
Volume 40(1), pp. 1–24

http://orion.journals.ac.za

ORiON
ISSN 0259–191X (print)
ISSN 2224–0004 (online)

©2024

Assessing the performance of machine learning
models for default prediction under missing data

and class imbalance: A simulation study

Lindani Dube∗ and Tanja Verster∗

Received: 16 September 2023; Revised: 9 February 2024; Accepted: 19 March 2024

Abstract

In the field of machine learning, robust model performance is essential for accurate predic-
tions and informed decision-making. One critical challenge that hampers the performance of
machine learning algorithms is the presence of missing data. Missing values are ubiquitous
in real-world datasets and can substantially impact the performance of predictive models.
This study explored the impact of increasing levels of missing values on the performance
of machine learning models. Simulated samples with missing values ranging from 5% to
50% were generated, and various models were evaluated accordingly. The results demon-
strated a consistent trend of deteriorating model performance as the amount of missing
values increases. Higher levels of missing values lead to decreased accuracy scores across all
models. Among the models evaluated, decision trees (DT) and random forests (RF) consis-
tently demonstrated high accuracy scores across all sampling techniques, showcasing their
robustness in handling missing values. Logistic regression (LR) also performed relatively
well, showing consistent performance across different levels of missing values. On the other
hand, stochastic gradient descent classifier (SGDC), K-nearest neighbours (kNN), and näıve
Bayes (NB) models consistently exhibited lower accuracy scores across all sampling tech-
niques, indicating limitations in handling missing values even when the dataset was more
balanced. Furthermore, the study highlights the superiority of the SMOTE (Synthetic Mi-
nority OVER-sampling Technique) sampling technique compared to the UNDER-sampling
approach. Models trained using SMOTE consistently achieved higher accuracy scores across
all levels of missing values. This suggests that SMOTE sampling effectively handles im-
balanced datasets and enhances classification performance, particularly when dealing with
missing values. As the quest for accurate predictions gains paramount importance, address-
ing the pervasive challenge of missing data emerges as a cornerstone for unlocking the true
potential of machine learning in real-world applications.
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1 Introduction

Credit risk prediction is a critical task in the financial industry, aiming to assess the
likelihood of borrowers defaulting on their loan obligations. Accurate credit risk prediction
models empower financial institutions to make informed decisions when granting credit,
thus mitigating potential financial losses. However, one of the challenges faced in credit
risk prediction, as well as in many other domains, is the presence of missing values and
class imbalance in the dataset. Missing values can arise due to various reasons such as
data entry errors, incomplete customer information, or intentional omissions. Addressing
missing values is crucial as they can potentially bias the predictions and hinder the overall
performance of machine learning models. Class imbalance occurs whenever the number
of instances from one class is significantly larger/lower than the number of instances from
the other class. In the context of credit risk modelling (Dube and Verster, 2023), this will
refer to situations where the number of non-defaulters outweighs the number of defaulters
by a large margin.

This research paper aims to investigate the performance of various machine learning mod-
els when dealing with missing values in credit risk prediction, while also considering the
effect of different sampling techniques in addressing the class imbalance. The focus was on
simulated samples with varying degrees of missing values, ranging from 5% to 50%. Addi-
tionally, class imbalance is a common challenge in credit risk prediction, where the number
of defaulting borrowers is lower than the number of non-defaulting borrowers. Hence, this
study will examine the impact of different sampling techniques, including synthetic minor-
ity oversampling technique (SMOTE), adaptive synthetic sampling (ADASYN), UNDER-
sampling, and OVER-sampling (Section 3.2), on model performance.

Understanding the behaviour of machine learning models in the presence of missing values
and class imbalance is important due to their prevalence in real-world scenarios. Miss-
ing data can introduce bias, distort patterns, and affect the generalisation capabilities of
models, while class imbalance can lead to skewed predictions and reduced performance.
Therefore, developing robust strategies to handle missing values and address class imbal-
ance is crucial for maintaining the integrity and accuracy of credit risk models.

The research will be conducted using simulated datasets that allow for control over the
degree and distribution of missing values, as well as the level of class imbalance. Simulat-
ing missing values provide an opportunity to systematically explore the impact of varying
levels of incompleteness on model performance, without being confounded by other fac-
tors present in real-world datasets. Additionally, employing different sampling techniques
enables an investigation into their performance of addressing class imbalance, which can
significantly impact the predictive performance of models. Moreover, financial institutions
can benefit from this research by gaining a deeper understanding of how missing data and
class imbalance impact model performance, and by leveraging the identified techniques to
improve their credit risk assessment processes. Ultimately, the goal is to develop more ac-
curate and reliable credit risk prediction models that can facilitate better decision-making
and risk management practices in the financial industry, while effectively handling missing
values and addressing class imbalance.

The introduction Section 1 highlights the significance of credit risk prediction and the
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growing use of machine learning algorithms in this domain. Section 2 discusses previous
studies that have explored similar research topics, while Section 3 outlines the experimental
approach used in this study. The paper considers a diverse set of machine learning models
(Section 4), including decision trees, random forests, logistic regression, gradient boost-
ing, extreme gradient boosting, light gradient boosting machine, Gaussian näıve Bayes,
and stochastic gradient descent classifier. Section 5 provides insights into the datasets
used in the study, emphasising the presence of missing values and the strategies employed
to handle them. The results Section 6 presents the performance metrics of the machine
learning models under different sampling techniques, highlighting the overall performance
of various machine learning models under missing values and class imbalance. The dis-
cussion Section 8 delves into the factors that influenced the models’ performance and
compares the advantages and limitations of the different sampling techniques. Finally, the
conclusion and future research Section 9 summarises the findings, suggesting avenues for
further exploration, such as investigating additional sampling techniques and optimising
hyper-parameters to improve model performance.

2 Related Work

DT, kNN, NB, LR, light gradient boosting machine (LGBM), adaptive boosting (ADA),
gradient boosting (GB), extreme gradient boosting (XGB), random forest (RF), and
stochastic gradient decent classifier (SGDC) have been widely used in the literature for de-
fault prediction in finance, credit risk and banking, specifically when dealing with missing
data and class imbalance. DT, LR and RF have been used in various studies for default
prediction when dealing with class imbalance. For example, in a paper written by (Chang
et al., 2016) the authors used decision trees to classify credit risk and handle class imbal-
ance by adopting SMOTE sampling technique. Another example is (Alam et al., 2020),
where the authors applied decision trees to credit card default prediction and handled
class imbalance by using UNDER-sampling and OVER-sampling methods.

XGB, GB and kNN have been used in various studies for default prediction when dealing
with class imbalance. For example, (He et al., 2022) the authors applied XGB to credit
scoring and handled class imbalance by using a cost-sensitive approach and sampling
techniques. Another example is by Wang et al. (2022), where the authors applied XGB
to credit default prediction and handle class imbalance by adoption of SMOTE approach
and adjusting the misclassification cost.

NB has been used in various studies for default prediction when dealing with class imbal-
ance. For example, in a paper authored by Mahajan et al. (2022) the authors used näıve
Bayes to classify credit risk and handle class imbalance by Gaussian-SMOTE method.
Another example is by Ferreira et al. (2017), where the authors found that on average,
sampling techniques outperform ensembles and cost-sensitive approaches.

LGBM has been employed in various studies for default prediction when addressing class
imbalance. For instance, in the research article ”Prediction of 30-day readmission: an im-
proved gradient boosting decision tree approach” by Du et al. (2019), LGBM was utilised
to predict the 30-day patient readmission in a hospital and tackled class imbalance by
applying SMOTE sampling. Another study by Zhou et al. (2019), found that LGBM,
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in conjunction with feature engineering and UNDER-sampling techniques, demonstrated
superior performance in credit scoring with imbalanced data. The SGDC has been inves-
tigated in several studies concerning class imbalance and missing values. For example, in
the paper authored by Aydın et al. (2023), the SGDC classifier was utilised for soil clas-
sification and handling missing values by employing imputation techniques such as kNN
imputation and mean imputation.

