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Abstract

Fantasy Premiere League (FPL) is a popular online sports prediction game based on the well-
known (soccer) English Premiere League (EPL). In FPL, each participant forms a series of
imaginary teams over the course of a season of the EPL, each composed of real-world soccer
players. Points are then awarded to participants based on the real-world performances of the
players in the EPL. The goal is to accumulate as many points as possible during the season.
FPL participants are allocated a budget for team selection which gives rise to the constrained
team selection optimisation problem of filling playing positions in the team for each game
week of the FPL season. This team selection problem is further complicated by the facts that
player performance is not known in advance with certainty and that participants may only
make limited changes to their team compositions in the form of transfers during any game
week. In this paper we adopt a combinatorial optimisation approach towards participating
in FPL, in which future player performances are forecast by statistical and machine learning
techniques. We demonstrate retrospectively that our approach would have placed within the
top 4% of players worldwide during the 2020/2021 FPL season.
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1 Introduction

Fantasy sports is a game genre, usually played online, in which participants assemble
imaginary or virtual teams composed of real players of a particular professional sport.
One of the largest fantasy sport leagues in the world is the Fantasy Premiere League
(FPL), which boasted more than 8 million participants during the iteration of the game
based on the 2020/2021 English Premier League (EPL) soccer1 season.

Participants of the FPL, usually referred to as managers, receive points based on the real-
world performances of the players in their teams. These performances are converted into
points for each match played and the manager with the most points at the end of the
season is crowned the winner.

The popularity of the FPL has grown to such an extent that major prizes are awarded
to the winners of the league. For example, the prizes for first place in the FPL, based
on the 2021/2022 EPL soccer season, included (but were not limited to) VIP hospitality
at two EPL matches and visits to a selection of popular tourist attractions in the United
Kingdom, a 7-night stay there for two, and a Hublot watch.

The FPL is played around the world and managers are required to make team selection
decisions on a weekly basis in order to remain competitive globally. These decisions are
complicated by a variety of constraints and must take into account both long-term and
short-term rewards in terms of potential cumulative points gains. During the 2021/2022
FPL season, for instance, each manager was required to select a squad of fifteen players
from a pool of 533 available players, while potentially substituting players into and out
of their squads at multiple decision points which separate the game weeks (GWs) of the
season. Effective team selection in this context is not a trivial task.

Each player in the pool of available players is assigned one of four playing positions, based
on his real-world position, together with a monetary value specified in Pound sterling
(£). The playing positions are goalkeeper (GK), defender (DEF), midfielder (MID), and
forward (FWD). Each player featuring in the FPL is also associated with one of twenty
(real-world) EPL teams (the player’s real team when competing in the EPL). At the start
of the season, each FPL manager is required to select a team of fifteen players, called a
squad and consisting of specified numbers of GKs, DEFs, MIDs, and FWDs, with the
total monetary value of the selected squad not exceeding £100 million. No more than
three players from any single real-world EPL team may be selected for inclusion in the
(FPL) squad during any GW. An example of such a squad selection is provided in Table 1.

A physical EPL match is played during each GW of the FPL season. FPL managers
are free to buy and sell players between GWs, where players sold exit the squad (freeing
up their cost as available capital) and players bought enter the squad (incurring a cost
from the available capital). Managers are, however, granted only a specific number of free
transfers per GW (where a transfer refers to one player exiting and another player entering
the squad). Penalty points are deducted from the manager’s total score, per transfer, for
any additional transfers performed (over and above the available free transfers). Free

1While soccer is known as football in the United Kingdom, we refer to the sport here as soccer so as
distinguish between it and the American ball game also called football.
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Name Position Team TP GP F Fix C

de Gea GK MUN 26 2 5.2 EVE(H) 5.0
Sa GK WOL 28 14 5.5 NEW(H) 5.0

Thiago Silva DEF CHE 24 2 6.0 SOU(H) 5.4
Rudiger DEF CHE 34 1 5.5 SOU(H) 5.6
Keane DEF EVE 27 8 6.0 MUN(A) 5.0
Cancelo DEF MCI 44 12 9.0 LIV(A) 6.1
Dia DEF MCI 39 5 6.5 LIV(A) 6.1
Saka MID ARS 26 13 5.8 BHA(A) 6.2

Gallagher MID CRY 28 0 6.2 LEI(H) 5.7
Douccoure MID EVE 38 11 6.5 MUN(A) 5.6

Sarr MID WAT 39 9 7.0 LEE(A) 6.3
Townsend MID EVE 33 10 6.8 MUN(A) 5.5
Vardy FWD LEI 40 11 8.2 CRY(A) 10.4

Saint-Maximin FWD NEW 35 8 6.8 WOL(A) 6.8
Ronaldo FWD MUN 21 2 7.0 EVE(H) 12.7

Table 1: An example of an FPL squad, showing player surname, player position, club
(Team), total points (TPs), GW points (GPs), form (F) on a scale of 1–10, upcoming
fixture (Fix), and cost (C) in millions of Pounds sterling.
.

transfers can be accumulated up to a maximum of two if not utilised during previous
GWs. The anticipated performance of a player depends on a combination between his
total points (TPs) earned thus far during the season according to an intricate FPL scoring
system (described in Appendix A), his GW points (GPs) earned according to the same
scoring system, his current form (F) and the fixture in which he will be competing (the
opposing team, as well as whether the match will be on home (H) ground or away (A)).
The cost (C) of a player is typically correlated with his real or anticipated performance.

The chief challenge associated with participating in the FPL is twofold: First, it is difficult
to forecast or estimate the performances of all the FPL players in advance — not only
because there are many players, but also because this performance can vary substantially
over the course of a single FPL season. Secondly, the number of possible FPL squad
combinations at any point during the season is so large that it is almost impossible to
resolve squad inclusion decisions based solely on intuition. In this paper we show how a
closing-window combinatorial optimisation modelling approach may be adopted towards
effectively participating in the FPL, which takes as input future player performances fore-
cast over the remainder of the FPL season — either statistically or by invoking appropriate
machine learning techniques. We demonstrate retrospectively that our approach would
have placed within the top 4% of players worldwide during the 2020/2021 FPL season.

The remainder of the paper is organised as follows. Upon having conducted a brief review
in §2 of the literature related to FPL modelling and player performance forecasting, we
review the various forecasting techniques employed in our modelling approach in §3. An
integer programming model is formulated in §4 for recommending high-quality FPL squad
selections for each GW of an FPL season, after which we present a case study in §5 in which
the relative performances of our forecasting methods and the working of the optimisation
model are evaluated in the context of the 2020/2021 FPL season. The paper finally closes,
in §6, with some concluding remarks.
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2 Related literature on fantasy sports

The literature on decision support modelling for fantasy sports is large. Two main areas
of focus in this literature are Fantasy American Football (FAF) and FPL soccer. In this
section, we briefly review these two main areas of the literature after having noted the
origin of the notion of fantasy sports.

2.1 The origin and popularity of fantasy sports

The humble origins of fantasy sports can be traced back to a restaurant in Manhattan,
New York called La Rotisserie Française in 1980 [27]. A publishing consultant for the
magazine Texas Monthly conceived of the idea for a game now called Fantasy baseball
while on a flight. Afterwards, he described the rules of the game to colleagues and friends
over lunch at La Rotisserie Française. While not everyone was gripped by the idea, ten
people initially decided to play the game, and so the first fantasy sport was born, called
Rotisserie baseball league — named after the restaurant. The number of players grew from
ten in 1980 to more than a million ten years later.

This rise in the number of players has led to the establishment of many other fantasy
sports. By 1990 there were participants in fantasy football, fantasy baseball, fantasy
basketball, fantasy hockey and fantasy soccer. The number of fantasy sports genres has
grown considerably in recent years, and in 2022 there were 62.5 million fantasy sports
players worldwide in a global fantasy sports market worth US$ 22.78 billion [22]. A break-
down of the percentages of players per fantasy sport genre in this market during 2022 may
be found in Table 2.

Fantasy sports genre Governing body %

Football National Football League 54
Baseball World Baseball Softball Confederation 25
Basketball National Basketball Association 22
Football National Collegiate Athletic Association 18
Basketball National Collegiate Athletic Association 14
Football Canadian Football League 14
Stock car racing National Association for Stock Car Auto Racing 14
Football United States Football League 14
Hockey National Hockey League 13
Soccer Fantasy Premier League 12
Various Fantasy eSports 12
Mixed martial arts International Mixed Martial Arts Federation 11
Golf United States Golf Association 11
Football Bachelor Fantasy League 6

Table 2: A break-down of global fantasy sports players per type of fantasy sport and
governing body in 2022 [22]. The percentages do not add up to 100, because players
typically participate in multiple fantasy sports genres.
.

2.2 Forecasting and model prediction in FAF

A large body of research has been devoted to the analysis of FAF data — the fantasy
sports genre with by far the largest data analytic literature. The main types of analysis
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available in this body of research pertain to

1. the psychology of, biases inherent in, and skills underlying fantasy football partici-
pation [17],

2. big data and how it influences participants of fantasy football [45],

3. how fantasy football affects public consumption of real National Football League
(NFL) events [15, 43],

4. analyses of fantasy sport consumer segmentation [16],

5. the establishment of accurate empirical probability distributions of match events of
different types, and

6. the generation of fantasy point projections or other forms of player performance
projection forward in time, based on past data.

