the first real-world application using psychological heuristics to support
portfolio decision making. Portfolio heuristics are a recent extension of fast-and-frugal or
psychological heuristics to the domain of portfolio decisions, where the goal is to select the
best subset of alternatives from a larger set of candidates. Portfolio heuristics have been
previously shown to perform well in a simulation setting, and to explain some participants’
selections in a laboratory setting (Durbach et al., 2020). Here we supported the selection of
research grant projects using three methods of differing complexity: a standard approach
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to portfolio optimisation, i.e. the linear-added portfolio value model (solved as an integer
program), robust porfolio modelling, and two portfolio heuristics (Added Value and Unit
Value with Synergy) identified as most promising in Durbach et al. (2020). We found that if
no decision support was used, the decision maker tended to select a portfolio of projects by
ignoring project interactions and sequentially adding projects in order of their individual
values until the resource constraint was reached. Portfolio heuristics returned over 90%
of the value of the optimal portfolios, although by selecting somewhat different projects
to those found in the optimal portfolio. Heuristic portfolios were slightly but consistently
outperformed by portfolios generated with robust portfolio modelling. Feedback on the use
of decision support in general, and portfolio decision support in particular, was gathered
informally, but was generally positive. Taken together, our application adds to the growing
evidence that the utility of psychological heuristics extends into the domain of portfolio
decisions.
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