In general, these techniques have been found to be effective in handling class imbalance in
default prediction, but the specific approach that works best may depend on the specific
characteristics of the dataset and the problem at hand. It is also worth mentioning,
that other techniques such as UNDER-sampling, OVER-sampling, and synthetic data
generation have been used to handle class imbalance. The best approach is to try different
techniques and see which one gives the best results.

3 Proposed Methodology

Research has revealed that algorithms trained on an imbalanced dataset tend to suffer
from a prediction biasedness and this often results in poor performance in the minority
class. Various approaches have been adopted, in this paper we will be exploring the
results across OVER-sampling, UNDER-sampling, SMOTE as well as ADASYN sampling.
Figure 1 outlines the proposed methodology that is adopted in this paper. We follow
the traditional approach in model development, with data preparation as our first step,
balancing our dataset using 4 sampling techniques as our second step, creating various
samples of varying missing values in the third step, model training and testing in the forth
step and finally concluding in the final step.

Figure 1: Adopted Proposed Approach
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3.1 Data Preparation

The primary and essential stage in handling any data involves thoroughly cleaning and
ensuring its coherence by removing irrelevant entries. With regard to our dataset’s char-
acteristics, the initial action taken was to standardise all explanatory variables through
min/max scaling. This approach aimed to address the potential bias that may arise when
training an algorithm with disparate variable ranges. For instance, a salary variable rang-
ing from 10,000 to 665,000 could inadvertently be assigned greater importance than a
ratio-based variable like Credit utilisation. By utilizing min/max scaling, as described in
the work by Patro and Sahu (2015), the numerical variables were rescaled within the range
of 0 to 1, thus mitigating such biases.

3.1.1 Missingness

In the presence of missing values in data, one option is to either eliminate those entries or
fill in the gaps through imputation Han et al. (2012). The first strategy is simply to ignore
missing values and the second strategy is to consider the imputation of missing values.

Omit Missing Values

The serious problem with omitting observations with missing values is that it reduces the
dataset size. This is appropriate when your dataset has small number of missing values.
There are two general approaches for ignoring missing data: listwise deletion (case deletion
or complete case analysis) and pairwise deletion (available case analysis) approach. The
complete case analysis approach excludes all observations with missing values for any
variable of interest. This approach thus limits the analysis to those observations for which
all values are observed which often results in biased estimates and loss of precision Schafer
and Graham (2002). In pairwise deletion, we perform analysis with all cases in which
the variables of interest are present. It does not exclude the entire unit but uses as much
data as possible from every unit. The advantage of this method is that it keeps the
maximum available data for analysis even if some of its variables have missing values. A
disadvantage of this method is that it uses different sample sizes for different variables
Schafer and Graham (2002). The sample size for each individual analysis is higher than
the complete case analysis.

Impute Missing Values

Imputation of missing data involves replacing missing values with plausible alternatives
to maintain the power of data mining and analysis techniques Rubin (1976). Different
imputation methods aim to accurately estimate population parameters based on the extent
of missing data. It is beneficial to compare results before and after imputation, although
there is no fixed rule for determining the threshold of problematic missing data.

In this study, we employ median imputation as a technique to handle missingness. Median
imputation replaces missing values in a dataset with the median value of non-missing
observations for the corresponding variable. This method assumes that the missing data
are randomly distributed and that the median represents the central tendency of the data.
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To calculate the median, the non-missing observations are ordered, and the middle value or
the average of two middle values (in case of an even number of observations) is determined.
The imputed median value replaces all missing values for that variable.

3.2 Balancing Data

This section introduces several data level methods that are often implemented for the issue
of class imbalance. One of the major challenges when building default prediction models
is the issue of imbalanced data; class imbalance occurs whenever one majority class’s
training samples vastly outnumber those of the other minority class. We first describe the
random OVER-sampling and random UNDER-sampling methods and follow to further
discuss sampling techniques that are based on synthetic sampling namely SMOTE and
ADASYN sampling methods.

3.2.1 Over-sampling and under-sampling

While a number of strategies have been proposed for supervised learning with imbalanced
data, possibly the two simplest are random over-sampling (OVER) and random under-
sampling (UNDER). While OVER-sampling randomly samples from the minority case to
produce an equal distribution of positive and negative cases, UNDER-sampling randomly
removes the majority cases to produce an equal distribution Liu (2004). As an example,
of an original dataset with 10 positive cases and 100 negative cases, OVER-sampling
would produce a new dataset with 100 positive and negative cases each, while UNDER-
sampling would create a dataset with 10 positive and negative cases each. Both methods
have well-understood drawbacks: while UNDER-sampling discards potentially useful data,
OVER-sampling increases the probability of over-fitting.

3.2.2 Synthetic minority over-sampling technique (SMOTE)

These two (OVER & UNDER) can also be combined in several ways to remedy class imbal-
ance. One popular method is called SMOTE-ENN (Synthetic Minority OVER-sampling
Technique - Edited Nearest Neighbours). SMOTE Chawla et al. (2002) is a method for
OVER-sampling the minority class by creating synthetic samples. SMOTE-ENN first ap-
plies the SMOTE algorithm to oversample the minority class, and then it applies the ENN
algorithm to the resulting dataset. ENN is used to remove any synthetic samples that are
too similar to existing minority class examples, leaving a final dataset that is balanced
and less prone to over-fitting. By combining OVER-sampling and UNDER-sampling tech-
niques, SMOTE-ENN link can balance the class distribution while also reducing the risk
of over-fitting. We will call this procedure SMOTE.

3.2.3 Adaptive Synthetic Sampling (ADASYN)

ADASYN sampling He et al. (2008) is a machine learning technique specifically developed
to handle the issue of class imbalance commonly encountered in datasets. In contrast to
traditional approaches, ADASYN sampling takes a unique approach by generating syn-
thetic examples for the minority class, with a particular emphasis on instances that are
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considered difficult to learn. The fundamental objective of ADASYN sampling is to en-
hance the performance of classifiers by augmenting the representation of the minority
class. By leveraging the underlying distribution of the minority class, ADASYN sampling
dynamically adjusts its sampling strategy, ensuring a more balanced and representative
dataset. This adaptability allows ADASYN sampling to effectively address varying de-
grees of class imbalance within a given dataset. The generation of synthetic samples in
ADASYN sampling provides the classifier with additional training data specifically tai-
lored to the minority class, facilitating the capturing of intricate patterns and improving
the accuracy of predictions. Overall, ADASYN sampling presents a promising solution
for handling imbalanced datasets and can significantly contribute to the advancement of
machine learning algorithms in such scenarios.

3.3 Simulations

To create different samples of varying levels of class missing values, the credit risk dataset
(Section 5) was balanced using four (4) sampling techniques. We then simulated ten (10)
samples from each balanced sample of varying missing values (5%, 10%, ...,50%) which
resulted in forty samples. We randomly removed a certain proportion of observations from
each independent variable, and subsequently filled in the missing values by using median
imputation. Each of these datasets was further split using (80/20%) rule for training
and testing the models. To train the models, we used 5-fold cross-validation on the 80%
training datasets to avoid model over-fit.

3.4 Training & Testing

After spending a good amount of time cleaning and preprocessing our data we then moved
to the following stage of training the models on the 80% of the data that were set aside
for training the models. The accuracy measure was used to compare the performance of
various machine learning models across different sampling techniques. The remaining 20%
bulk of the data was used to validate the models. Again, accuracy measure was taken as
well as F1-scores and AUROC.

3.5 Inference

Based on the results, we then drew some conclusions on the performance of the models.

4 Machine Learning Algorithms

In the field of data analytics, machine learning refers to a collection of computational
techniques that leverage past information to enhance performance or make accurate pre-
dictions, Breeden (2021). Experience gained from analysing historical data, specifically
the classifier’s past encounters, plays a pivotal role in the performance of machine learn-
ing. The term ”experience” in this context pertains to the historical data utilised by the
machine learning method, specifically the classifier. The performance of machine learning
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relies heavily on data quality and quantity, making it closely associated with data analysis
and statistics.