Instead of attempting to cover this entire literature or even a representative part of it, we
devote this section to brief descriptions of three exemplars of relatively recent publications
pertaining to the last point above. The examples cited were chosen to highlight work
closest in spirit to our pursuit in the current paper.

In 2015, Lutz [38] applied support vector regression (equipped with a linear kernel) and
artificial neural networks to analyse FAF data with a view to perform points prediction.
Mean square errors were compared when no specific features were selected, when such
features were selected manually, and when iterative, systematic feature elimination was
applied in conjunction with cross validation. The support vector regression performed
best when iterative, systematic feature elimination was applied, yielding a mean square
error of approximately six points. This result was not very satisfactory, however, since
many NFL games end in a points difference close to six points. The author claimed, in
conclusion, that there was considerable room for improvement in his work as a result of
the very limited number of features utilised, recommending that smarter feature selection
methods perhaps be used in future.

Two years later, Landers and Duperrouzel [35] employed least squares and averaged neu-
ral networks, as well as boosted decision trees, to predict the number of points scored
by specific players in a single FAF round. The authors found that boosted decision tree
regression (equipped with player filtering2), along with a brute-force team selection algo-
rithmic approach, was able to outperform the average performances of randomly selected
FAF players’ teams.

In 2018, King [31] set out to predict the number of fantasy points scored by quarterback
players in the American Football League. The author employed a variety of algorithms for
this purpose, including support vector regression, regression trees and artificial neural net-
works. It was found that the method of support vector regression was able to outperform
the other algorithms, achieving a root mean squared error of 4.36% compared to errors of
8.53% and 8.77% achieved by regression trees and artificial neural networks, respectively.
Moreover, it was found that the support vector regression implementation outperformed
a similar prediction model used by CBS Sport, which achieved a root mean squared error

2The process of removing players with high performance variances and large maximum point scores.
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of 7.32%. The final takeaway was that the fine-tuning of the hyper-parameters of all four
prediction models would result in improved prediction accuracy with respect to their 2018
baselines.

2.3 Previous attempts at FPL forecasting and model prediction

The data analytic literature on the FPL is considerably smaller than that associated with
FAF, and is mainly concerned with

1. the psychology of, biases inherent in, and skills underlying FPL participation [20, 44],

2. the mental health and behaviour of FPL participants [59, 60],

3. social media and wisdom-of-the-crowd effects on the FPL [3],

4. the establishment of accurate empirical probability distributions of match events of
different types [57], and

5. the generation of fantasy point projections or other forms of player performance
projection forward in time, based on past data.

Again we describe very briefly a few examples of relatively recent work conforming to the
last point above in a vein similar to our current paper, so as to highlight how our work in
this paper differs from previous work, and how it is, in fact, a natural extension to some
of this work.

In 2018, Thapaliya [57] applied a Gaussian Naive Bayes algorithm in an attempt to predict
whether or not a player will score at least eight points during a given GW. The algorithm
was able to achieve an accuracy of 86% during the first GW going forward.

During the same year, Dykman [18] used various machine learning and statistical forecast-
ing algorithms to predict FPL player performance one GW ahead into the future. These
point forecasts were then taken as input to a mixed integer programming model aimed
at recommending an FPL squad selection for the next GW. The objective in the latter
model was to maximise the combined performance of the squad subject to budgetary,
player transfer and other FPL rule constraints. The modelling approach was applied ret-
rospectively to the 2017/2018 FPL season during a validation bid. It was found that the
approach would have placed Dykman in the top 7.53% of FPL participants globally during
the 2017/2018 season. A significant disadvantage of Dykman’s modelling approach, how-
ever, was that he only adopted a one-week look-ahead period, which may yield significantly
suboptimal results during subsequent future GWs in terms of when player performances
may peak and as a result of transfer penalties incurred.

Also in 2018, Kristiansen et al. [33] proposed a mathematical model for FPL player se-
lection which takes as input forecasts of player points. Three methods were employed to
generate forecasts. The first centred on the most recent average points accumulated by
each FPL player, the second was based on regression involving multiple explanatory vari-
ables, and the third utilised bookmakers’ odds to predict points. The model was solved
by applying a rolling-horizon heuristic and its efficacy was demonstrated by solving the
model retrospectively in the context of the first 35 GWs of the 2017/2018 FPL season.
The results were compared with the performance of actual FPL participants during that
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season and it was found that the model was able to achieve a position among the top 30%
of all FPL participants consistently.

The following year, Khamsan and Maskat [30] considered the problem of how to mitigate
highly imbalanced data in terms of output class labels when machine learning techniques
are used to predict virtual FPL player price changes over the course of a given time period.

In 2021, Pukdee [50] examined the use of network analysis when analysing soccer data,
focusing on the EPL. Network analytic techniques were used to rank players and to derive
the nature of the interaction between players based on publicly available data only. The
results of the study were comparable with those utilised by the media, but required much
less data.

In 2022, Bangdiwala et al. [2] compared the efficacy of three statistical and machine
learning models (linear regression, decision trees and random forests) in terms of predicting
the number of points that each player would earn over the course of an FPL season. The
learning was based on features such as fixture difficulty, the forms of the two opposing
teams relative to one another, the creativity of the player and the threat posed by the
player. It was found that the modelling approach aided players of this game to make more
informed FPL squad selections.

Rajesh et al. [51] proposed a player recommendation system in 2022 aimed at enabling an
“average interested person” to make informed decisions related to player selection based
on the application of data science techniques and analytics, graphical visualisations, and
a variety of statistical measures. The objective was to help FPL participants resolve the
so-called favoritism bias — where participants tend to select players from their favorite
EPL teams — by generating actionable insights from data. The working of the system
was demonstrated in the context of the 2021/2022 FPL season.

Also in 2022, Maniezzo and Aspee Encina [40] performed a business analytics experiment in
which predictive and prescriptive analytics were used to provide real-time bidding support
in the context of fantasy soccer draft auctions. Forecasting methods were invoked to
quantify the expected return of each investment alternative, upon which adaptive online
recommendations on playing squad selections were generated by means of sub-gradient
optimisation. A distributed front-end implementation was also established in order to
demonstrate the viability of the modelling approach.

3 Forecasting player performance

We applied a wide variety of time series forecasting methods to the past performance data
of players participating in the 2020/2021 EPL season in order to predict their anticipated
future FPL performances. These methods belong to different classes of forecasting meth-
ods and are described very briefly in this section in pursuit of self-containment of the
paper. The forecasting methods described in this section were also ensembled in the hope
of achieving superior forecasting performance, and so various ensembling methodological
approaches are also described very briefly towards the end of the section.
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3.1 Baseline forecasting methods

In order to provide a basis for comparing the forecasting performances of more sophisti-
cated models, we applied certain simple forecasting methods as benchmark (or baseline)
models. These methods are straightforward, but might perform relatively well in certain
contexts.

Given a time series x = (x1, . . . , xT ) of past player performance scores over a period of
T GWs, the average (or historical mean) method dictates that the prediction of h values
of the time series into the future is taken as the mean of all previous observations in the
series, and is given by

x̂T+i =
x1 + · · ·+ xT

T
, i = 1, . . . , h.

A naive forecast, on the other hand, involves setting all the forecast values equal to the
last historical observation of the time series, such that

x̂T+i = xT , i = 1, . . . , h.

A naive forecast is typically only adopted as a baseline model for data emanating from
a stationary process in which future values are highly unpredictable [25]. The seasonal
naive method is a variation on this basic naive forecasting method in which the predicted
values are taken as

x̂T+i = xT+i−m(k+1), i = 1, . . . , h.

Here, m denotes the seasonal period and k denotes the integer part of the fraction (h−1)/m
(i.e. the number of complete seasons prior to time T + h). According to the seasonal
naive method, the predicted value for a given period is therefore simply the corresponding
observed value of the previous season [64].

An alternative baseline model is based on the drift method which entails extrapolating a
straight line in order to forecast future values. This line is drawn through the first and
last observations on a time plot of the series. Forecast values are therefore given by

x̂T+h = xT +
h

T − 1

T∑
t=2

(xt − xt−1) = xT + h
xT − x1
T − 1

,

with the values of x̂T+1, x̂T+2, . . . , x̂T+h−1 being read off from this straight line.

3.2 Moving averages

The basic assumption underlying the use of moving averages (MAs) is that time series
observations which are in close temporal proximity are likely to exhibit similar values [39].
MAs are typically either simple, weighted, or exponential in nature [64]. A simple MA of
odd order d (d-MA) involves estimating the trend-cycle component of a performance score
time series at time T + 1 as

x̂T+i =
1

d

k∑
j=−k

xT+i+j , i = 1, . . . , h,
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where d = 2k + 1 and x̂t denotes the mean of the observations of the time series over
d time periods. This is known as a symmetric MA (of odd order, e.g. 3, 5 or 7) of the
historical values and removes some of the noise in the time series data, thereby producing
a smooth trend-cycle component [64]. The order of the MA determines the smoothness
of the estimate. Although a smoother trend-cycle estimate is produced by a larger-order
MA, such an MA may result in underfitting the data [25, 39].

