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Abstract

This work addresses the timetabling problem faced by the Department of Statistical Sciences
at the University of Cape Town each year for the honours course or fourth-year class. The
approach taken by the department to design the timetable has been a manual one, which is
time consuming. An automated approach is proposed in this work, based on mathematical
programming models, with the aim to alleviate the burden caused by the manual approach
to create such timetable. The proposed mixed integer programming model consists of three
phases: The first phase involves the allocation of lecturers to modules based on preferences
and expertise, the second phase consists of assigning modules to time slots, and the third
phase involves the allocation of available venues for classes on the timetable. The model
was applied to real data, collected from the department. The resulting timetabling solutions
were compared to the 2022 timetable and validated by the course convenors.

Key words: Mixed integer programming; Timetabling problems.

1 Introduction

Timetabling problems, in general, consist of assigning events (e.g. courses, shifts , lectures)
to specific timeslots over a fixed planning horizon. These problems arise in numerous in-
dustries and activities including education, transport, sport, and the healthcare system
[6]. Educational timetabling problems, in particular, have a very high application value
and have received increasing attention over the past few years [3, 11]. Three types of
timetabling problems are often encountered in educational system, namely the course
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timetabling problem which deals with course and classroom allocations [13], the examina-
tion timetabling problem which tackles the issue of assigning exams to examination periods
and venues [7], and the school timetabling problem which consists of distributing classes
to periods for a specific class-teacher combination [9]. The focus of this work is mainly on
module timetabling problem specific to the honours class in the Department of Statistical
Sciences at the University of Cape Town (UCT).

Each year the Department of Statistical Sciences at UCT faces challenges regarding lec-
turer, modules, and venue allocation for the honours class. Currently, the department
creates the timetable manually, which results in an hard labour and potentially an unsat-
isfactory work condition. This work attempts to address this issue by providing a clear
structure of the problem and at developing an automated system that can be employed
by the department in order to alleviate the burden caused by the manual approach.

The honours modules consists of sixteen modules broken down into nine core and seven
elective modules. The cohort of Applied Statistics students is required to take seven core
modules while the group of students majoring in Mathematical Statistics is required to
take six core modules. Furthermore, students who are completing a Bachelor of Business
Science specialising in Analytics degree, irrespective of their major, are required to com-
plete a minimum of two elective courses, whereas those who are completing a Bachelor of
Commerce or a Bachelor of Science in Statistical Sciences are required to take a minimum
of three elective courses.

Modules either require two or four hours of lecture time per week. Modules that require
two hours of lecture time a week could comprise of two single sessions or one double session
classes. Modules that require four hours of lecture time a week, on the other hand, require
two double session classes. Moreover, the department makes use of two internal venues
and a computer lab to schedule lecture sessions, with venue capacities ranging from 18 to
28. In 2022, the year during which this work was investigated, the department employed
seventeen lecturers specialising in different areas of Statistics. Finally, academic days are
from Monday to Friday from 8am to 6pm, hence no lecture times can be scheduled outside
this window.

The overarching aim in this work is to develop mathematical programming models to
represent the characteristics of the honours course timetabling and classroom assignment
problem as per the description above for the Department of Statistical Sciences at UCT.
The proposed model consists of three phases: The first phase concerns allocation of lectur-
ers to modules, referred to as lecturer allocation, the second phase involves assignment of
modules to time slots, namely module allocation, and the last phase consists of allocating
classes to venues, referred to as venue allocation. The model is designed based on the
following criteria: (1) lecturers are assigned to a set of modules based on their preferences
and expertise, (2) students’ preferences in terms of the lecture times are taken into account,
and (3) the timetable is created based on the available venues. This way, the generated
timetable allows some flexibility and helps students and lecturers to maintain a balance
between class preparation and non-academic activities. It also ensures a reasonable level
of infrastructure utilisation.

The remainder of this paper is structured as follows. In Section 2, a brief description
of the existing literature on the timetabling problem is presented. This is followed by a
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presentation of the proposed models in Section 3. Details of the data employed and the
model implementation are discussed in Section 4. The computational results are reported
in Section 5. Validation and limitations of the study are discussed in Section 6. Some
final remarks along with future research directions are provided in Section 7.