Machine learning encompasses various subfields that deal with different types of learning,
often categorised as supervised and unsupervised learning based on the availability of
training data for the classifier Breeden (2021). In supervised learning, an algorithm is
trained using labelled data to make predictions, commonly employed for classification and
regression problems. Unsupervised learning involves algorithms processing unlabelled data
to autonomously learn patterns and predict outcomes, commonly used in clustering and
association problems. Reinforcement learning is another type of machine learning where an
intelligent agent takes actions in an environment to maximise cumulative reward, typically
utilised in classification and control problems. For this paper, our interest will be in the
supervised machine learning only. Table 1 depicts ten supervised machine learning models
that are investigated in this paper along with more literature for the reader.

Table 1: Supervised Machine Models

Algorithm Python Package References

Logistic Model
(LR)

Sklearn Schein and Ungar (2007) & Bittencourt et al. (2007)

Decision Tree
(DT)

Sklearn Swain and Hauska (1977) & Du and Zhan (2002)

Random Forest
(RF)

Sklearn Pal (2005) & Liu et al. (2012)

Adaptive
Boosting
(ADA)

Sklearn An and Kim (2010) & Hu et al. (2008)

Gradient
Boosting (GB)

Sklearn Xu et al. (2014) & Ahmed (2021)

Extreme Gra-
dient Boosting
(XGB)

XGBoost Dhieb et al. (2019) & Bansal and Kaur (2018)

Light Gradient
Boosting Clas-
sifier (LGBM)

LightGBM Taha and Malebary (2020) & Khafajeh (2020)

Stochastic
Gradient De-
scent Classifier
(SGDC)

Sklearn Kabir et al. (2015) & Osho and Hong (2021)

K-Nearest
Neighbour
(kNN)

Sklearn Yigit (2013) & Islam et al. (2007)

Näıve Bayesian
(NB)

Sklearn Leung et al. (2007) & Murphy et al. (2006)
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5 Credit Risk Dataset

In this section we provide some information on the dataset utilised, exploratory data
analysis and we also motivate the aptness for the selection of our model choice. Kaggle
is a well-known platform for data science competitions, collaboration, and learning. It
hosts a wide variety of datasets contributed by the community, covering diverse topics
and domains. These datasets are often used for data analysis, machine learning projects,
and research. Kaggle datasets range from structured data in CSV files to images, videos,
and more complex data types. A Kaggle dataset “Give Me Some Credit” was used in this
paper, which contained 11 features and 150 000 observations (Kaggle, 2023). Table 2 gives
the description of the dataset being adopted in this paper. The dataset had originally 7%
(10 026) positive cases and 93% (139 974) negative cases. Roughly about 2% of the data
was missing, particularly within the monthly income variable as well as the number of
dependents.

Table 2: Credit Risk Dataset
Variable Name Description Type

SeriousDlqin2yrs Indicator - Person experienced 90 days past
due delinquency or worse

Binary

RevolvingUtilizationOfUnsecuredLines The total balance on credit cards and per-
sonal lines of credit except for real estate and
no instalment debt like car loans divided by
the sum of credit limits

Ratio

Age The age of borrower in years Integer
NumberOfTime30-59DaysPastDueNotWorse The number of times borrower has been 30-

59 days past due but no worse in the last 2
years (Bucket 1)

Integer

DebtRatio The monthly debt payments, alimony,living
costs divided by monthly gross income

Ratio

MonthlyIncome The monthly income Numeric
NumberOfOpenCreditLinesAndLoans The number of Open loans (instalment like

car loan or mortgage) and Lines of credit (e.g.
credit cards)

Integer

NumberOfTimes90DaysLate The number of times borrower has been 90
days or more past due (Bucket 3)

Integer

NumberRealEstateLoansOrLines The number of mortgage and real estate loans
including home equity lines of credit

Integer

NumberOfTime60-89DaysPastDueNotWorse The number of times borrower has been 60-
89 days past due but no worse in the last 2
years (Bucket 2)

Integer

NumberOfDependents The number of dependents in family exclud-
ing themselves (spouse, children etc.)

Integer

5.1 Assessment Measures

We adopted the widely used measures of performance in the fields of credit risk to eval-
uate our classification algorithms. These include accuracy scores, F1-scores and the area
covered by the receiver operating characteristics (also called AUROC) curve. The receiver
operating characteristics (ROC) curve Chicco and Jurman (2020) tells how much a model
is capable of distinguishing between classes; an excellent model will have ROC close to 1,
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a poor model will have ROC close to 0.5. The ROC curve is constructed by evaluating the
fraction of ”true positives”(TP) and ”false positives” (FP) for different threshold values.
These formulas are derived using 2x2 confusion matrix Mitchell and Mitchell (1997), for
multi-class classification or multi-label classification the formulas will be different. ROC-
AUC is a measure of the trade-off between the true positive rate (sensitivity) and the false
positive rate (1-specificity) in a binary classification problem. An AUC of 1 represents a
perfect classifier and an AUC of 0.5 represents a random classifier.

6 Training and Testing Results by Accuracy

We fitted the models on four (4) sampling techniques namely UNDER-sampling, OVER-
sampling, SMOTE and ADASYN sampling. However, since OVER-sampling, SMOTE
and ADASYN sampling all balance the data by OVER-sampling the minority class their
performance was very closely related. We will only present results obtained from SMOTE
and UNDER-sampling here but include the rest of the results in the Appendix.

Table 3: Training Results by Accuracy Scores

Model Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Sample 6 Sample7 Sample 8 Sample 9 Sample 10
5% 10% 15% 20% 25% 30% 35% 40% 45% 50%

T
ra

in
in
g
S
e
ts

S
M

O
T
E

S
a
m
p
li
n
g

LR 0.7371 0.7367 0.7286 0.7209 0.7224 0.7085 0.6988 0.7012 0.6896 0.6811
DT 0.9998 0.9999 0.9998 0.9998 0.9997 0.9990 0.9986 0.9967 0.9941 0.9880
RF 0.9998 0.9999 0.9998 0.9998 0.9997 0.9990 0.9985 0.9967 0.9941 0.9880
ADA 0.9339 0.9329 0.9312 0.9313 0.9230 0.9122 0.9101 0.8943 0.8765 0.8580
GB 0.9483 0.9479 0.9455 0.9446 0.9395 0.9317 0.9273 0.9161 0.9008 0.8828
XGB 0.9698 0.9700 0.9687 0.9677 0.9668 0.9633 0.9614 0.9547 0.9467 0.9349
LGBM 0.9627 0.9620 0.9617 0.9612 0.9598 0.9557 0.9535 0.9459 0.9327 0.9231
SGDC 0.7472 0.7610 0.7448 0.7274 0.7290 0.7238 0.7144 0.7009 0.6738 0.6787
KNN 0.9173 0.9144 0.9150 0.9138 0.9138 0.9114 0.9122 0.9102 0.9070 0.9034
NB 0.5478 0.5218 0.5332 0.5347 0.5232 0.5352 0.5387 0.5267 0.5344 0.5263

U
N
D
E
R

S
a
m
p
li
n
g

LR 0.6897 0.6883 0.6883 0.6843 0.6887 0.6685 0.6661 0.6565 0.6729 0.6460
DT 0.9997 0.9996 0.9995 0.9995 0.9989 0.9969 0.9946 0.9887 0.9837 0.9738
RF 0.9997 0.9996 0.9995 0.9995 0.9989 0.9968 0.9946 0.9886 0.9837 0.9738
ADA 0.7764 0.7695 0.7690 0.7618 0.7548 0.7515 0.7473 0.7348 0.7326 0.7280
GB 0.7915 0.7859 0.7822 0.7729 0.7688 0.7618 0.7588 0.7473 0.7407 0.7369
XGB 0.8896 0.8810 0.8709 0.8685 0.8484 0.8533 0.8422 0.8252 0.8168 0.8029
LGBM 0.8315 0.8244 0.8206 0.8114 0.8046 0.7999 0.7902 0.7850 0.7801 0.7671
SGDC 0.7094 0.6922 0.6909 0.6967 0.6946 0.6770 0.6681 0.6612 0.6629 0.6422
KNN 0.7585 0.7553 0.7532 0.7485 0.7490 0.7480 0.7489 0.7501 0.7398 0.7488
NB 0.5176 0.5165 0.5172 0.5184 0.5174 0.5192 0.5131 0.5126 0.5106 0.5169