It is also possible to calculate a simple MA of even order, but such an MA would not
be symmetric. Another MA is therefore typically applied to the result of the even-order
MA so as to achieve symmetry (also known as a centred MA or double MA) [64]. A
2-MA might, for example, be applied to a 4-MA and the result denoted a 2 × 4-MA. An
odd-order MA may, similarly, be followed by applying another odd-order MA [64]. Such
combinations produce weighted MAs.

A simple MA is a special case of a weighted MA in which all weights equal 1/d. A weighted
d-MA may be expressed as

x̂T+i =
k∑

j=−k

wjxT+i+j , i = 1, . . . , h,

where k is defined as above and wj denotes the weight of the jth observation. This set of
weights is referred to as the weight function, and the weights should sum to one and be
symmetric (i.e. wj = w−j) [25]. Weighted MAs produce smoother trend-cycle estimates,
which sometimes holds a significant advantage.

3.3 Exponential smoothing

Exponential smoothing methods were first proposed by Brown [6], Holt [24] and Win-
ters [62], and involve the use of weighted averages of historical observations, with larger
weights being assigned to more recent observations as the weights of older observations
decay exponentially [64].

Simple exponential smoothing entails assigning weights that decrease exponentially with
an increase in the age of observations, so that

x̂T+i = α
(
xT + (1− α)xT−i + · · ·+ (1− α)T−ix1

)
+ (1− α)Tx0, i = 1, . . . , h, (1)

where α ∈ [0, 1] is a smoothing parameter [25, 42]. The parameter α determines the rate
at which the weights of the older observations decrease [64]. The forecast for time T + 1
is a weighted average of all the training observations xt, . . . , xT . As T increases, (1− α)T

becomes increasingly smaller and the effect of x0 on x̂T becomes negligible [42].

Simple exponential smoothing is well-suited to time series data exhibiting no clear trend
or seasonal component. The expression in (1) may be derived by invoking different forms
of exponential smoothing, namely the component form or the weighted average form [64].
The component form of exponential smoothing potentially comprises three components,
namely a level component, denoted by ℓt, a trend component, denoted by bt, and a seasonal
component, denoted by st. An additional component expression is added to the forecast
expression for each of the components which form part of the forecasting method.
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Simple exponential smoothing, which only has a level component, may be expressed math-
ematically as

Forecast expression: x̂t+i = ℓt, and

Level expression: ℓt = αxt + (1− α)ℓt−1,

for all t = 1, . . . , T and i = 1, . . . , h, where ℓt denotes the smoothed value (level) of the
observation at time t and α ∈ [0, 1] is the smoothing parameter for the level.

The linear trend method (also known as double exponential smoothing) was proposed by
Holt [24] to account for the difficulty encountered when using simple exponential smoothing
to forecast time series data which exhibit a trend component. The method is expressed
mathematically as

Forecast expression: x̂t+i = ℓt + ibt,

Level expression: ℓt = αxt + (1− α) (ℓt−1 + bt−1) , and

Trend expression: bt = β (ℓt − ℓt−1) + (1− β)bt−1,

for all t = 1, . . . , T and i = 1, . . . , h, where α and ℓt are defined as before, bt denotes the
estimated trend of the time series at time t and β ∈ [0, 1] is a trend smoothing parameter.

Holt’s linear trend method was extended to the well-known Holt-Winters method [24, 62]
to arrive at a seasonal method (also known as triple exponential smoothing) by adding a
component which accounts for seasonality in the time series. The Holt-Winters method
may be expressed mathematically as

Forecast expression: x̂t+i = ℓt + ibt,

Level expression: ℓt = αxt + (1− α) (ℓt−1 + bt−1) ,

Trend expression: bt = β (ℓt − ℓt−1) + (1− β)bt−1, and

Seasonal expression: st = γ (xt − ℓt−1 − bt−1) + (1− γ)st−m,

for all t = 1, . . . , T and i = 1, . . . , h, where the frequency of seasonality is denoted by
m and the integer part of (h − 1)/m is denoted by k. The initial component values and
smoothing parameters first have to be estimated before an exponential smoothing method
may be applied to time series data.

Exponential smoothing methods can also be described in terms of their so-called state
space formulations [64]. State space models were introduced by Kalman [28] and comprise
a so-called measurement equation, describing the time series observations, together with
one or more state equations describing changes in the components of a time series [64].
In the case of exponential smoothing, the components of a time series are error, trend,
and seasonal. A model instance takes the form ETS(·, ·, ·), where the arguments repre-
sent (error, trend, seasonal). Modelling options for the components are error ∈ {additive,
multiplicative}, trend ∈ {none, additive, additive damped}, and seasonal ∈ {none, addi-
tive, multiplicative}. The full exponential smoothing list in the ETS framework therefore
comprises twenty four possible models [25]. The term ETS is adopted when referring to
exponential smoothing models in the remainder of this paper.
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3.4 Regression

A specified relationship is assumed between a forecast variable x and one or more pre-
dictor variables y1, . . . , yk in regression models tailored to time series forecasting. This
relationship may either be linear or non-linear3. Simple regression involves one predic-
tor variable (i.e., k = 1), while multiple regression involves more than one variable (i.e.,
k > 1). Simple linear regression may be performed by fitting the equation

xt = β0 + β1yt + εt, t = 1, . . . , T (2)

to the original time series data, where β0 and β1 denote the intercept and slope of the
resulting straight-line relationship, respectively, and εt denotes the deviation of observa-
tions from the straight line model [42]. Estimates β̂0 and β̂1 of the coefficients β0 and β1
may be computed by invoking the least squares principle, according to which the sum of
the squared errors

∑T
t=1 ε

2
t is minimised [64].

In the case of multiple linear regression, the relationship in (2) becomes

xt = β0 + β1y1,t + β2y2,t + · · ·+ βkyk,t + εt, t = 1, . . . , T, (3)

where the coefficients β0, . . . , βk provide a measure of the marginal contributions of the
predictor variables y1,t . . . , yk,t, respectively, when predicting the value of the forecast vari-
able xt [54]. Linear regression is, however, only appropriate in time series forecasting when
linearly estimating the trend component of the series for the purpose of trend adjustment.

A standard approach towards non-linear regression involves either transforming the fore-
cast variable, the predictor variables or both, before estimating the coefficients of a regres-
sion model [25]. A popular non-linear regression model involves performing a logarithmic
transformation such that

log xt = β0 + β1 log yt + εt, t = 1, . . . , T.

Theoretically, an infinite number of non-linear relationships may be modelled. Two ex-
amples are the popular quadratic relationship

(
xt = β0 + β1yt + β2y

2
t + εt

)
and the cubic

polynomial relationship
(
xt = β0 + β1yt + β2y

2
t + β3y

3
t + εt

)
[25, 39]. Naturally these re-

lationships would apply to a non-linear trend component. Overfitting due to polynomial
regression of higher degrees should be avoided [39].

Cubic splines are a natural extension of polynomial regression in which the time series
is partitioned into a number of intervals and a polynomial regression function of degree
three is fitted to each interval [54]. This technique provides a piecewise mapping of the
predictor variables to the forecast variable, also known as local regression [25, 39].

The most popular implementation of local regression is locally weighted regression (often
referred to as Loess), proposed by Cleveland and Devlin [11], which is more robust to
outliers than local linear regression [64]. The well-known seasonal and trend decomposition
using Loess procedure was proposed by Cleveland et al. [10] and is based on sequential
applications of Loess.

3In this context, linearity refers to the relationship between the variables x and y1, . . . , yk as opposed
to linearity in the parameters.
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3.5 ARIMA models

ARIMA models produce predictions by describing autocorrelations in the data, as opposed
to ETS models which model trend and seasonality in time series data. The thinking
behind the ARIMA approach is that observations which follow one another commonly
exhibit some form of dependence [42]. ARIMA models comprise an autoregressive (AR)
component, an integration component, and an MA component.

The rationale behind AR models is that an observation xt may be modelled as a linear
function of p past observations xt−1, xt−2, . . . , xt−p, where p is called the order of the AR
model [54]. This is comparable with the expression in (3) for multiple linear regression,
although the forecast variable x is regressed against its history in the AR case [64]. An
AR model of order p, denoted by AR(p), may be expressed as

xt = c+

p∑
i=1

ϕixt−i + εt, t = p+ 1, . . . , T, (4)

where c denotes a constant and ϕ1, . . . , ϕp are model parameters [7]. Univariate time series
exhibiting no trend or seasonality are amenable to forecasting by AR models.

An MA model employs past forecast errors as predictor variables in a regression-like man-
ner, rather than regressing the forecast variable against its history [25]. The standard
notation MA(q) denotes an MA model of order q and is expressed as

xt = µ+

q∑
i=1

θiεt−i + εt, t = q + 1, . . . , T, (5)

where the mean of the observations is denoted by µ and θ1, . . . , θp are model parameters [7].

To form an ARMA(p, q) model, the models in (4) and (5) are combined, yielding

xt = c+

p∑
i=1

ϕixt−i +

q∑
i=1

θiεt−i + εt, t = 1 +max{p, q}, . . . , T.