2 Literature review

The primary objective of course timetabling is to allocate each course at a time (or set of
times) which does not conflict with the time(s) assigned to any other course required by
the students attending it [13]. This is relatively easy if there are only a few courses taken
in combination with the course of interest. It becomes considerably more difficult as the
combinations of courses requiring different time placements increase. The availability of
venues, lecturers, and a variety of other constraints, further complicate the problem.

Challenges that are experienced when creating timetables are the results of conflicts, avail-
ability of resources, and preferences. The majority of existing models in the literature used
to solve the problem are based on integer linear programming [5, 10]. The objective func-
tion differs from model to model to cater for the specific rules, policies, and preferences of
universities, lecturers, and students. Examples of objective functions often considered in
the literature include minimisation of the cost incurred by the module allocation according
to the available timeslots, minimisation of the violations of some constraints, minimisation
of the dissatisfaction of students and/or lecturers, and maximisation of the allocation of
lecturers to modules based on their preferences [3].

Similar to the objective function, the set of constraints considered in the existing models is
dependent on the rules governing the institutions. The most commonly used constraints
encountered in the literature include the uniqueness constraint, which ensures that no
clashes occurs in the generated timetable, the completeness constraint, which ensures that
all modules are scheduled on the timetable, the cumulative or consecutive constraint,
which accommodates consecutive sessions of teaching periods and repeated classes over
the scheduling horizon, and the capacity constraint, which warrants that the timetable
adheres to venue capacity [3]. Some constraints are classified as soft constraints, which
can be violated to obtain feasible solutions. Examples of soft constraints prevailing in the
literature include the allocation of modules or classes to timeslots based on preferences,
the allowance of an ample time break between two consecutive sessions, and piggybacking
— assigning classes with similar syllabi to a single lecturer [11].

In terms of solution approaches, the majority of works focused on solving educational
timetabling problems to optimality using exact methods. Successful solutions using branch
and bound methods or integer programming-based methods have been reported in [4, 5]. A
common criticism for the integer programming-based methods, however, is the heavy com-
putational requirements that the branch and bound technique imposes on these models.
Therefore, approximate solution techniques from the realm of metaheuristics are preferred,
especially to solve large-scale problems. The most commonly used techniques encountered
in the literature include the method of simulated annealing algorithm, tabu search, and
genetic algorithms [1, 7, 8]. Some research has also been done on the application of graph
colouring to solve timetabling problems [12].
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In 2003, Daskalaki and Birbas [5] proposed a two-stage relaxation procedure in an attempt
to solve efficiently the integer programming model of a university timetabling problem.
The relaxation concerns the consecutive constraints which are computationally heavier
than the others and is performed in the first stage. A number of subproblems using the
outputs of the first stage are solved for local optima during the second stage. Daskalaki and
Birbas demonstrated that their proposed approach reduces computation time substantially
and that it improves the solution quality over single-stage approaches.

A case study on the course timetabling and classroom assignment problem at Universidad
de la Sabana, Colombia, was investigated by Torres-Ovalle et al. [13] in 2014. The problem
was modelled using integer linear programming and was solved using a hierarchical two-
phase approach. The course timetabling problem was solved in the first place, then the
classroom assignment problem was solved separately by taking into account the results
returned by the first phase. Their computational results demonstrated that the proposed
approach achieves a better utilisation of classrooms while satisfying both hard and soft
constraints of the problem. Their analyses also revealed the reduction of total cost incurred
by the solution approaches and the increase in teaching resource availability.

In 2016, Perera and Lanel [12] attempted to solve a university course timetabling problem
using a graph colouring approach. The system uses an integer programming model to
assign a set of courses to time periods where each set is the result of a graph colouring
approach. The model results in a feasible solution which has been shown to reduce the
maximum idle time of students. The model was also shown to be flexible and allowed any
changes to the constraints depending on faculty requirements and other factors.

The model proposed in this work is based on an integer programming approach and it is
solved to optimality. Interested readers are referred to the recent survey of Gashgari et
al. [7] for application of metaheuristic techniques to solve timetabling problems.