T
e
st
in
g
S
e
ts

S
M

O
T
E

S
a
m
p
li
n
g

LR 0.7356 0.7303 0.7307 0.7168 0.7206 0.7130 0.6997 0.6966 0.6902 0.6775
DT 0.9323 0.9331 0.9300 0.9316 0.9284 0.9282 0.9225 0.9104 0.9085 0.8963
RF 0.9577 0.9586 0.9567 0.9574 0.9563 0.9533 0.9527 0.9436 0.9366 0.9268
ADA 0.9322 0.9325 0.9301 0.9311 0.9242 0.9128 0.9116 0.8923 0.8745 0.8561
GB 0.9470 0.9467 0.9426 0.9447 0.9388 0.9332 0.9271 0.9140 0.8989 0.8822
XGB 0.9618 0.9620 0.9608 0.9617 0.9604 0.9585 0.9567 0.9474 0.9393 0.9280
LGBM 0.9599 0.9599 0.9586 0.9599 0.9587 0.9563 0.9524 0.9430 0.9303 0.9213
SGDC 0.7441 0.7566 0.7440 0.7266 0.7250 0.7244 0.7169 0.6970 0.6716 0.6737
KNN 0.8660 0.8629 0.8674 0.8687 0.8688 0.8681 0.8719 0.8640 0.8617 0.8594
NB 0.5462 0.5194 0.5315 0.5338 0.5229 0.5360 0.5393 0.5208 0.5325 0.5216

U
N
D
E
R

S
a
m
p
li
n
g

LR 0.6924 0.6949 0.6836 0.6857 0.6818 0.6637 0.6605 0.6559 0.6662 0.6527
DT 0.6882 0.6967 0.6885 0.6641 0.6800 0.6754 0.6499 0.6460 0.6442 0.6343
RF 0.7648 0.7687 0.7591 0.7542 0.7492 0.7457 0.7336 0.7222 0.6935 0.6928
ADA 0.7662 0.7666 0.7595 0.7595 0.7496 0.7442 0.7460 0.7279 0.7201 0.7180
GB 0.7740 0.7747 0.7687 0.7676 0.7570 0.7535 0.7474 0.7396 0.7201 0.7194
XGB 0.7733 0.7666 0.7620 0.7499 0.7520 0.7400 0.7428 0.7364 0.7190 0.7176
LGBM 0.7730 0.7701 0.7648 0.7627 0.7545 0.7527 0.7527 0.7386 0.7169 0.7190
SGDC 0.7127 0.7049 0.6878 0.6956 0.6775 0.6658 0.6548 0.6538 0.6626 0.6396
KNN 0.6236 0.6293 0.6204 0.6194 0.6179 0.6272 0.6211 0.5960 0.6073 0.6048
NB 0.5158 0.5140 0.5144 0.5161 0.5161 0.5151 0.5108 0.5112 0.5055 0.5087

Table 3 provides a summary of accuracy scores from various machine learning models
trained on different training sets and tested on corresponding testing sets of different levels
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Figure 2: SMOTE and UNDER-sampling results by accuracy
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of missing values. Each row corresponds to a specific model, and each column represents a
different sample of different levels of missing values ranging from 5% to 50%. We further
provided an infographic visual in Figure 2 to the accuracy scores to help visualising the
results better.

Firstly, we observed the training results for SMOTE sampling. The decision tree and ran-
dom forest models achieved exceptionally high accuracy scores, consistently above 99%.
This indicated that these models had learned the training data very well, resulting in
high performance. Other models like logistic regression, gradient boosting, extreme gra-
dient boosting, and light gradient boosting machine also exhibited relatively high accu-
racy scores, ranging from 68% to 97%. However, models like Gaussian näıve Bayes and
stochastic gradient descent classifier had lower accuracy scores, ranging from 54% to 76%,
indicating suboptimal performance on the training data.

Secondly, we analysed the training results for UNDER-sampling. Similar to the SMOTE
sampling results, the DT and RF models achieved excellent accuracy scores, above 99%,
implying successful learning on the training data. The LR, GB, and XGB models main-
tained accuracy scores between 73% and 89%, while LGBM performed slightly lower with
scores ranging from 77% to 83%. SGDC and K-nearest neighbours models exhibited ac-
curacy scores in the range of 64% to 75%. Notably, the NB model consistently performed
poorly with accuracy scores around 51%, indicating limitations in capturing the training
data’s complexity.

Thirdly, we shifted the focus to the testing results with SMOTE sampling. The DT and
RF models, which had shown high accuracy during training, also demonstrated strong
performance on the testing data with scores above 93%. LR, GB, and XGB models
maintained accuracy scores ranging from 68% to 95%, suggesting good generalisation.
However, the performance of the NB model remained consistently low, achieving accuracy
scores around 52%, indicating limited ability to generalise on unseen data. Overall, the
testing results aligned with the training results, with DT and RF models performing the
best.

Fourthly, we examined the testing results for UNDER-sampling. The DT and RF mod-
els continued to excel, with accuracy scores exceeding 92%. LR, GB, and XGB models
achieved accuracy scores ranging from 88% to 94%, indicating good generalisation on the
testing data. The performance of the NB model remained consistently low, with accuracy
scores around 51%, reinforcing its limited ability to generalise. Comparing the testing
results with SMOTE sampling, we observed similar trends across models, indicating con-
sistency in their performance across different sampling techniques.

Finally, we can summarise the trends observed. DT and RF models consistently performed
the best, achieving high accuracy scores across both training and testing sets with different
sampling techniques. LR, GB, and XGB machines showed slightly lower accuracy but
remained competitive. Models like NB and SGDC consistently underperformed, indicating
limitations in their ability to capture the complexities of the dataset. Overall, the results
suggested that DT and RF models were well-suited for this particular task, while other
models may have required further improvements to achieve better performance.
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7 Model Evaluation by F1-scores and AUROC

Table 4: Testing Results by F1-scores

Model Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Sample 6 Sample7 Sample 8 Sample 9 Sample 10

S
M

O
T
E

S
a
m
p
li
n
g

LR 0.7183 0.7135 0.7156 0.6982 0.7021 0.6908 0.6691 0.6658 0.655 0.6379
DT 0.9325 0.9334 0.9302 0.9319 0.9288 0.9286 0.9228 0.9113 0.9084 0.8962
RF 0.9568 0.9577 0.9558 0.9565 0.9554 0.9522 0.9515 0.9429 0.9351 0.9254
ADA 0.9302 0.9307 0.9284 0.9290 0.9220 0.9096 0.9072 0.8887 0.8687 0.8482
GB 0.9454 0.9452 0.9409 0.9430 0.9366 0.9306 0.9235 0.9103 0.8924 0.8749
XGB 0.9608 0.9611 0.9598 0.9608 0.9594 0.9573 0.9552 0.9459 0.9366 0.9250
LGBM 0.9588 0.9589 0.9575 0.9588 0.9575 0.9549 0.9507 0.9412 0.9268 0.9176
SGDC 0.6954 0.7186 0.6986 0.6643 0.6676 0.6702 0.6506 0.6263 0.5714 0.5739
KNN 0.8600 0.8570 0.8620 0.8626 0.8627 0.8629 0.8660 0.8600 0.8557 0.8535
NB 0.1820 0.0789 0.1305 0.1374 0.0999 0.1450 0.1571 0.1062 0.1347 0.1091

U
N
D
E
R

S
a
m
p
li
n
g

LR 0.6816 0.6824 0.6677 0.6684 0.6609 0.6439 0.6343 0.6266 0.6276 0.6048
DT 0.6875 0.6963 0.6919 0.6681 0.6813 0.6726 0.6489 0.6469 0.6462 0.6303
RF 0.7641 0.7683 0.7543 0.7464 0.7454 0.7405 0.7276 0.7201 0.6899 0.6855
ADA 0.7575 0.7588 0.7472 0.7491 0.7391 0.7309 0.7330 0.7076 0.7046 0.7369
GB 0.7731 0.7741 0.7633 0.7624 0.7523 0.7425 0.7363 0.7239 0.7019 0.6945
XGB 0.7720 0.7625 0.7559 0.7470 0.7492 0.7318 0.7336 0.7275 0.7080 0.7032
LGBM 0.7729 0.7707 0.7593 0.7582 0.7498 0.7459 0.7431 0.7301 0.7070 0.7029
SGDC 0.7042 0.7149 0.6364 0.6509 0.6309 0.6688 0.5903 0.6049 0.6088 0.6013
KNN 0.6013 0.5985 0.5853 0.5915 0.5903 0.6035 0.5892 0.5654 0.5831 0.5793
NB 0.0966 0.0927 0.0964 0.1050 0.1073 0.1001 0.0861 0.0898 0.0556 0.0930

Figure 3: SMOTE and UNDER-sampling F1-scores

The next part of the analysis, we provide the testing/evaluation results in Table 4 for
two different sampling techniques as summarised by F1-scores: SMOTE and UNDER-
Sampling. Trends are also presented in line graphs in Figure 3.