ARMA(p, q) models are, however, only defined for stationary processes while, as men-
tioned before, real-world data (such as FPL player performance data) are typically not
compatible with this assumption. In order to address this problem, an additional inte-
gration parameter of order d may be included [64]. The resulting model is the general
ARIMA(p, d, q) model [25]. During the execution of ARIMA models, d differencing trans-
formations are first applied to the data in order to generate a stationary time series, after
which an ARIMA(p, q) model is applied. Integration, in this context, can be seen as
reversing the differencing procedure [7].

The inclusion of differencing complicates the mathematical representation of ARIMA mod-
els and so back-shift operator notation is typically utilised to represent these models. The
backshift operator of order d is defined as Bdxt = xt−d. By implementing this notation,
an ARIMA(p, d, q) model may be written as

AR(p) d differences MA(q)
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for all t = 1 + max{p, d, q}, . . . , T , where the integration component is included to allow
for the application of ARIMA models to non-stationary processes [25].

The notation ARIMA(p, d, q)(P,D,Q)m model denotes a so-called seasonal ARIMA
(SARIMA) model, wherem represents the number of observations per seasonal period [39].
In a SARIMA model, a linear combination of past seasonal observations and/or forecast
errors is added to the forecast [64]. By utilising the standard backshift operator notation
introduced above, an ARIMA(1, 1, 1)(1, 1, 1)1,2 model may, for instance, be written as(

1− ϕ1B
1
) (

1− ϕ1B
4
)
(1−B1)

(
1−B4

)
(xt − µ) =

(
1− θ1B

1
) (

1−Θ1B
4
)
εt

for all t = 1 + 1, . . . , T , where the new seasonal terms are simply multiplied by the non-
seasonal terms and µ denotes the mean of all past observations [25].

3.6 Decision trees

Decision tree methods may be used to forecast the value of a target variable by inferring
certain decision rules from a set of training data in a supervised machine learning paradigm,
with each decision represented by a node. These nodes collectively form tree-like output
data structures.

In order to apply decision trees to time series forecasting, the data have to be transformed
into subsets of observations (y1, z1) , (y2, z2) , (y3, z3) , . . . where, for any integer value of
i, yi is a vector, called a feature vector, and contains predictor values influencing the
value(s) to be forecast and where zi is also a vector, called a target vector, and contains
the corresponding actual forecast values(s). Each such pair of vectors represents a training
sample. In the case where a time series x1, x2, . . . , xT has been observed and has to be
forecast h points into the future, each successive feature vector yi contains p < T − h
time series observations, taken over a single-step advancing rolling horizon of length T [7].
That is, yi = [xi, . . . , xi+p−1]. The corresponding target vector zi contains the following
h data points of the series. That is, zi = [xi+p, . . . , xi+p+h−1]. There are T − p − h + 1
observations in the training set in total.

The data transformation described above essentially yields a standard multiple regression
problem and is illustrated graphically in Figure 1. In this example, the partial time series
x1, x2, . . . , x11 (with vertices denoting data points) is partitioned into four training sam-
ples, each with p = 5 observations as an input, upon which the following h = 3 observations
are taken as the target vector. The training set ([x1, . . . , x5], [x6, x7, x8]), ([x2, . . . , x6],
[x7, x8, x9]), ([x3, . . . , x7], [x8, x9, x10]), ([x4, . . . , x8], [x9, x10, x11]) is therefore constructed
iteratively. Including multiple observations of a time series in the target feature zi fa-
cilitates the prediction of multiple steps into the future in a natural way. This type of
transformation is called reduction, since the task of forecasting is reduced to the simpler
task of tabular regression [37].

The decision tree constructed when solving the above regression problem contains three
types of nodes. The root node (or initial node) is representative of the entire training set.
The features exploited when traversing the tree and performing predictions are represented
by the interior nodes (with each branching of a parent node into children inducing a
decision rule). Finally, the leaf nodes represent the final predicted regression values.
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Figure 1: A time series data transformation facilitating machine learning.
.

The decision tree is traversed from the root node until a leaf node is reached in order to
obtain a single prediction for an unseen data instance. The final prediction is the mean
dependent variable value in the leaf node. The decision rules of a tree are deduced from
the principle of standard deviation reduction in the case of regression problems.

The depth of the resulting tree affects its goodness of fit (GOF) and the number of it-
erations performed in order to obtain the final tree. A decision tree may be prone to
over-fitting, despite having tuned these hyper-parameters appropriately. Overfitting may
be mitigated by employing random forest models [5], which are combinations of decision
trees.

3.7 The method of k-nearest neighbours

When training a k-Nearest Neigbours (kNN) algorithm, the data are sorted according to
some distance measure, based on their features. In order to classify a new datum x0, a
set of k observations which are closest to this new data point according to the distance
measure adopted are identified within the training data set and are collectively denoted
by N0(k).

A weighted average of the observations in N0(k), weighted proportionally to the inverse
of their distance from x0, is assigned to x0 [36]. Although many other alternatives are
available, a popular choice for the distance metric is the Euclidean distance. Distances
are first calculated between the point to be regressed and the labelled points, after which
the labelled points are ordered according to increasing distance [36]. Next, the inverse
distance-weighted average over the k nearest multivariate neighbours is calculated [36].

The hyper-parameters of the kNN algorithm are the distance measure adopted and the
number k of neighbours considered during each iteration. The value of k controls the
bias-variance trade-off in the resulting model and may be determined empirically based
on the root-mean-square deviation (RMSD) and using cross-validation [36].

3.8 Croston’s method

Croston’s method is based on the notion of exponential smoothing [25] and was proposed
for use in the context of intermittent time series forecasting. Two new series are con-
structed on which forecasts are based according to Croston’s method — a positive time
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series, called the z-series, and another series capturing the intermittent time between
these observations, called the a-series. Denote the original time series by x1, . . . , xT , let
zi denote the i

th non-zero observation and let ai denote the time that has elapsed between
observations zi−1 and zi. When xi = 0, exponential smoothing is applied to each series,
yielding

ẑi = ẑi−1 + αz (zi−1 − ẑi−1)

and

âi = âi−1 + αa (ai−1 − âi−1)

for all i = 1, . . . , j, where j denotes the last time period during which a positive value was
observed, while αz, αa ∈ [0, 1] are smoothing parameters. During periods when xi > 0,
however, it is assumed that ẑi = ẑi−1 and âi = âi−1. Future forecasts based on Croston’s
method are subsequently calculated as

x̂T+q =
ẑj+1

âj+1

for all q = 1, . . . , h, where j again denotes the last time period during which a positive value
was observed in the original series. The parameters αz and αa are commonly assigned the
same value, such as αz = αa = 0.1 (as Croston [12] originally proposed). Different values
for these parameters, with ranges4 αz, αa ∈ [0.1, 0.3], have been been experimented with
by Teunter et al. [56], among others.

3.9 Model ensembling

Ensemble methods are based on the notion of crowd wisdom, and may be applied to re-
gression problems by combining the predictions of several models [41, 55]. By providing
more accurate and robust results than those of the underlying individual models, ensem-
bling has been shown to be capable of increasing the quality of predictions [14, 46]. Two
phases make up the ensembling procedure, namely the building of models (also known as
ensemble generation) and the subsequent combination of these models (known as ensem-
ble integration) [58]. Ensemble pruning is an additional phase which may form part of an
intermediate step aimed at reducing the ensemble size (i.e. the number of models included
in the ensemble), thereby potentially improving the quality of the forecast obtained [52].
The general procedure of ensembling is illustrated graphically in Figure 2, where the train-
ing data x, are used to train n different models. In order to obtain the prediction ŷ, the
model outputs are combined in some pre-specified manner.

The diversity of the models contained in the ensemble determines the performance of
the ensemble [49]. An ensemble may consist either of homogeneous or heterogeneous
models. Homogeneous models are different instantiations of the same learning model
which have been created by adjusting hyper-parameter values, training records and/or
input values. Popular methods for creating homogeneous models are bagging and boosting.
Different models which are fitted on the same training data, on the other hand, are called
heterogeneous models. Heterogeneous models differ in their underlying assumptions and

4The utilisation of values for αz and αa within specified ranges is sometimes referred to as the optimised
Croston method [64].
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Figure 2: The common procedure of model ensembling (adapted from [47]).

methods of time series prediction [58]. A model-centred or data-centred approach may be
followed to achieve diversity among ensemble members in the case of regression problems.
A model-centred approach involves fitting different algorithms to the same data so as to
produce different (heterogeneous) models [1]. In a data-centred approach, on the other
hand, the time series provided as input to a forecasting model is altered in different ways
in order to produce different (homogeneous) models [64].

Breiman [4] introduced the ensembling method of bagging, also known as bootstrap aggre-
gation, in which various instantiations of the same forecasting model are generated and
their results combined to produce an aggregated forecast. By forming bootstrapped learn-
ing sets from the original training data in which a random selection of observations from
the learning sets allow for repetition, multiple model instantiations of the same forecasting
model can be created [49].

In the case of time series regression problems, independent records may be drawn ran-
domly from the training data. In order for the characteristics of the bootstrapped data
to resemble those of the original data, however, the non-stationarity and autocorrelation
properties of time series data have to be accounted for [48]. A block bootstrap may be
employed for this purpose, where a decomposition of the original time series is required
to obtain a so-called pattern and remainder component [25]. Neighbouring sections of the
remainder component are then randomly selected and joined together [64].