3 Model formulation

A hierarchical three-phase integer programming model is proposed in this section to ad-
dress the course timetabling and venue allocation for the honours programme at the De-
partment of Statistical Sciences at UCT. The lecturer allocation refers to the allocation of
lecturers to modules. This first phase allocation of “who is teaching what” is further used
to determine the availability of each allocated lecturer to teach the relevant module in
specific timeslots and a primary timetable is generated accordingly. This timetable serves
as input for the last phase, where available venues are assigned to each module on the
timetable. A final timetable for a single week of each semester is created at the end of the
final phase. The weekly timetable is replicated across all weeks of the semester.

The reasoning behind using this hierarchy is to generate a flexible timetable so that it al-
lows the department to decide on the teaching structure of the modules and to incorporate
all other requirements pertaining to the degrees of the students. Particularly, the design
allows the department to change the lecturer or module allocation based on preferences.
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3.1 Notation

The notation used in the model proposed in this work is as follows:

K The set of all venues available, k, where booking an external venue is classified as a
venue.

J The set of all lecturers, j.
I The set of all modules, i.
D The set of all days, d.
T The set of all time slots, t.

δj,i A binary variable indicating if lecturer j is allocated to teach module i.

hmin
j The minimum number of hours of teaching expected of lecturer j.

hmax
j The maximum number of hours of teaching expected of lecturer j.

ci The number of classes for module i.
mi The minimum number of classes a lecturer can teach for module i. This may be

equal to the total number of classes a semester or not more than half the total
number of classes a semester.

ts The number of time slots per day of teaching. For the current problem there are
ten time slots a day.

Hi The number of hours of class that must be scheduled for module i per week.
S∗ A subset of I, containing all the single period modules that require two classes a

week, s∗.
D∗ A subset of I, containing all the double period modules, d∗.
DS∗ A subset of D∗, containing all the double period modules that require two classes a

week, ds∗.

yj,i The number of classes for module i taught by lecturer j.
xi,d,t A binary variable indicating that module i has been assigned to day d during time

slot t.
zk,i,d,t A binary variable indicating the venue k in which module i has been allocated to

take place on day d in time slot t.

lj,i The preference weight for module i for lecturer j.
pi,d,t The preference weight for a module i to be scheduled on day d at time slot t.
ak,i,d,t The preference weight for allocating module i’s class to venue k on day d in time

slot t.
rj,i The number of classes for module i that lecturer j can teach.
hi The length of each module i’s class in hours.

3.2 Phase 1 - Lecturer Allocation

The aim in the first phase is to maximise the number of lecturers being allocated to
modules of their preferred choices. The model formulation is as follows:
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max
∑
j∈J

∑
i∈I

lj,i yj,i, (1)

s.t
∑
j∈J

yj,i = ci, ∀ i ∈ I, (2)

yj,i ≤ rj,i, ∀ j ∈ J , i ∈ I, (3)

hmin
j ≤

∑
i∈I

hi yj,i ≤ hmax
j , ∀ j ∈ J, (4)

δj,i mi ≤ yj,i ≤ δj,i ci, ∀ j ∈ J , i ∈ I. (5)

The objective function (1) consists of maximising the number of modules assigned to each
lecturer according to his or her preference weights. Constraint (2) ensures that all required
classes for each module are allocated to lecturers. Constraint (3) restricts the number
of classes a lecturer j can lecture for each module i according to his or her expertise.
Constraint (4) enforces the boundaries on the total number of hours allocated to each
lecturer to teach the honours modules. Finally, constraint (5) ensures that lecturers who
are allocated to a module teach no more than the maximum number of classes for that
module.

3.3 Phase 2 - Module allocation

The aim in this phase is to model students’ preferences in terms of having their classes
scheduled in certain timeslots. Four timetables are generated from this model, taking
morning and afternoon preferences into account for both the first and second semesters.
The model formulation is as follows:

max
∑
i∈I

∑
d∈D

∑
t∈T

pi,d,t xi,d,t, (6)
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s.t
∑
d∈D

∑
t∈T

xi,d,t = Hi, ∀ i ∈ I, (7)∑
i∈I

xi,d,t ≤ 1, ∀ d ∈ D, t ∈ T, (8)

xd∗,d,t − xd∗,d,t+1 ≤ 0, ∀ d∗ ∈ D∗, d ∈ D, t = 1, (9)

− xd∗,d,t + xd∗,d,t+1 − xd∗,d,t+2 ≤ 0, ∀ d∗ ∈ D∗, d ∈ D, t ∈ {2, ts− 2}, (10)