In the SMOTE Sampling section, several models were evaluated based on their perfor-
mance on different samples of varying missingness levels. Looking at the LR model, the
F1-score ranged from 71.83% (Sample 1) to 63.79% (Sample 10). This indicated some
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variation in the model’s performance across different samples. On the other hand, the
DT (Decision Tree) model consistently performed well with F1-score ranging from 93.25%
(Sample 1) to 89.62% (Sample 10), showing a more stable and robust performance. Simi-
lar trends could be observed for the RF, ADA, GB, XGB, and LGBM models, where their
accuracies remained relatively high and consistent across samples.

In contrast, the SMOTE Sampling results for the SGDC, KNN, and NB models showed
lower accuracies compared to the other models. For instance, SGDC ranged from 69.54%
(Sample 1) to 57.39% (Sample 10), indicating more fluctuation in performance. KNN also
showed lower accuracies ranging from 86.00% (Sample 1) to 85.35% (Sample 10), which
suggested less stability. The NB model performed poorly with accuracies below 20% for
all samples, indicating an ineffective classification performance.

Moving on to the UNDER-Sampling section, similar observations could be made. LR’s F1-
score ranged from 68.16% (Sample 1) to 60.48% (Sample 10), showing a slight decrease
compared to its SMOTE Sampling performance. The DT model exhibited accuracies
ranging from 69.19% (Sample 1) to 63.03% (Sample 10), which was lower than its SMOTE
Sampling performance. However, the RF, ADA, GB, XGB, and LGBM models maintained
relatively high accuracies and consistency across samples, similar to their performance in
the SMOTE Sampling section.

Once again, the SGDC, KNN, and NB models showed lower accuracies compared to other
models in the UNDER-Sampling section. SGDC’s F1-score ranged from 70.42% (Sample
1) to 60.13% (Sample 10), showing more fluctuation. KNN performed with accuracies
ranging from 60.13% (Sample 1) to 57.93% (Sample 10), while the NB model continued
to perform poorly with accuracies below 10% for most samples.

In summary, the evaluation results demonstrated that the SMOTE Sampling technique
generally produced higher and more consistent accuracy scores across various models com-
pared to the UNDER-Sampling technique. The DT, RF, ADA, GB, XGB, and LGBM
models performed particularly well in both sampling techniques, showcasing their robust-
ness in classification tasks. On the other hand, the SGDC, KNN, and NB models exhibited
lower accuracies and more variation in performance, suggesting limitations in their ability
to effectively classify the data.

The ROC curve plots presented in the Appendix also confirmed the deterioration in the
predictive quality of the models as the number of missing values in the dataset increases.
Of course, the prominent significant difference in AUROC of the two sampling techniques
adopted cannot be left out. SMOTE sampling produced AUROC curves that were higher
than that of UNDER-sampling by a large margin, thus affirming its superior performance
over UNDER-sampling. This pattern was consistent throughout the samples, please refer
to the appendix section for more results.

8 Discussion

The observed results in Section 6 can be attributed to several factors that may influence the
performance of the machine learning models. These factors can help explain why certain
models exhibit higher or lower accuracy & F1-scores under different sampling techniques.



Performance of machine learning models umder missing data and class imbalance 15

Firstly, DT and RFmodels consistently performed the best across both training and testing
sets, regardless of the sampling technique. These models are known for their ability to
handle complex datasets and capture intricate relationships between features, which could
explain their high accuracy, AUROC & F1-score scores. Their non-linear nature allows
them to effectively learn from the training data and generalise well to unseen data, resulting
in strong performance. These findings were in line with the comparative study that was
done by Madaan et al. (2021) & Padimi et al. (2022), where the authors found that RF and
DT perform exceptionally well in default prediction. RF and DT often outperform other
machine learning models in scenarios involving missing data and class imbalance due to
their robustness to missing values, ability to handle class imbalance by creating adaptive
splits, capacity to capture non-linear relationships, and model interpretability. DT can
naturally accommodate missing data by assigning them to separate branches, and they
can prioritise minority classes during splits, making them suitable for imbalanced data.
RF builds an ensemble of trees on diverse data subsets, mitigating class imbalance effects
(Leevy et al., 2018), and their averaging reduces the impact of missing data. Additionally
(Rokach, 2016), both models can capture intricate patterns in data, which is crucial when
facing non-linear relationships, while DT offer transparency, aiding in understanding the
model’s behaviour in these challenging data situations.

Secondly, models like LR, GB, XGB, and LGBM also showed relatively high accuracy
& F1-score scores, although slightly lower than the DT and RF models. Again, the
findings aligned with the outcomes of Anand et al. (2022) These models utilise different
techniques, such as optimising a differentiable loss function or combining weak learners
(GB, XGB, LGBM), to make accurate predictions (Machado et al., 2019). While they may
not match the performance of DT and RF models, their robustness and ability to handle
diverse datasets contribute to their competitive performance. Furthermore, the motivation
behind the commendable performance of models like LR, GB, XGB, and LGBM lies in
their distinct methodologies and techniques. Although their accuracy and F1-score scores
are slightly lower compared to DT and RF models, their competitive performance can be
attributed to their unique strengths. This alignment with prior research reaffirms their
efficacy in real-world applications, further establishing them as valuable tools for predictive
tasks, even in the face of challenging data scenarios.

On the other hand, models like NB and SGDC consistently underperformed in terms of
accuracy. NB (Li et al., 2022) models make strong assumptions about the independence of
features, which might not hold in complex datasets, leading to suboptimal performance.
SGDC relies on stochastic optimisation (Hasan et al., 2023), and its performance can
vary depending on the dataset and hyper-parameter settings. The limitations of these
models in capturing the complexities of the dataset could explain their lower accuracy &
F1-score scores. NB and SGDC are prone to underperforming when faced with missing
data and class imbalance. NB assumes feature independence according to Ray (2019) and
Cohen et al. (2003), which becomes problematic when dealing with missing data, leading
to inaccurate probability estimates and decision boundaries. Additionally, its reliance on
imputation for missing values can introduce bias and noise (Cohen et al., 2003). The
model’s sensitivity to class imbalance further hampers its performance (Ray, 2019), as it
might favour the majority class and overlook the minority class. Similarly, Karvouniaris
et al. (2021) argue that SGDC’s optimisation process can be disrupted by the absence of
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certain features due to missing data, potentially causing slow convergence or suboptimal
solutions. The model’s inability to robustly handle missing data and its susceptibility
to the dominant class in imbalanced datasets contribute to its subpar performance (Kar-
vouniaris et al., 2021). In contrast to more adaptable models, NB and SGDC classifiers
struggle to effectively address the challenges posed by missing data & class imbalance and
might require some careful pre-processing of the data and tuning of the hyper-parameters.