Circular block bootstrapping, linear process bootstrapping and moving block bootstrapping
are all different approaches towards block bootstrapping [48]. In moving block bootstrap-
ping, a series of T observations is provided as input and blocks of length ℓ are specified,
in which case there are a total of T − ℓ + 1 different blocks. It is illustrated graphically
in Figure 3 how an original series of 18 observations may be used to generate 15 blocks
of length 4 (as illustrated by the solid arrows). The origin of the bootstrapped series is
randomly selected within the first block, and (n/ℓ) + 2 blocks are randomly chosen (as
illustrated by the dotted arrows) and combined.

A bootstrapped version of the original time series is formed by adding the bootstrapped
remainder series to the pattern component. The different learning sets considered during
the application of bagging are then formed by generating multiple bootstrapped series. A
model is fitted to each of the learning sets and a simple mean of the prediction values is
taken as a combination of the individual model outputs [4].
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Original series

Bootstrapped series
Figure 3: Moving block bootstrapping of a time series (adapted from [48]).

.

Schapire [53] proposed an alternative ensembling method in 1990, known as boosting, in
which the performance of weak models are ‘boosted’ in order to achieve better performance.
As in the case of bagging, inputs to the same model are slightly adjusted in an attempt
to improve forecasting accuracy. Boosting requires time series data to be transformed
into a standard supervised learning format where each training instance is represented by
an input vector x and a corresponding target variable y. A sliding window approach is
employed to achieve this [37].

In contrast to bagging, boosting is a sequential and dependent process. Each training
instance has a weight associated with it at the start of the boosting procedure. During
each subsequent boosting iteration, these weights are adjusted based on how accurately
the forecasting model has predicted future values. The motivation for this approach is
that the ensemble should be focused on instances for which the forecasting model performs
poorly. Increasing the weights of these instances should theoretically result in an ensemble
model which better accounts for any bias in these instances during the ensuing boosting
iteration [64]. The final estimate of the boosting ensemble is calculated by taking a
weighted combination of the results obtained from base learners. Initial base learners
are usually outperformed by these types of ensembles, since the new model is aimed at
improving the weaknesses of the previous model during each iteration [1].

The popular XGBoost (extreme gradient boosting) [8], and LightGBM (light gradient
boosting machine) [29] algorithms, which are tree-based models, are based on Schapire’s [53]
original boosting procedure. LightGBM and XGBoost both employ gradient-boosted de-
cision trees. Boosting procedures typically outperform bagging procedures when there is
less noise in the training data, although boosted ensembles are prone to overfit data which
exhibit significant noise [1].

In order to reduce the size of an ensemble (i.e. the number of models included in the
ensemble), ensemble pruning may be applied before combining the models [58]. The
ultimate goal of this process is to select the best subset of models from the set of base
learners initially considered [47].

The efficiency and forecast accuracy of an ensemble may be improved as a result of ensem-
ble pruning. More computational power is naturally required when an ensemble includes a
large number of models. The predictive performance of an ensemble depends on the mod-
els included in the ensemble. Poorly performing models included in an ensemble may have
a degrading effect on the performance of the ensemble. Model diversity is also reduced
when ensembles include similar models. Pruning poorly performing models by excluding
them from the ensemble, while model diversity is also ensured, is therefore an effective
technique for model ensembling [58].
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The following categorisation of pruning methods has been proposed by Tsounakas et
al. [58]:

1. Ranking-based methods, where some evaluation function is used to rank models, and
selection occurs based on the resulting ranking,

2. clustering-based methods, where models are first grouped together by some clustering
algorithm, which provide similar prediction results, after which ensemble diversity
is increased by pruning each identified cluster individually,

3. optimisation-based methods, and

4. other methods which do not fall in any of the above categories.

4 FPL squad recommendation model

This section is devoted to the derivation of a mixed-binary programming model for FPL
squad selection. The model is designed to generate a recommended squad composition for
any GW of the FPL season. It takes as unalterable historical input data the FPL squad
compositions of those GWs of the FPL season that have already elapsed (if any), as well as
performance score forecasts of FPL squad candidates for the remaining GWs of the season
and the attributes of the EPL players available for selection (such as their costs, their
team roles, and their EPL teams). The model then generates a recommendation as to the
player composition of the FPL squad during the GW in question, together with tentative
recommendations as to FPL squad compositions for all the GWs of the season remaining
after that. Application of the model therefore corresponds with a closing-window strategy
in the sense it is solved for each successive GW of the FPL season, upon which the
historical FPL squad compositions are recorded and an updated version of the tentative
future squad compositions for the remainder of the season is computed.

4.1 Sets employed in the model

Let T = {1, . . . ,Λ} index the GWs of the FPL season over which squad selection is planned
and let Ω ∈ T index the current GW for which the squad composition has to be resolved,
taking into account tentatively favourable future squad compositions over the remaining
GWs in the set TΩ = {Ω, . . . ,Λ}. Define the set

T ′
Ω =

{
∅ if Ω = 1,
{1, . . . ,Ω− 1} if Ω > 1

of past GWs. Note, therefore, that T ′
Ω ∪ TΩ = T . Also, let CΩ = {1, . . . , CΩ} index the

set of EPL players available for inclusion in the FPL squad during GW Ω. Each of these
players fulfils exactly one role in the squad, indexed by the set D = {1, 2, 3, 4}, with 1
denoting goalkeeper, 2 denoting defender, 3 denoting midfielder, and 4 denoting forward.
These roles are not considered to be time-dependent, because they represent particular
skill sets of players which are not easily changed without extensive training. Moreover, let

SΩ = {1, . . . , S(Ω)
n } index the collection of EPL teams, each containing a subset of players
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in CΩ. Recall that no more than three players in EPL team s ∈ SΩ may be present in the
FPL squad during GW t ∈ TΩ.

4.2 Model parameters

Denote the projected performance score of player c ∈ CΩ during GW t ∈ TΩ by pc,t and
let kc,t be the cost of including player c ∈ CΩ in the FPL squad during GW t ∈ TΩ. Also,
let rd be the required number of players fulfilling role d ∈ D in the FPL squad.

Furthermore, let B be the budget available for player inclusion in the FPL squad at any
decision point during the season. The FPL requires that the total cost of players included
in the team at any one time should never exceed B. Whenever a player is included
in the team, the current cost associated with that player is incurred, while if a player
leaves the team, the current cost of that player becomes available again for use to procure
replacements. Also, denote the amount of money that remains unspent at decision point
t ∈ T by bt.

Suppose that all past (unalterable) squad inclusion decisions are captured by the param-
eters

xc,t =

{
1 if player c ∈ CΩ was included in the FPL squad during GW t ∈ T ′

Ω,
0 otherwise,

yc,t =

{
1 if candidate c ∈ CΩ was brought into the FPL squad for GW t ∈ T ′

Ω,
0 otherwise

and

zc,t =

{
1 if player c ∈ CΩ was removed from the FPL squad for GW t ∈ T ′

Ω,
0 otherwise.

Also, define the binary parameters

αc,d =

{
1 if player c ∈ CΩ fulfils role d ∈ D in the FPL squad,
0 otherwise

and

βc,s =

{
1 if player c ∈ CΩ is a member of EPL team s ∈ SΩ,
0 otherwise.

It is a working assumption that player c ∈ CΩ remains in EPL team s ∈ SΩ for all GWs
t ∈ TΩ. Moreover, denote the (actual past or projected) performance score of player c ∈ CΩ
during GW t ∈ T by pc,t and let kc,t be the (actual past or projected) cost of including
player c ∈ CΩ in the FPL team during GW t ∈ T .

The nested relationship C1 ⊆ C2 ⊆ C3 · · · ⊆ CΛ between the EPL teams is assumed. That
is, members can only be added to an EPL team from any GW to the next (no players are
removed during any GW). If a player c only becomes available during some GW t′ ∈ TΩ,
then the performance score and cost of that player is merely set to pc,t = 0 and kc,t = M ,
respectively, where M is a large positive value, for all t = 1, . . . , t′−1. Similarly, if a player
c were no longer to be available for FPL squad inclusion from some GW t∗ ∈ T onwards,
then the performance score and cost of that player is merely set to pc,t = 0 and kc,t = M ,
respectively, for all t ∈ {t∗, . . . ,Λ}.
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4.3 Model variables

Define the binary decision variables

xc,t =

{
1 if player c ∈ CΩ is included in the FPL squad during GW t ∈ TΩ,
0 otherwise,

as well as the binary auxiliary variables

yc,t =

{
1 if player c ∈ CΩ is brought into the FPL squad for GW t ∈ TΩ+1,
0 otherwise

and

zc,t =

{
1 if player c ∈ CΩ is removed from the FPL squad for GW t ∈ TΩ+1,
0 otherwise.