− xd∗,d,t + xd∗,d,t+1 ≤ 0, ∀ d∗ ∈ D∗, d ∈ D, t = ts, (11)∑
t∈T

(xs∗,d,t + xs∗,d+1,t) ≤ 1, ∀ s∗ ∈ S∗, d ∈ D, (12)∑
t∈T

(xds∗,d,t + xds∗,d+1,t) ≤ 2, ∀ ds∗ ∈ DS∗, d ∈ D, (13)

xi,d,t +
∑
p∈P

xp,d,t+1 ≤ 1, ∀ i ∈ I, d ∈ D, t ∈ T , P ⊂ I, i /∈ P. (14)

The objective function (6) consists of maximising the students’ preferences of having their
classes scheduled in particular time slots based on the relevant weights. All timeslots that
are not available have a preference weighting of zero; this accommodates the scenarios
where classes have already being scheduled in those timeslots according to the availability
of lecturers. The completeness constraint (7) ensures that all modules are scheduled in
the timetable with the required number of hours. The uniqueness constraint (8) ensures
that only one module can be allocated to a timeslot to avoid any conflicts between classes.
In addition, lecturers can choose between double or single session classes and one or two
classes per week depending on the required number of hours that need to be taught in the
semester and teaching preference. Constraints related to having double sessions are given
in (9)-(11). The constraint (12) relates to having two single sessions a week, while the
constraint (13) is linked with having two double sessions at least a day apart in a week.

To be able to schedule a double session, the two hour timeslots need to be scheduled
consecutively. Constraint (9) ensures consecutive sessions for the first timeslot of the day,
constraint (10) ensures consecutive sessions from the second timeslot of the day up to the
last third timeslot of the day, and constraint (11) ensures consecutive sessions for the last
two timeslots of the day. When scheduling two single sessions twice a week, the single
sessions must not be on the same day. This is enforced by constraint (12). Moreover,
when scheduling two double session classes, the two classes must be held on different days.
Constraint (13) ensures that there is at least a day between each classes of a given subject.
Finally, constraint (14) ensures that there is a break between two classes.

3.4 Phase 3 - Venue allocation

This phase consists of allocating venues to the classes scheduled during Phase 2. The
model is implemented for both the Semester 1 and Semester 2 timetables. It is formulated
as follows:
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max
∑
k∈K

∑
i∈I

∑
d∈D

∑
t∈T

ak,i,d,t zk,i,d,t, (15)

s.t
∑
k∈K

∑
d∈D

∑
t∈T

zk,i,d,t = Hi, ∀ i ∈ I, (16)∑
k∈K

∑
i∈I

zk,i,d,t ≤ 1, ∀ d ∈ D, t ∈ T, (17)

zk,d∗,d,t − zk,d∗,d,t+1 ≤ 0, ∀ k ∈ K, d∗ ∈ D∗, d ∈ D, t ∈ {1}, (18)

− zk,d∗,d,t + zk,d∗,d,t+1 − zk,d∗,d,t+2 ≤ 0, ∀ k ∈ K, d∗ ∈ D∗, d ∈ D, t ∈ {2, ts− 2},
(19)

− zk,d∗,d,t + zk,d∗,d,t+1 ≤ 0, ∀ k ∈ K, d∗ ∈ D∗, d ∈ D, t ∈ {ts}. (20)

The objective function (15) consists of maximising the use of internal venues within the
department and allocating as few classes as possible to external venues. The completeness
constraint (16) ensures that a venue is allocated for the required number of hours per
module per week. The uniqueness constraint (17) ensures that only one venue is booked
for each module on a specific day during a certain timeslot. Any modules that have
consecutive sessions need the same venue to be allocated for the sessions, this is achieved
through constraints (18)-(20).

4 Data and model implementation

Details regarding the data collection and the structure of the database built are presented
in this section. The model implementation is also discussed.

4.1 Data collection process

The list of modules along with the number of students taking each module is shown in
Figure 1. The letter “W” indicates a core module that all students must take while the
letters “M” and “A” indicate core modules that are only required to be taken by Math-
ematical or Applied Statistics students, respectively. The symbol “E” refers to elective
courses which are available to be taken by all students except the advanced probability
theory which can only be taken by students majoring in Mathematical Statistics.