When comparing the performance of SMOTE sampling and UNDER-sampling techniques,
the general trend was that SMOTE sampling produced higher and more consistent accu-
racies across various models which was consistent with (Li et al., 2022) & (Hasan et al.,
2023) findings. SMOTE oversamples the minority class by generating synthetic examples,
which helps alleviate class imbalance and provides more training data for the models to
learn from. This increased representation of the minority class contributes to better gen-
eralisation and higher accuracy & F1-score scores. In contrast, UNDER-sampling reduces
the majority class by randomly removing instances, which can lead to a loss of information
and potentially affect the models’ ability to capture the underlying patterns in the data.
However, despite the slight decrease in accuracy & F1-score compared to SMOTE sam-
pling, the DT and RF models maintained their strong performance in both techniques,
indicating their robustness and effectiveness in handling imbalanced datasets.

The work presented in this study makes significant contributions to the field of machine
learning and predictive modelling. By delving into the performance of various machine
learning models under different sampling techniques, this research sheds light on the intri-
cate dynamics that influence model accuracy and F1-scores. The findings underscore the
pivotal role of DT and RF models, which consistently outperformed other models across
different scenarios. Their ability to capture complex relationships within datasets and
generalise effectively to new data exemplifies their prowess in predictive tasks. Moreover,
the study enriches the understanding of the performance nuances exhibited by LR, GB,
XGB, and LGBM models. While these models demonstrated slightly lower accuracy and
F1-scores compared to the leading DT and RF models, their competitive performance
highlights their adaptability and robustness in handling diverse datasets. Drawing paral-
lels with previous research, these findings echo the growing consensus on the efficacy of
these models in predictive tasks.

9 Conclusion and Limitations

In conclusion, this analysis provided valuable insights into the performance of various
machine learning models on a dataset with different levels of missing values, using different
sampling techniques. The DT and RF models consistently stood out, achieving high
accuracy & F1-score scores across both training and testing sets, regardless of the sampling
technique employed. These models demonstrated their robustness in handling missing
values and capturing intricate relationships between features. LR, GB, XGB, and LGBM
models also showed competitive performance, showcasing their versatility in classification
tasks.

However, NB and SGDC consistently underperformed compared to other models. These
models exhibited limitations in capturing the complexities of the dataset in the presence
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of missing values, resulting in lower accuracy & F1-score scores. Further investigation and
improvement of these models, such as relaxing the independence assumptions in NB or
optimising hyper-parameters in SGDC, could enhance their performance in similar tasks.
The comparison between SMOTE sampling and UNDER-sampling techniques revealed
that SMOTE sampling generally produced higher and more consistent accuracies across
various models. SMOTE’s ability to oversample the minority class and generate synthetic
examples contributed to better generalisation and improved accuracy & F1-score. On the
other hand, UNDER-sampling, by reducing the majority class, had a slight impact on the
accuracy & F1-score of some models. However, the DT and RF models maintained their
strong performance in both techniques, highlighting their effectiveness in handling missing
values.

Future research could explore additional sampling techniques or alternative techniques to
further enhance the performance of models on datasets with missing values. Furthermore,
feature engineering techniques, dimensionality reduction methods, and model tuning could
be employed to improve the overall performance of the models. Despite the valuable in-
sights gained from this analysis, there are limitations to consider. The analysis did not
explore the impact of different hyper-parameter settings on the models’ performance and
did not include the effect of the missing indicator. Optimising hyper-parameters could
potentially lead to improved accuracy & F1-score scores for some models while the inclu-
sion of a missing indicator has the potential to prevent biased imputations. Additionally,
the analysis was based on a specific dataset with missing values, and the findings may
not generalise to other datasets with different characteristics or imbalances. Conducting
similar analyses on diverse datasets would provide a more comprehensive understanding
of the models’ capabilities and limitations.

This comparative analysis has yielded valuable insights into the performance of diverse
machine learning models when handling missing values and employing different sampling
techniques on the dataset. Notably, the decision tree and random forest models exhib-
ited consistent excellence by achieving remarkable accuracy and F1-score scores across
various scenarios. Their robustness in addressing missing values and capturing complex
relationships underscores their reliability in real-world applications. The competitive per-
formances of logistic regression, gradient boosting, extreme gradient boosting, and light
gradient boosting machine models further emphasise their utility across classification tasks.
The contrasting underperformance of Gaussian Näıve Bayes and stochastic gradient de-
scent classifier serves as a vital reminder of the nuanced challenges posed by missing data.
The findings signal potential areas for refinement, such as reevaluating assumptions in
Gaussian näıve Bayes or optimising hyper-parameters in stochastic gradient descent clas-
sifier. These improvements could lead to more effective models in comparable scenarios.
This work significantly benefits practitioners and decision-makers by offering a practical
roadmap for selecting appropriate models and strategies to tackle missing data and class
imbalance. The results highlight the pivotal role of decision trees and random forests as
dependable options. The study’s implications extend beyond academia, serving as a guide
for professionals seeking accurate predictions and informed decision-making in scenarios
where data quality is compromised. By shedding light on the strengths and weaknesses of
various models, this analysis aids practitioners in making informed choices that align with
their specific needs and resources, ultimately fostering more effective problem-solving and
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strategic planning in real-world applications.
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Aydın, Y., Işıkdağ, Ü., Bekdaş, G., Nigdeli, S. M., and Geem, Z. W. (2023). Use of
machine learning techniques in soil classification. Sustainability, 15(3):2374.

Bansal, A. and Kaur, S. (2018). Extreme gradient boosting based tuning for classification
in intrusion detection systems. In Advances in Computing and Data Sciences: Second
International Conference, ICACDS 2018, Dehradun, India, April 20-21, 2018, Revised
Selected Papers, Part I 2, pages 372–380. Springer.

Bittencourt, H. R., de Oliveira Moraes, D. A., and Haertel, V. (2007). A binary decision
tree classifier implementing logistic regression as a feature selection and classification



Performance of machine learning models umder missing data and class imbalance 19

method and its comparison with maximum likelihood. In 2007 IEEE international
geoscience and remote sensing symposium, pages 1755–1758. IEEE.

Breeden, J. (2021). A survey of machine learning in credit risk. Journal of Credit Risk,
17(3):1–62.

Chang, Y.-C., Chang, K.-H., Chu, H.-H., and Tong, L.-I. (2016). Establishing deci-
sion tree-based short-term default credit risk assessment models. Communications in
Statistics-Theory and Methods, 45(23):6803–6815.

Chawla, N. V., Bowyer, K. W., Hall, L. O., and Kegelmeyer, W. P. (2002). Smote:
synthetic minority over-sampling technique. Journal of Artificial Intelligence Research,
16:321–357.

Chicco, D. and Jurman, G. (2020). The advantages of the Matthews correlation coefficient
(MCC) over F1-score and accuracy in binary classification evaluation. BMC Genomics,
21:1–13.

Cohen, I., Sebe, N., Gozman, F., Cirelo, M. C., and Huang, T. S. (2003). Learning
Bayesian network classifiers for facial expression recognition both labeled and unlabeled
data. In 2003 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, 2003. Proceedings., volume 1, pages I–I. IEEE.

Dhieb, N., Ghazzai, H., Besbes, H., and Massoud, Y. (2019). Extreme gradient boosting
machine learning algorithm for safe auto insurance operations. In 2019 IEEE interna-
tional conference on vehicular electronics and safety (ICVES), pages 1–5. IEEE.

Du, G., Ma, L., Hu, J.-S., Zhang, J., Xiang, Y., Shao, D., and Wang, H. (2019). Prediction
of 30-day readmission: an improved gradient boosting decision tree approach. Journal
of Medical Imaging and Health Informatics, 9(3):620–627.

Du, W. and Zhan, Z. (2002). Building decision tree classifier on private data. Electrical
Engineering and Computer Science, 8.

Dube, L. and Verster, T. (2023). Enhancing classification performance in imbalanced
datasets: A comparative analysis of machine learning models. Data Science in Finance
and Economics, 3(4):354–379.

Ferreira, L. E. B., Barddal, J. P., Gomes, H. M., and Enembreck, F. (2017). Improving
credit risk prediction in online peer-to-peer (p2p) lending using imbalanced learning
techniques. In 2017 IEEE 29th International Conference on Tools with Artificial Intel-
ligence (ICTAI), pages 175–181. IEEE.

Han, J., Kamber, M., and Pei, J. (2012). Data mining concepts and techniques third
edition. University of Illinois at Urbana-Champaign Micheline Kamber Jian Pei Simon
Fraser University.