4.4 Model constraints

The linking constraint set

xc,t − xc,t−1 ≤ yc,t,

{
c ∈ C1, t ∈ T2 if Ω = 1
c ∈ CΩ, t ∈ TΩ if Ω > 1

(6)

is required so as to ensure that yc,t = 1 if xc,t = 1 and xc,t−1 = 0, while the linking
constraint set

xc,t−1 − xc,t ≤ zc,t,

{
c ∈ C1, t ∈ T2 if Ω = 1
c ∈ CΩ, t ∈ TΩ if Ω > 1

(7)

ensures that zc,t = 1 if xc,t−1 = 0 and xc,t = 1. Moreover, the constraint∑
c∈CΩ

xc,Ω = 15 (8)

ensures that the FPL squad size is fifteen during GW Ω, while the constraint set

∑
c∈CΩ

yc,t −
∑
c∈CΩ

zc,t = 0,

{
t ∈ T2 if Ω = 1
t ∈ TΩ if Ω > 1

(9)

is required to ensure that the FPL squad size remains unaltered over the remainder of
the season. It is assumed that at most δt free player substitutions may be affected during
GW t ∈ TΩ, after which a penalty of four performance score points is incurred for each
additional player substitution. This penalty scheme is enforced by imposing the constraint
set ∑

c∈CΩ

yc,t +
∑
c∈CΩ

zc,t ≤ 2(δt + σt),

{
t ∈ T2 if Ω = 1
t ∈ TΩ if Ω > 1,

(10)

where σt represents the number of player substitutions over and above the free number δt
of player substitutions available during GW t ∈ TΩ, which therefore has to be penalised
in the objective function.
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The constraint set

∑
c∈CΩ

kc,txc,t + bt =


B for t = 1 if Ω = 1∑

c∈CΩ kc,t−1xc,t−1 + bt−1 for all t ∈ T2 if Ω = 1∑
c∈CΩ kc,t−1xc,t−1 + bt−1 for all t ∈ TΩ if Ω > 1

(11)

further fulfils the role of budgetary conservation of flow constraints, while the constraint
set ∑

c∈CΩ

αc,dxc,t = rd, d ∈ D, t ∈ TΩ (12)

ensures that exactly rd players fulfil role d ∈ D in the FPL squad during GW t ∈ TΩ. The
constraint set ∑

c∈CΩ

βc,sxc,t ≤ 3, s ∈ SΩ, t ∈ TΩ (13)

ensures that no more than three members of EPL team s ∈ SΩ are included in the FLP
squad during GW t ∈ TΩ.

Finally, the following domain constraint sets are imposed:

xc,t ∈ {0, 1}, c ∈ CΩ, t ∈ TΩ, (14)

yc,t, zc,t ∈ {0, 1},
{

c ∈ C1, t ∈ T2 if Ω = 1,
c ∈ CΩ, t ∈ TΩ if Ω > 1,

(15)

σt ≥ 0,

{
t ∈ T2 if Ω = 1,
t ∈ TΩ if Ω > 1,

(16)

bt ≥ 0, t ∈ TΩ. (17)

4.5 Model objective

The model objective is to

maximise Z =
∑
c∈CΩ

∑
t∈T

pc,txc,t − 4
∑
t∈T2

σt. (18)

The total projected performance score of all players included in the FPL team over all
GWs is therefore maximised, while a penalty of four points is incurred during each GW for
which the number δt of free substitutions is exceeded, and so the total penalty incurred has
to be minimised (unless such a penalty is sufficiently cross-subsidised by the anticipated
performance scores of the players involved in the substitutions).

5 Case study

The efficacy of the forecasting methods described in §3, when applied in the context of
the mathematical model of §4, is evaluated in this section in the form of a case study
involving real data obtained from the 2020/2021 FPL season. The case study allows for a
retrospective comparative evaluation of the relative performance of FPL squad selections
recommended by the model, based on forecast player performances, with the performances
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of actual participants during the 2020/2021 FPL season. The section opens in §5.1 with a
brief review of the FPL rules and a background discussion in §5.2 on the data pertaining
to the case study. The results returned by the player performance forecasting methods
described in §3 are then presented for the 2020/2021 FPL season, compared and discussed
in §5.3. A brief discussion follows in §5.4 of the implementation of the model presented
in §4, after which the model results are reported and placed in the context of the actual
FPL competition pertaining to the 2021/2021 season in §5.5.

5.1 The rules of the FPL

This section contains a brief summary of the FPL rules, which are necessary to understand
in the context of the case study in order to grasp the method of player performance
quantification as a function of time in the FPL. After describing the composition of the
initial squad in §5.1.1 and that of a required so-called opening-eleven subsquad in §5.1.2,
the rules governing player transfers into and out of the squad are summarised in §5.1.3.
Thereafter, the notion of playing special FPL chips is discussed in §5.1.4 and the schedule
according to which decision deadlines are enforced in the FPL is described in §5.1.5.
Finally, the method of scoring FPL player performance is recounted briefly in §5.1.6, and
this is elaborated upon in the appendix at the end of the paper.

5.1.1 Selecting the initial squad

Managers are required to select an initial FPL squad of fifteen players (two goalkeepers,
five defenders, five midfielders, and three forwards) from a large pool of EPL players. As
mentioned in the introduction, each player has a monetary value associated with him (the
cost of being included in the manager’s squad) which typically ranges between £4 million
and £14 million. The total value of all fifteen players in the manager’s initial squad may
not exceed £100 million. Moreover, managers may only select up to three players from
any one of the twenty EPL teams.

5.1.2 Squad composition

Among the fifteen players selected for the FPL squad, eleven players have to be selected
before each GW deadline — typically 90 minutes before the kick-off time of the first
(EPL) match of the GW — in order to form a manager’s FPL starting-eleven squad. All
manager points for the GW are scored by these eleven players. In the case where some
of the starting-eleven squad players do not play (in the EPL) during that GW, they may
automatically be substituted by the remaining four players not included in the starting-
eleven squad. Based on priorities specified by the manager, automatic substitutions are
processed at the end of the GW, as follows:

• If the starting-eleven goalkeeper does not play during the GW, he is substituted by
the replacement goalkeeper (if the replacement goalkeeper played during the GW).

• If any of the outfield players (who are not goalkeepers) do not play during the GW,
they are substituted by the highest-priority outfield substitute who played during
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the GW, provided that this does not violate the squad formation rules. These rules
specify that the starting-eleven squad can play in any formation, provided that one
goalkeeper, at least three defenders and at least one forward are selected at all times.

The manager is also required to select a captain and a vice-captain among the starting-
eleven squad. The captain’s score is doubled for the particular GW. In the case where the
captain plays zero minutes during the GW, the vice-captain assumes the role of captain.
If both the captain and the vice-captain play zero minutes during a GW, then no player’s
score is doubled.

5.1.3 Squad transfers

After the manager has selected an initial squad, (s)he is allowed to affect transfers to the
squad by buying and selling players via a so-called transfer market. Unlimited transfers
may be performed at no cost, until the first GW deadline. After the first GW deadline,
however, managers receive one free transfer per GW. (Recall that four points are deducted
from the manager’s total score for each additional transfer made over and above this
allowed number of free transfers during the same GW.) In the case where a manager
decides not to use the free transfer, an additional free transfer is allowed during the
following GW. If this saved free transfer is again not utilised during the following GW, it
is carried over to the next GW, and so on, until used. Managers may, however, never have
more than one saved free transfer during any GW.

Player costs change during the FPL season based on the popularity of the players in the
transfer market. If many managers include a particular player in their squads, the player’s
popularity and hence his cost increases. Furthermore, player costs are fixed between the
end of an FPL season and the start of the next FPL season.

5.1.4 FPL chips

The notion of using FPL chips may be understood as an opportunity to multiply a man-
ager’s points accumulated during a particular GW with a view to enhance a manager’s
squad performance over the season. At most one chip can, however, be played during any
single GW. Four FPL chips are available to managers to choose from, as summarised in
Table 3.

Chip Effect

Bench Boost The points scored by the substitute players during the next
GW are included in the manager’s total.

Free Hit Unlimited free transfers can be made during a single GW.
At the next deadline, the squad is, however, returned to
how it was at the start of the GW.

Triple Captain The captain’s points are tripled instead of doubled during
the next GW.

Wildcard All transfers (including those already made during the GW)
are free of any penalty score incurred.

Table 3: The available FPL chips and descriptions of their effects.
.
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The Bench Boost and Triple Captain chips may be used only once during the course of a
season and may be cancelled at any time before the relevant GW deadline. The Free Hit
chip may also be used only once per season, is played when confirming player transfers,
and cannot be cancelled after confirmation. The Wildcard chip may be used twice per
season. The first Wildcard is available from the start of the FPL season, usually until
28 December. The second Wildcard becomes available after this date, in anticipation of
the opening of the January transfer window, and remains available until the end of the
FPL season. The Wildcard chip is played when confirming transfers that cost points and
cannot be cancelled once played. When playing either a Wildcard or Free Hit chip, any
saved free transfers from previous GWs are lost immediately.

5.1.5 FPL deadlines

All changes to a manager’s team (including the starting-eleven squad, transfers, captain
selection and the specification of substitution priorities) have to be made by the GW
deadline in order to take effect for the set of matches played during the GW. There are
38 GWs throughout an FPL season. This number is based on the fact that twenty teams
participate in the EPL each season and each team plays two matches against every other
team (one game at their home stadium, and one game at an away stadium, against the
same opposing team) — 19× 2 = 38 matches.