No data on the lecturers and students preferences was available at the time the study was
conducted, hence the need to gather these manually and create a database that could be
used for the study. The data collection was done through surveys by sending questionnaire
to students, lecturers, and administrative staff of the department. The initial surveys were
sent out via email however the response rate was quite low, therefore face-to-face meetings
were held where possible.

A sample of the questions that were asked to the lecturers is given in Figure 2. Lecturers
were asked to provide a ranking on their favourite modules, to indicate which modules
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Figure 1: Module information of the honours programme at the Department of Statistical
Sciences at UCT.

they are able to teach, and whether they prefer double session or single session classes.
A sample of the questions that were asked to the students is given in Figure 3. Students
were surveyed on their chosen elective courses and their preferences towards lecture times.

Answers to the questionnaire were transformed into appropriate formats which can be
used as inputs for the model. For the lecturers’ preference weights, for example, the most
preferred module was assigned a weight value of 4, the second most preferred module was
given a preference weighting of 3, the third favourite module was assigned a weight value
of 2, and the remaining modules the lecturer can teach were given a preference weighting
of 1. More detailed information on the collected data and the values of the parameters
employed in the model implementation may be found in [2].

4.2 Model implementation

To ensure that the timetables created by the proposed model adhere to the rules and
restrictions pertaining the relevant honours programme, additional information related to
the model implementation are given in this section.

The following modules can only be scheduled during Semester 1: Biostatistics, Decision
Modelling, Introduction to Stochastic Programming, Introduction to Bayesian Theory,
Likelihood, Multivariate Analysis, Operations Research A, and Portfolio Theory. Modules
that must be allocated to the second semester timetable include Advanced Probability
Theory, Applied Spatial Data Analysis, Analytics, Bayesian Analysis, Operations Research
B, and Time Series Analysis. The Matrix Methods and Statistical Computing modules
form part of the pre-block modules and take place two-week before Semester 1 starts.
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Figure 2: A sample of questions in the questionnaire sent out to lecturers.

Figure 3: A sample of questions in the questionnaire sent out to students.



Honours course timetabling 185

In addition, the generated timetable must accommodate the strategic thinking courses
taken by the Business Science students. Typically these courses run from 11am to 1pm
on Mondays and Fridays. Additionally, the department hosts a weekly seminar from 1pm
to 2pm on Mondays, which all students are required to attend. To allow for thesis work,
no classes are scheduled on Fridays. These restrictions are embedded in the model in the
form of preference weightings which are set to be equal to zero to ensure that no classes are
scheduled in these timeslots. Finally, there are two internal venues with class capacities
of 18 and 28, respectively. In case no internal venue is available or cannot accommodate
the class size, an external venue is booked through the venues department at UCT.

The model was coded in R using RStudio 2022.07.1. The model was executed on an
Intel(R) Core(TM) i5-4300U, CPU running at 2.50 GHz with 4 GB RAM in the Windows
10 Home operating system.

5 Results

The results returned by the model described in Section 3 are presented in this section.
Discussion and validation of the results follow in the next section.

5.1 Phase 1 model results

The lecturer allocation returned by the Phase 1 model is shown in Table 2. This solution
represents the optimal allocation of lecturers to modules based on their preference rankings
while adhering to their required range of teaching hours for the year and the maximum
number of classes that they can teach per module. It also illustrates the split between the
number of classes each lecturer teaches per module. As can be seen from Table 2, the split
is mostly even which places a fair workload balance for the majority of the lecturers per
module. The exception to this is the analytics course which is made up of three sections,
each comprising of six classes.