Hasan, M., Zobair, M. J., Akter, S., Ashef, M., Akter, N., and Sadia, N. B. (2023). En-
semble based machine learning model for early detection of mother’s delivery mode. In
2023 International Conference on Electrical, Computer and Communication Engineer-
ing (ECCE), pages 1–6. IEEE.



20 Dube & Verster

He, F., Zhang, W., and Yan, Z. (2022). A novel multi-stage ensemble model for credit
scoring based on synthetic sampling and feature transformation. Journal of Intelligent
& Fuzzy Systems, (Preprint):1–16.

He, H., Bai, Y., Garcia, E. A., and Li, S. (2008). Adasyn: Adaptive synthetic sampling
approach for imbalanced learning. In 2008 IEEE international joint conference on neural
networks (IEEE world congress on computational intelligence), pages 1322–1328. IEEE.

Hu, W., Hu, W., and Maybank, S. (2008). Adaboost-based algorithm for network intrusion
detection. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics),
38(2):577–583.

Islam, M. J., Wu, Q. J., Ahmadi, M., and Sid-Ahmed, M. A. (2007). Investigating the
performance of naive-Bayes classifiers and k-nearest neighbor classifiers. In 2007 inter-
national conference on convergence information technology (ICCIT 2007), pages 1541–
1546. IEEE.

Kabir, F., Siddique, S., Kotwal, M. R. A., and Huda, M. N. (2015). Bangla text document
categorization using stochastic gradient descent (sgd) classifier. In 2015 International
Conference on Cognitive Computing and Information Processing (CCIP), pages 1–4.
IEEE.

Kaggle (2023). Give me some credit. https://www.kaggle.com/competitions
/givemesomecredit/data?select=cs-training.csv. Accessed: 2023-02-05.

Karvouniaris, M., Pontikis, K., Nitsotolis, T., and Poulakou, G. (2021). New perspectives
in the antibiotic treatment of mechanically ventilated patients with infections from
gram-negatives. Expert Review of Anti-Infective Therapy, 19(7):825–844.

Khafajeh, H. (2020). An efficient intrusion detection approach using light gradient boost-
ing. Journal of Theoretical and Applied Information Technology, 98(5):825–835.

Leevy, J. L., Khoshgoftaar, T. M., Bauder, R. A., and Seliya, N. (2018). A survey on
addressing high-class imbalance in big data. Journal of Big Data, 5(1):1–30.

Leung, K. M. et al. (2007). Naive Bayesian classifier. Polytechnic University Department
of Computer Science/Finance and Risk Engineering, 2007:123–156.

Li, X., Ergu, D., Zhang, D., Qiu, D., Cai, Y., and Ma, B. (2022). Prediction of loan
default based on multi-model fusion. Procedia Computer Science, 199:757–764.

Liu, A. Y.-C. (2004). The effect of oversampling and undersampling on classifying imbal-
anced text datasets. PhD thesis, Citeseer.

Liu, Y., Wang, Y., and Zhang, J. (2012). New machine learning algorithm: Random
forest. In Information Computing and Applications: Third International Conference,
ICICA 2012, Chengde, China, September 14-16, 2012. Proceedings 3, pages 246–252.
Springer.



Performance of machine learning models umder missing data and class imbalance 21

Machado, M. R., Karray, S., and de Sousa, I. T. (2019). Lightgbm: An effective decision
tree gradient boosting method to predict customer loyalty in the finance industry. In
2019 14th International Conference on Computer Science & Education (ICCSE), pages
1111–1116. IEEE.

Madaan, M., Kumar, A., Keshri, C., Jain, R., and Nagrath, P. (2021). Loan default pre-
diction using decision trees and random forest: A comparative study. In IOP Conference
Series: Materials Science and Engineering, volume 1022, page 012042. IOP Publishing.

Mahajan, S., Nayyar, A., Raina, A., Singh, S. J., Vashishtha, A., and Pandit, A. K.
(2022). A Gaussian process-based approach toward credit risk modeling using stationary
activations. Concurrency and Computation: Practice and Experience, 34(5):e6692.

Mitchell, T. M. and Mitchell, T. M. (1997). Machine learning, volume 1. McGraw-hill
New York.

Murphy, K. P. et al. (2006). Naive Bayes classifiers. University of British Columbia,
18(60):1–8.

Osho, O. and Hong, S. (2021). An overview: Stochastic gradient descent classifier, lin-
ear discriminant analysis, deep learning and naive Bayes classifier approaches to net-
work intrusion detection. International Journal of Engineering and Technical Research,
10(4):294–308.

Padimi, V., Venkata, S., and Devarani, D. (2022). Applying machine learning techniques
to maximize the performance of loan default prediction. Journal of Neutrosophic and
Fuzzy Systems (JNFS), 2(2):44–56.

Pal, M. (2005). Random forest classifier for remote sensing classification. International
journal of remote sensing, 26(1):217–222.

Patro, S. and Sahu, K. K. (2015). Normalization: A preprocessing stage. arXiv preprint
arXiv:1503.06462.

Ray, S. (2019). A quick review of machine learning algorithms. In 2019 International
conference on machine learning, big data, cloud and parallel computing (COMITCon),
pages 35–39. IEEE.

Rokach, L. (2016). Decision forest: Twenty years of research. Information Fusion, 27:111–
125.

Rubin, D. B. (1976). Inference and missing data. Biometrika, 63(3):581–592.

Schafer, J. L. and Graham, J. W. (2002). Missing data: our view of the state of the art.
Psychological methods, 7(2):147.

Schein, A. I. and Ungar, L. H. (2007). Active learning for logistic regression: an evaluation.
Machine Learning, 68:235–265.

Swain, P. H. and Hauska, H. (1977). The decision tree classifier: Design and potential.
IEEE Transactions on Geoscience Electronics, 15(3):142–147.



22 Dube & Verster

Taha, A. A. and Malebary, S. J. (2020). An intelligent approach to credit card fraud
detection using an optimized light gradient boosting machine. IEEE Access, 8:25579–
25587.

Wang, K., Wan, J., Li, G., and Sun, H. (2022). A hybrid algorithm-level ensemble model
for imbalanced credit default prediction in the energy industry. Energies, 15(14):5206.

Xu, Z., Huang, G., Weinberger, K. Q., and Zheng, A. X. (2014). Gradient boosted
feature selection. In Proceedings of the 20th ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 522–531.

Yigit, H. (2013). A weighting approach for knn classifier. In 2013 international conference
on electronics, computer and computation (ICECCO), pages 228–231. IEEE.

Zhou, J., Li, W., Wang, J., Ding, S., and Xia, C. (2019). Default prediction in p2p lending
from high-dimensional data based on machine learning. Physica A: Statistical Mechanics
and its Applications, 534:122370.

10 Appendix

This section displays additional results obtained ADASYN and OVER sampling tech-
niques. Additionally, it also contains more ROC curves that were not presented in the
results section.

10.1 ADASYN and OVER-sampling results by accuracy

Table 5 displays training and testing results for ADASYN and OVER sampling results as
summarised by accuracy score.

10.2 ADASYN and OVER-sampling results by F1-score

Table 6 displays ADASYN and OVER sampling results as summarised by the F1-score.