5.1.6 FPL scoring

During an FPL season, players are allocated points based on their real-world performances
in the EPL. As mentioned in the introduction, their performances are based on actions
performed during EPL matches. Each action has a specific number of points associated
with it, as described in some detail in the appendix at the end of the paper. These points
measure the performance of an FPL player and the historical points allocations of each
player are available as a performance time series for the player.

5.2 Input data pertaining to the 2020/2021 FPL season

FPL data acquired by the authors spanned multiple seasons over the period 2016–2021 and
are publicly available5. These data sets contain information on FPL player performance,
player attributes (i.e. their names, positions, EPL clubs, costs during each GW and a
variety of other FPL information), the fixtures of the FPL season, and general information
on teams participating in the EPL. The overall performance of each player also formed
part of the data, as computed by the FPL according to the scoring method described in
the appendix. The data sets of the 2016/2017 to 2019/2020 FPL seasons were reduced
to include only those players participating in the most recent FPL season (2020/2021)
for which data were available. This was done in order not to have to forecast player
performance for players who could not be included in the FPL squad during the 2020/2021
season, because they no longer competed in the EPL.

5Available at: https://github.com/vaastav/Fantasy-Premier-League
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The resulting five seasons of data were partitioned in the manner illustrated in Figure 4.
The first four seasons, spanning GW 1 to GW 152, formed the so-called training and
validation set on which the relative cross-validated performances of the player performance
forecasting models were evaluated. The training and validation set sizes were chosen so
as to be large enough that the forecasting models would be afforded a realistic chance to
predict the performance of each player over an entire FPL season relatively accurately.
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Figure 4: Partitioning of the historical performance data for the validation case study.

The player performances from GW 153 to GW 190 formed the so-called comparison set in
terms of which the forecast performances returned by the forecasting methods of §3 and
the optimisation model of §4 were compared retrospectively with the actual performances
of managers participating in the FPL.

5.3 Forecasting player performance for the 2020/2021 FPL season

This section contains a brief description in §5.3.1 of the methodology adopted to train and
compare the various forecasting methods of §3 in respect of the training and validation set,
and a discussion in §5.3.2 of the process followed to ensemble top-performing combinations
of these methods for the purpose of predicting FPL player performance based on past data.

5.3.1 Determining model (hyper)parameters

A rolling origin cross validation approach towards determining algorithmic parameters was
adopted for the forecasting methods reviewed in §3. This approach was aimed at increasing
the robustness of the forecasting methods employed and improving the accuracy of the
final performance forecast for each FPL player. The rolling origin cross validation starting
point, forecasting horizon and stride were taken as illustrated in Figure 5.

The statistical methods employed included a number of baseline methods (i.e. naive mean
(Naive mean), seasonal naive (Naive last) and naive drift (Naive drift)) as well as ETS
methods (EXP, EXP seas, EXP trend, EXP seas trend, and Theta), and an ARIMA
method. In the case of the ARIMA method, the Auto ARIMA algorithm was employed
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Figure 5: Input parameters required for cross validation during the training of the fore-
casting methods of §3.
as the sole ARIMA method. For the baseline methods, seasonal adjustments were imple-
mented in the case of seasonal data.

A number of supervised machine learning methods were also implemented during the case
study, namely tree-based methods (which included a random forest (RF), the k-nearest
neighbours (KN) algorithm, the XGBoost (XGB) algorithm, the LightGBM (LGBM) algo-
rithm) and linear regression (LR). The implementation of all of these methods was based
on the time series reduction approach towards applying machine learning methods to time
series data.

The performance of a particular forecasting method was evaluated in terms of its mean
cross-validated error score. In cases where the forecast horizon extended past the available
historical performance data, a reduced number of observations were merely included in
the error score calculation, as illustrated in Figure 5.

The mean absolute standard deviation (MASE) performance measure was adopted when
evaluating the relative performances of different forecasting methods in order to determine
which methods may be labelled as appropriate for each time series. The MASE was
chosen due to the intermittent nature of some of the time series. During this process,
the parameters of the forecasting algorithms were also tuned by means of a grid search.
The distributions of cross validated performance scores achieved by the various methods
during training are illustrated by means of box plots in Figure 6.

5.3.2 Model building

An automated approach towards model building was adopted due to the large number
of time series which had to be forecast. This automated approach entailed evaluating
the relative performances of all the possible ensemble combinations of the three best-
performing forecasting methods (as well as the individual performance of each method)
for each player’s performance time series. The best-performing ensemble or individual
method was then taken as the final model ensemble or forecast model for each FPL player.
The performances of each individual forecasting method, as well as ensembles represented
by the sets Ensemble 1 = {Method 1,Method 2}, Ensemble 2 = {Method 1,Method 3},
Ensemble 3={Method 2,Method 3}, and Ensemble 4={Method 1,Method 2,Method 3}
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Method
Figure 6: An evaluation of the relative cross-validated performances of the different time
series forecasting methods.

were therefore evaluated in respect of each FPL player. The MASE performance measure
was again adopted when evaluating the performances of the ensembled methods, based on
a rolling origin cross validation. The results are presented in Figure 7. It is clear that the
ensembled methods performed better than the individual forecasting methods.

The best-performing forecasting method (either an individual method or an ensemble),
in terms of MASE score, was chosen for each FPL player as the final forecasting model
for that player. Not all FPL players had enough data available for the (hyper)parameter
tuning and model building phases of the aforementioned forecasting process, since these
players had yet to compete in a season of the EPL on which the FPL is based. For these
players, the best performing ensemble method for a player in a similar playing position
and in the same EPL team was employed as the final forecasting model.

The final performances of the forecasting models are illustrated graphically in Figure 8 by
means of box plots of the MASE scores over all GWs of the 2020/2021 FPL season. It
is clear from the figure that the MASE score decreases over the course of the 2020/2021
FPL season, indicating that the accuracy of the forecasts increased from GW 153 to GW
190, as the forecasting horizons decreased.

5.4 FPL squads recommended for the 2020/2021 FPL season

Upon taking Λ = 190 and having forecast the performance scores pc,Ω, . . . , pc,190 for each
player c in the set of CΩ = 533 EPL players for each of the GWs remaining in the 2020/2021
FPL season at our disposal, the model of §4 was invoked iteratively for Ω = 153, . . . , 190
to determine FPL squads (as well as a provisional recommendation of FPL squads for the
following weeks of the 2020/2021 season).
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Method

Figure 7: The relative cross-validated performances of the different time series forecasting
methods, as well as method ensembles.
.

A simple binary programming model (called the starting eleven model) was employed to
suggest a starting eleven from the FPL squad associated with each GW. The objective of
this model was to

maximise Z =
∑
c∈CΩ

pcxcsc, (19)

where pc denotes the performance score forecast for player c, and

sc =

{
1 if player c is included in the starting eleven,

0 otherwise

is a decision variable, while

xc =

{
1 if player c is recommended for inclusion in the FPL squad,

0 otherwise

is a parameter.
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Figure 8: MASE scores for performance forecasts over the entire 2020/2021 FPL season.

The model constraints are ∑
c∈CΩ

sc = 11, (20)

∑
c∈CΩ

Gcsc = 1, (21)

∑
c∈CΩ

Dcsc ≥ 3, and (22)

∑
c∈CΩ

Fcsc ≥ 1, (23)

where

Gc =

{
1 if player c is a goalkeeper,

0 otherwise.

Similarly, the parameters Dc and Fc are assigned the values 1 if player c is a defender
or forward, respectively. Constraints (20)–(23) were included so as to ensure that all the
required positions are filled in accordance with the FPL rules.

The captain and vice-captain were chosen as the players in the squad with the largest and
second largest forecast performance scores. When a player in the starting eleven did not
play during the GW for which he was chosen, he was replaced by a player from the bench,
while ensuring that the constraints pertaining to the starting eleven are still satisfied.
The substitute order was based on a ranking of those players not in the starting eleven
according to decreasing forecast performance score.

Recall that the free hit and wildcard chips allow the FPL manager to make unlimited trans-
fers, without incurring any penalty for exceeding the team transfer allowance specification.
Therefore, two game weeks were identified during which the team transfer specification
was set to 15, indicating that all the FPL players included in the FPL squad could poten-
tially be transferred without incurring a penalty point reduction. Since the FPL manager
may decide whether or not to use FPL chips, we opted to use the wildcard, bench boost
and triple captain chips.
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Remaining FPL score FPL score
GW budget (no penalty) Transfers Penalties (penalties included)

153 52 53 – 0 53
154 32 43 3 8 35
155 2 86 2 4 82
156 37 73 3 8 65
157 17 99 5 16 83
158 30 82 3 8 74
159 26 63 2 4 59
160 1 71 7 24 47
161 5 74 3 8 66
162 13 83 3 8 75
163 77 84 6 20 70
164 18 89 5 16 73
165 28 59 11 0 59
166 7 87 7 24 63
167 7 72 0 0 72
168 6 66 5 16 50
169 35 107 6 20 87
170 14 57 3 8 49
171 20 60 3 8 52
172 41 60 4 12 48
173 26 79 8 28 51
174 15 83 5 16 67
175 9 69 3 8 61
176 1 65 5 16 51
177 28 51 2 4 47
178 17 54 13 0 54
179 22 100 4 12 88
180 66 74 3 8 66
181 6 59 7 24 35
182 1 70 2 4 66
183 7 49 5 16 33
184 31 45 3 8 37
185 2 60 5 16 44
186 8 49 1 0 49
187 13 103 9 32 71
188 34 85 7 24 61
189 67 86 4 12 74
190 1 98 3 8 90

Total 2 755 170 448 2 307

Table 4: Case study results for the 2020/2021 FPL season.
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A summary of statistics associated with the FPL squads recommended by the model of
§4 for the GWs of the 2020/2021 FPL season may be found in Table 4. The remaining
budget, number of transfers and the FPL score achieved for all GWs of the 2020/2021
FPL season are also shown in the table.