Module (acronyms) Lecturers teaching (classes in hours)

Advanced Probability Theory (APT) Lecturer 12 (12)
Applied Spatial Data Analysis ASDA) Lecturer 2 (12) and Lecturer 13 (12)
Analytics (AN) Lecturer 4 (6) and Lecturer 8 (12)
Bayesian Analysis (Bayes) Lecturer 7 (12)
Biostatistics (Bio) Lecturer 9 (6) and Lecturer 14 (6)
Decision Modelling (DM) Lecturer 2 (12)
Introduction to Stochastic Programming (ISP) Lecturer 4 (6)
Introduction to Bayesian Theory (ITB) Lecturer 3 (6)
Likelihood (LH) Lecturer 2 (6)
Matrix Methods (MM) Lecturer 17 (6)
Multivariate Analysis (MV) Lecturer 6 (6) and Lecturer 8 (6)
Operations Research A (OR A) Lecturer 1 (6) and Lecturer 11 (6)
Operations Research B (OR B) Lecturer 1 (6) and Lecturer 10 (6)
Portfolio Theory (PT) Lecturer 15 (24)
Statistical Computing (SC) Lecturer 5 (4) and Lecturer 16 (4)
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Time Series Analysis (TS) Lecturer 13 (12)

Table 2: Lecturer allocation returned by the Phase 1 model.

The result displayed in Table 3 indicates that 76% of lecturers were allocated to their
most preferred modules. Since Lecturer 5 did not indicate any preferences to any modules,
removing his allocation from the result increases the percentage of allocation of lecturers
to their most preferred module to 81%. It is noteworthy that the allocated number of
hours or classes per lecturer were within the bounds of minimum and maximum hours
required. This shows that the solution is feasible and satisfies the hard constraints of the
model.

Lecturer Allocated modules 1st 2nd 3rd

Lecturer 1 OR A and OR B ✓ ✓
Lecturer 2 ASDA, DM and LH ✓ ✓ ✓
Lecturer 3 ITB ✓
Lecturer 4 AN and ISP ✓ ✓
Lecturer 5 SC
Lecturer 6 MV ✓
Lecturer 7 Bayes ✓
Lecturer 8 AN and MV ✓ ✓
Lecturer 9 Bio ✓
Lecturer 10 OR B ✓
Lecturer 11 OR A ✓
Lecturer 12 APT ✓
Lecturer 13 ASDA and TS ✓ ✓
Lecturer 14 Bio ✓
Lecturer 15 PT ✓
Lecturer 16 SC ✓
Lecturer 17 MM ✓

Table 3: An illustration of the modules allocation according to lecturers’ preferences. The
1st, 2nd, and 3rd columns indicate whether the allocated module was the 1st, 2nd, or 3rd
choice of the lecturer.

5.2 Phase 2 model results

The first two timetables generated from the Phase 2 model in respect of both Semesters
1 and 2 are shown in Figure 4. For the Semester 1 morning preference, no classes are
scheduled at 8am as this is the least preferred timeslot by the majority of the students.
Fridays are blocked out to allow students to have a dedicated day within the week to
work on their honours theses. This also avoids a potential clash for the analytics students
who need to attend a compulsory two-hour lecture at 11am on Fridays. In addition, the
timetable satisfies the restrictions and rules of the department. This includes the weekly
departmental seminar form 1pm to 2pm every Monday, during which no class should be
scheduled (see Figure 4a).
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(a) Semester 1 module allocation. (b) Semester 2 module allocation.

Figure 4: Timetables returned by the Phase 2 model with respect to morning preference
module allocations for both semesters.

Substantial shifts are noticed in the timetabling solutions for the afternoon preference for
both semesters, as depicted in Figure 5. The majority of the modules are scheduled from
12pm according the students’ preferences. The timetables also adhere to the constraints
and are feasible.

(a) Semester 1 module allocation. (b) Semester 2 module allocation.

Figure 5: Timetables returned by the Phase 2 model with respect to afternoon preference
module allocations for both semesters.

5.3 Phase 3 model results

Table 4 provides an indication of which modules require bookings of external venues based
on the solutions obtained from Phase 1 and Phase 2 models. The result indicates that 57%
of the modules were assigned to internal venues, which leaves less than half of the modules
requiring external venues bookings. This solution suggests a relatively low administrative
workload which is desirable.
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Module Class Size Morning Preference Venue Afternoon Preference Venue

Bio 31 External venue External Venue
DM 21 Internal venue Internal venue
ISP 34 External venue External venue
ITB 33 External venue External venue
LH 13 Internal venue Internal venue
MV 46 External venue External venue
OR A 14 Internal venue Internal venue
PT 10 Internal venue Internal venue
APT 2 Internal venue Internal venue
ASDA 15 Internal venue Internal venue
AN 45 External venue External venue
Bayes 7 Internal venue Internal venue
OR B 47 External venue External venue
TS 15 Internal venue Internal venue

Table 4: Venue allocation returned by the Phase 3 model.