10.3 ROC curves

Displayed below are the ROC curves for the testing results of SMOTE (Figure 4) and
UNDER sampling (Figure 5).
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Table 5: ADASYN and OVER-sampling results by accuracy

Model Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Sample 6 Sample7 Sample 8 Sample 9 Sample 10

T
ra

in
in
g
S
e
ts

A
D
A
S
Y
N

S
a
m
p
li
n
g

LR 0.7428 0.7361 0.7337 0.7267 0.7203 0.7153 0.7088 0.6910 0.6829 0.6783
DT 0.9999 0.9999 0.9999 0.9998 0.9997 0.9993 0.9983 0.9965 0.9943 0.9879
RF 0.9998 0.9999 0.9998 0.9998 0.9997 0.9992 0.9983 0.9965 0.9942 0.9879
ADA 0.9325 0.9322 0.9281 0.9253 0.9245 0.9149 0.9069 0.8914 0.8785 0.8581
GB 0.9481 0.9473 0.9458 0.9448 0.9393 0.9339 0.9279 0.9155 0.8999 0.8855
XGB 0.9699 0.9698 0.9695 0.9686 0.9681 0.9648 0.9612 0.9530 0.9457 0.9323
LGBM 0.9634 0.9631 0.9624 0.9618 0.9609 0.9572 0.9536 0.9446 0.9343 0.9203
SGDC 0.7526 0.7378 0.7442 0.7308 0.7182 0.7117 0.6961 0.7023 0.6771 0.6820
KNN 0.9156 0.9175 0.9163 0.9156 0.9149 0.9139 0.9136 0.9111 0.9042 0.8962
NB 0.6352 0.6272 0.6459 0.6459 0.5878 0.6453 0.6223 0.5974 0.6254 0.5364

O
V
E
R
-S

a
m
p
li
n
g

LR 0.7411 0.7403 0.7341 0.7272 0.7232 0.7090 0.6991 0.6981 0.6871 0.6810
DT 0.9998 0.9999 0.9999 0.9998 0.9997 0.9990 0.9985 0.9967 0.9941 0.9880
RF 0.9998 0.9999 0.9998 0.9998 0.9997 0.9990 0.9985 0.9966 0.9941 0.9880
ADA 0.9338 0.9342 0.9296 0.9290 0.9226 0.9184 0.9076 0.8948 0.8761 0.8565
GB 0.9499 0.9485 0.9463 0.9464 0.9394 0.9346 0.9294 0.9149 0.9020 0.8830
XGB 0.9705 0.9693 0.9693 0.9690 0.9670 0.9642 0.9618 0.9553 0.9449 0.9329
LGBM 0.9641 0.9626 0.9628 0.9624 0.9608 0.9572 0.9539 0.9446 0.9316 0.9200
SGDC 0.7510 0.7461 0.7372 0.7339 0.7261 0.7041 0.6923 0.6899 0.6680 0.6668
KNN 0.9178 0.9169 0.9170 0.9155 0.9140 0.9122 0.9134 0.9119 0.9074 0.9012
NB 0.6246 0.5721 0.5805 0.5291 0.5241 0.5528 0.5567 0.5417 0.5736 0.6060

T
e
st
in
g
S
e
ts

A
D
A
S
Y
N

S
a
m
p
li
n
g

LR 0.7435 0.7362 0.7359 0.7297 0.7231 0.7161 0.7069 0.6932 0.6853 0.6766
DT 0.9348 0.9320 0.9332 0.9291 0.9286 0.9228 0.9218 0.9142 0.9064 0.8939
RF 0.9597 0.9606 0.9585 0.9554 0.9575 0.9528 0.9488 0.9439 0.9330 0.9220
ADA 0.9325 0.9347 0.9279 0.9253 0.9255 0.9150 0.9065 0.8908 0.8767 0.8590
GB 0.9480 0.9498 0.9463 0.9432 0.9397 0.9340 0.9271 0.9151 0.8993 0.8837
XGB 0.9648 0.9649 0.9642 0.9617 0.9620 0.9594 0.9549 0.9471 0.9394 0.9245
LGBM 0.9630 0.9635 0.9627 0.9592 0.9589 0.9557 0.9525 0.9432 0.9333 0.9168
SGDC 0.7531 0.7391 0.7460 0.7344 0.7204 0.7141 0.6945 0.7019 0.6791 0.6815
KNN 0.8734 0.8725 0.8706 0.8723 0.8715 0.8723 0.8706 0.8698 0.8602 0.8510
NB 0.6336 0.6235 0.6484 0.6446 0.5900 0.6477 0.6228 0.5988 0.6271 0.5361

O
V
E
R
-S

a
m
p
li
n
g

LR 0.7382 0.7380 0.7299 0.7260 0.7220 0.7088 0.6983 0.6975 0.6829 0.6755
DT 0.9366 0.9335 0.9295 0.9343 0.9309 0.9286 0.9221 0.9111 0.9067 0.8934
RF 0.9591 0.9594 0.9569 0.9577 0.9549 0.9546 0.9505 0.9427 0.9359 0.9227
ADA 0.9326 0.9328 0.9294 0.9302 0.9212 0.9178 0.9084 0.8944 0.8724 0.8564
GB 0.9489 0.9474 0.9459 0.9443 0.9381 0.9344 0.9285 0.9162 0.9006 0.8821
XGB 0.9644 0.9642 0.9631 0.9620 0.9614 0.9591 0.9560 0.9495 0.9389 0.9286
LGBM 0.9633 0.9622 0.9620 0.9608 0.9593 0.9560 0.9522 0.9435 0.9306 0.9197
SGDC 0.7493 0.7448 0.7335 0.7329 0.7281 0.7025 0.6921 0.6912 0.6630 0.6626
KNN 0.8728 0.8726 0.8701 0.8697 0.8717 0.8662 0.8720 0.8692 0.8628 0.8616
NB 0.6230 0.5705 0.5774 0.5266 0.5228 0.5503 0.5556 0.5407 0.5728 0.6052

Table 6: ADASYN and OVER-sampling results by F1-score

Model Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Sample 6 Sample7 Sample 8 Sample 9 Sample 10

A
D
A
S
Y
N

S
a
m
p
li
n
g

LR 0.7270 0.7180 0.7157 0.7084 0.7025 0.6923 0.6764 0.6578 0.6414 0.6268
DT 0.9355 0.9326 0.9334 0.9293 0.9289 0.9231 0.9220 0.9140 0.9052 0.8921
RF 0.9591 0.9599 0.9575 0.9543 0.9565 0.9516 0.9475 0.9423 0.9304 0.9192
ADA 0.9313 0.9332 0.9260 0.9232 0.9228 0.9117 0.9020 0.8850 0.8681 0.8462
GB 0.9470 0.9484 0.9447 0.9413 0.9374 0.9311 0.9234 0.9100 0.8913 0.8738
XGB 0.9642 0.9641 0.9633 0.9607 0.9609 0.9581 0.9534 0.9448 0.9358 0.9194
LGBM 0.9624 0.9626 0.9616 0.9580 0.9576 0.9542 0.9507 0.9406 0.9291 0.9108
SGDC 0.7086 0.6906 0.7040 0.6871 0.6648 0.6486 0.6223 0.6279 0.5794 0.5829
KNN 0.8693 0.8670 0.8648 0.8666 0.8661 0.8664 0.8645 0.8636 0.8523 0.8436
NB 0.5048 0.4549 0.5511 0.5763 0.3308 0.5717 0.6118 0.6433 0.5052 0.1353

O
V
E
R
-S

a
m
p
li
n
g

LR 0.7194 0.7184 0.7115 0.7039 0.7013 0.6848 0.6684 0.6659 0.6465 0.6355
DT 0.9369 0.9340 0.9299 0.9347 0.9313 0.9291 0.9225 0.9114 0.9069 0.8930
RF 0.9584 0.9586 0.9560 0.9568 0.9540 0.9536 0.9494 0.9414 0.9344 0.9209
ADA 0.9309 0.9312 0.9276 0.9284 0.9185 0.9141 0.9045 0.8896 0.8647 0.8478
GB 0.9476 0.9460 0.9444 0.9426 0.9359 0.9317 0.9253 0.9118 0.8944 0.8736
XGB 0.9636 0.9633 0.9622 0.9611 0.9604 0.9580 0.9547 0.9476 0.9362 0.9252
LGBM 0.9624 0.9612 0.9611 0.9598 0.9581 0.9547 0.9506 0.9412 0.9271 0.9155
SGDC 0.6985 0.6984 0.6790 0.6811 0.6788 0.6276 0.6071 0.8692 0.5545 0.5462
KNN 0.8675 0.8674 0.8642 0.8642 0.8660 0.8604 0.8661 0.8640 0.8568 0.8558
NB 0.4602 0.2637 0.2891 0.1119 0.0971 0.1975 0.2219 0.1661 0.2849 0.5069
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Figure 4: SMOTE-sampling ROC curve results

Figure 5: UNDER-sampling ROC curve results
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