Note that the number of transfers during GWs 165 and 178 (the thirteenth and twenty
sixth GWs of the 2020/2021 FPL season, respectively) are much higher than for the other
GWs. This is a result of the implementation of the FPL chips. The wild card chip was
implemented during GWs 165 and 178, since these points partitioned the planning horizon
into three sections of approximately equal length. The triple captain and bench boost chips
were randomly used during any of the last GWs of the season since the forecasting models
were expected to be more accurate during the final stages of the season. GW 187 (the
thirty fifth GW of the 2020/2021 FPL season) was chosen for this purpose — it was also
decided to use these two FPL chips together to maximise their effect.

5.5 Appraisal of results achieved for the 2020/2021 FPL season

In order to evaluate the quality of our results above for the 2020/2021 FPL season, an
optimal FPL squad was selected for each GW retrospectively, based on actual player
performance, in the sense that a perfect “forecast” was employed after the fact. The
optimal score achieved, along with the forecast score and the score actually achieved by
our model for the 2020/2021 FPL season are shown in Figure 9.
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Figure 9: Scores over the entire 2020/2021 FPL season.

The relative quality of our results are summarised in Table 5. A total score of 2 307 was
obtained by the model of §4, which would have resulted in an FPL rank of 336 193. A
total of 8 240 321 FPL managers participated during the 2020/2021 FPL season, and so
the forecasting methods of §3, in conjunction with the model of §4, would have allowed us
to finish in the top 4.08% globally.

Score Rank Percentile

Perfect forecast 4 501 1 < 0.01%
Best FPL manager 2 680 1 < 0.01%
The model of §4 2 307 336 193 4.08%

Table 5: Scores and ranks pertaining to the 2020/2021 FPL season.
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We would likely have outperformed Dykman [18], who also employed time series forecasting
methods to predict player performances but only optimised FPL squad selection one week
in advance (i.e. without adopting an optimisation horizon stretching to the end of the
season). The ranking achieved by Dykman [18] was 393 762 (based on a total score of
2 119), for a percentile of 6.7% during the 2017/2018 FPL season in which 5.2 million FPL
managers participated.

5.6 Discussion

The results obtained during the forecasting process revealed which forecasting methods
are better suited for forecasting FPL player performances. It was found that the EXP,
Croston, EXP trend, EXP seas, Auto Arima, Naive mean and LGBM algorithms per-
formed relatively well in respect of the FPL data. Furthermore, the forecasting results
showed that the ensembled forecasters outperformed all other single forecasting methods.

The optimisation model of §4 returned promising results. Although the model is exact,
it only placed within the top 4.08% of all FPL managers for the 2020/2021 FPL season
because the quality of the model results depends on the quality of the forecast input data.

The computation time (measured in hours) required by the model of §4 is illustrated
graphically in Figure 10. It is clear that the computation time significantly decreased as
the GWs progressed towards the end of the FPL season, as expected. This decrease in
computation time was a result of shorter and shorter look-ahead periods remaining in the
season as the GWs elapsed towards the end of the FPL season.
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Figure 10: The computational burden associated with solving the model of §4.

6 Conclusion

In this paper, various forecasting methods were employed in conjunction with a combina-
torial optimisation model to generate decision support for managers participating in the
FPL. The forecasting methods were implemented in Python as part of the sktime package
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while the optimisation model was implemented in CPLEX. As expected, the branch-and-
cut method employed by CPLEX required considerable solution times at the start of the
FPL season, but this decreased as the season progressed.

A practical case study was performed by applying the forecasting methods and optimisa-
tion model to historical FPL data dating from 2016 to 2021. After having forecast FPL
player performance scores for the 2020/2021 FPL season, the optimisation model was in-
voked to recommend high-quality FPL squad selections for each GW of the 2020/2021 FPL
season. The overall optimisation approach proved beneficial in recommending FPL squad
selections that would have placed an FPL manager in the top 4.08% of all participants
during the 2020/2021 FPL season.
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Appendix: FPL points scoring

Each action of a player in an EPL match has a specific number of FPL points associated
with it, as summarised in Table 6.

An assist is awarded to the player from the goal scoring team who makes the final pass
before a goal is scored. Such an assist is awarded irrespectively of whether the pass was
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Points Action

1 For playing up to 60 minutes
2 For playing 60 minutes or more (excluding stoppage time)
6 For each goal scored by a goalkeeper or defender
5 For each goal scored by a midfielder
4 For each goal scored by a forward
3 For each goal assist
4 For a clean sheet by a goalkeeper or defender (zero goals against their team)
1 For a clean sheet by a midfielder (zero goals against their team)
1 For every three shot saves by a goalkeeper
5 For each penalty save by a goalkeeper

–2 For each penalty miss by an outfield player
1–3 Bonus points for the best players in the match
–1 For every two goals conceded by a goalkeeper or defender
–1 For each yellow card
–3 For each red card
–2 For each own goal

Table 6: Actions corresponding to FPL points earned during EPL matches.

intentional (i.e. it actually created a goal-scoring opportunity) or unintentional (i.e. the
goal-scoring player first had to dribble the ball before scoring, or an inadvertent touch or
shot created the chance). If an opposing player touches the ball after the final pass just
before a goal is scored, significantly altering the intended destination of the ball, then no
assist is awarded. Should a touch by an opposing player be followed by a defensive error
by another opposing outfield player, then no assist is awarded. Also, in the case where
the goal scorer loses and then regains possession, no assist is awarded. Other intricacies
of awarding assists to players are governed by the following three rules:

Rebounds. If a shot on goal is blocked by an opposing player, saved by the goalkeeper,
or hits the woodwork of the goal box, and a goal is then scored from the rebound,
an assist is awarded.

Own goals. If a player shoots or passes the ball and thereby forces an opposing player
to put the ball in his own net, then an assist is awarded.

Penalties and free-kicks. The player earning the penalty or free-kick is awarded an
assist if a goal is scored directly from the penalty or free-kick, but not if he takes it
himself, in which case no assist is awarded.

A clean sheet is awarded to a player for not conceding a goal whilst on the field and playing
at least 60 minutes of the match. In the case where a player has been substituted in the
EPL match, and afterwards a goal is conceded, this does not affect any clean sheet bonus.

If a player receives a red card (resulting in the player no longer participating in the
remainder of the match), he will continue to be penalised for goals conceded by his team.
Red card deductions also include any points deducted for yellow cards.

A Bonus Points System (BPS) utilises a range of statistics in order to generate a BPS
score for every player. The three best performing players in each match are awarded bonus
points, with three points being awarded to the highest scoring player, two points to the
second highest scoring player, and one point to the third highest scoring player.
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Bonus point ties are resolved as follows:

1. If there is a tie for first place, Players 1 and 2 receive 3 points each, and Player 3
receives 1 point.

2. If there is a tie for second place, Player 1 receives 3 points, and Players 2 and 3
receive 2 points each.

3. If there is a tie for third place, Player 1 receives 3 points, Player 2 receives 2 points,
and Players 3 and 4 receive 1 point each.

Players score BPS points based on a different set of actions, as listed in Table 7. The
allocation of points for assists, clean sheets and receiving red cards are handled in the
same manner as described in Table 6.

Points Action

3 Playing less than or equal to 60 minutes
6 Playing more than 60 minutes

12 Goal scored by a goalkeeper or defender
18 Goal scored by a midfielder
24 Goal scored by a forward
9 Assists

12 Goalkeepers and defenders keeping a clean sheet
15 Saving a penalty
2 Saving a shot on goal
1 Successful open play cross
3 Creating a significant chance (a chance where the receiving player should score)
1 For every two clearances, blocks and interceptions (total)
1 For every three recoveries
1 Key pass
2 Net successful tackles (total of successful tackles minus unsuccessful tackles)
1 Successful dribble
3 Scoring a match winning goal
2 70 to 79% pass completion (at least 30 passes attempted)
4 80 to 89% pass completion (at least 30 passes attempted)
6 90%+ pass completion (at least 30 passes attempted)

–3 Conceding a penalty
–6 Missing a penalty
–3 Yellow card
–9 Red card
–6 Own goal
–3 Missing a significant chance
–3 Making an error which results in conceding a goal
–1 Making an error which results in an attempt at goal
–1 Being tackled
–1 Conceding a foul
–1 Being caught offside
–1 Shot off target

Table 7: Actions corresponding to FPL points earned during EPL matches.
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