6 Discussion

A comparison between the timetables of Section 5 and the actual 2022 timetables for both
semesters reveals that the actual timetables violate some constraints and rules of the hon-
ours programme and the department. In the actual timetable, for example, two clashes
are spotted with respect to Mondays and Fridays blocked out slots for Analytics students.
These are highlighted in gray on the timetable in Figure 7b. This situation is undesir-
able, hence the alternative timetable obtained from the proposed model is more suitable
(see Figure 7a). Moreover, the actual Semester 1 timetable violates the consecutiveness
constraint by having two modules scheduled consecutively without breaks (see Figure 6b).
The Semester 1 timetable returned by the model shown in Figure 6a thus outperforms the
latter timetable and would be more suitable.

(a) Timetable generated by the model. (b) Current timetable drawn manually.

Figure 6: Comparison between the timetable generated by the model and the actual
timetable for Semester 1.
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(a) Timetable generated by the model. (b) Current timetable drawn manually.

Figure 7: Comparison between the timetable generated by the model and the actual
timetable for Semester 2.

The results discussed above were validated by surveying the students as well as the honours
course conveners on which timetable they prefer. The results obtained from the student
surveys indicate a preference on the timetables returned by the model (84.2% of the par-
ticipants). The validation received from the course convenors was also in favour of the
timetables obtained from the proposed model. The course convenors particularly high-
lighted the flexibility and practical use of the proposed model as it allows the department
to easily amend the allocation in each phase should the timetables need to be adjusted.

Different scenarios were also experimented with and a sensitivity analysis was conducted
to test the flexibility and the effectiveness of the proposed model. A two-phase inte-
ger programming approach was designed and compared to the results returned by the
three-phase model. In the two-phase model, the lecturer allocation and module allocation
were simultaneously modelled in one phase, followed by the venue allocation phase. The
comparative results indicated that the timetables returned by the two-phases violate the
consecutiveness constraints by having no breaks between the scheduled modules. How-
ever, the two-phase approach achieved higher solution quality with respect to the module
allocation or creation of the timetable compared to the three-phase model (see Table 5).
The two models performed at the same level of optimality for the venue allocation, whilst
the three-phase approach performed more optimally in terms of run time (see Table 6).
Interested readers are referred to the work of Thompson et al. [2] for more detailed results
and formulation of the two-phase model.

Four further scenarios were considered. The first two scenarios consisted of incorporating
a sabbatical leave in both semesters, respectively. In this case, it was assumed that the
lecturer with the highest lecture load goes on sabbatical leave and the model was adjusted
to reflect this change. The third scenario imposed an additional restriction to the model by
ensuring that a specific lecturer-module allocation is achieved. For example, if Lecturer 6
must be allocated to teach Biostatistic, for a particular reason, then this constraint must
be enforced in the model and so does the resulting timetable. The last scenario takes into
account a specific lecturer preference in terms of having his or her classes scheduled on
his or her preferred timeslots. An example of the results returned by these scenarios in
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Phase 1 Phase 2

Preferences
OFV -
Lecturer

OFV -
Timetable

Time
OFV -
Semester 1

OFV -
Semester 2

Time
Overall Time
(in seconds)

S1 Morning
S2 Morning

634 460 56.53 48 46 1.37 57.9

S1 Afternoon
S2 Morning

634 446 216.75 48 46 0.58 217.33

S1 Afternoon
S2 Afternoon

634 427 148.85 48 46 0.54 149.39

S1 Morning
S2 Afternoon

634 441 19.79 48 46 0.56 20.35

Table 5: An illustration of the objective function value returned by the two-phase approach
based on morning and afternoon preferences for both semesters. The column “Time”
indicates the run time to produce the timetables in seconds.

Phase 1 Phase 2 Phase 3

Preferences OFV Time OFV Time OFV Time
Overall Time
(in seconds)

Morning S1 684 0.13 112 55.13 48 0.49 55.75
Afternoon S1 684 0.13 119 1.34 48 0.19 1.66
Morning S2 684 0.13 107 2.22 46 0.08 2.43
Afternoon S2 684 0.13 110 0.25 46 0.08 0.46

Table 6: The objective function value (OFV) returned by the three-phase approach based
on morning and afternoon preferences for both semesters (S1 and S2). The column “Time”
indicates the run time to produce the timetables.
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comparison to the results obtained from the original model is summarized in Table 7.

Phase 1 Phase 2 Phase 3

Scenario OFV Time OFV Time OFV Time
Overall Time
(in seconds)

S1 112 55.13 48 0.49Chosen Model - Morning
Preferences S2

684 0.13
107 2.22 46 0.08

58.05

S1 112 29.76 48 1.11Lecturer 2 on Sabbatical
in Semester 1 S2

612 1.18
107 7.01 46 0.15

39.21

S1 112 117.30 48 1.38Lecturer 8 on Sabbatical
in Semester 2 S2

672 0.35
107 5.38 46 0.19

124.60

S1 112 108.65 48 1.16Allocating Lecturer 6 to
Bio S2

714 0.40
107 4.40 46 0.21

114.82

Fixing PT Timetable S1 100 75.93 48 0.39 76.32

Table 7: Examples of results returned by the four scenarios in terms of the objective
function value and run time in comparison to those of the original model.

The results shown in Table 7 indicate that the model is sensitive to changes in lecturer
availability, which is to be expected. Furthermore, the model is not sensitive to any re-
strictions in terms of enforcing a specific lecturer-module allocation (the objective function
values returned by the Phase 2 models of all scenarios stay the same). No changes in the
objective function value with respect to the venue allocation model is also perceived for all
four scenarios. This indicates that the Phase 3 model is relatively insensitive to changes in
the module allocation. Detailed results and further information related to this sensitivity
analysis may be found in [2].

7 Conclusion

This work tackles the challenges faced by the Department of Statistical Sciences at UCT
when creating a feasible timetable for its honours programme. A hierarchical integer
programming approach was proposed to model the problem, broken down into three phases
involving lecturer allocation, module allocation, and venue allocation. The model was
solved using the Rglpk package in RStudio.

The approach focused on addressing three key characteristics of a desirable timetable. The
first characteristic consists of assigning lecturers to their most preferred module, which
was achieved by the proposed model with a 81% preference rate. The second characteristic
concerns students’ preferences in terms of when to schedule modules over the scheduling
horizon. Multiple timetables were created based on morning or afternoon preferences of
which the students were ask to vote and choose the most desired timetable. The final
characteristic considered was to maximise the use of internal venues which was achieved
by assigning internal venues to all modules for which class capacity was not an issue.

The results were validated by students and the course convenors of which positive feedback
was received from both. A high percentage of students, 84.2%, preferred the timetable
obtained from the model to the current timetable. The programme convenors also com-
mented on the flexibility of the generated timetable and its potential use by the depart-
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ment. The fact that the model allows any adaptation or changes to the departmental
needs make it useful.

The next step for this research consists of making the model available to the department
via a user-friendly computerised decision support system tool. Such software would take
as inputs all parameters of the model and return as outputs the timetables. Further
research directions also includes adaptation of the proposed approach to model a broader
timetabling problem such as undergraduate course timetabling within the department and
across faculties.
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[9] Meĺıcio F, Calderia JP, Rosa A, Burke EK & Rudova H, 2006, THOR: a
tool for school timetabling, Proceedings of the 6th International Conference on the
Practice and Teaching of Automated Timetabling, Czech Republic, pp. 532–535.

[10] Oladejo NK, Abolarinwa A, Salawu SO, Bamiro OM, Lukman AF &
Bukari HI, 2019, Application of optimization principles in classroom allocation using
linear programming, International Journal of Mechanical Engineering and Technology,
10(1), pp. 874–885.



Honours course timetabling 193

[11] Oude V, Rudy A, Jansen EA, Hans EW & van Hillegersberg J, 2019, Prac-
tices in timetabling in higher education institutions: a systematic review, Annals of
Operations Research, 275(1), pp. 145–160.

[12] Perera MTM & Lanel GHJ, 2016, A model to optimize university course timetable
using graph coloring and integer linear programming, Journal of Mathematics, no
pages.

[13] Torres-Ovalle C, Camilo M, Jairo R, Quintero-Araújo C, Sarmiento-
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