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Received: 6 September 2022; Revised: 1 June 2023; Accepted: 7 June 2023

Abstract

It is widely noted that the Heston stochastic volatility model fails to capture the fat tails
often observed in daily equity returns. Adding random jumps improves the model’s ability
to capture extreme events. This extension is known as the Bates stochastic volatility jump
(SVJ) model. The model parameters for the Heston and Bates SVJ models are generally
calibrated to option prices inducing the so-called risk-neutral measure. However, in the
absence of a sufficiently liquid options market, one has to resort to calibration under the real-
world measure. In this paper, we calibrate the Heston and Bates SVJ models to historical
equity returns in the United States and South Africa using the efficient method of moments
(EMM). We then show how a real-world stochastic volatility model can be used in practice
to test a simple volatility targeting strategy. Our findings suggest that stochastic volatility
and jumps are both required to characterise equity returns in South Africa. Furthermore,
volatility targeting is an effective strategy that allows investors to manage the downside risk
of a portfolio.

Key words: Heston model, Bates stochastic volatility jump model, calibration, real-world measure,

efficient method of moments, volatility targeting

1 Introduction

Equity prices tend to fall sharply in times of economic crisis. Think back to 19 October
1987, Black Monday, when the Dow plummeted more than 20% in a single day, for example.
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Whether it be war, a global pandemic, or a great recession, there is no way of knowing
when a market crash will occur.

The seminal Black-Scholes [6] model used for the pricing of contingent claims, for example,
is based on the assumption of log-normal asset returns – the driving force of asset returns
in this model assumes a geometric Brownian motion (gBm). Such models are flawed in
this respect since they do not account for severe market shocks or the stochastic nature
of asset return volatility.

Strides have been made in the asset-pricing literature to account for the non-normality of
equity returns (see, Cont [8], for a discussion on statistical properties of asset returns).
The Heston [14] stochastic volatility model, for example, is frequently used in the pricing
of contingent claims based on equities. It provides a reasonably good calibrated fit to
the long-term implied volatility skew observed in the equity derivatives market (see, [12]).
However, for short maturities, the model fails to produce the steep slope of the skew (see,
for example, [9]). This indicates that the model is unable to account for short-term shocks
(so-called jumps) that may be caused by adverse market events. Statistical tests have
been proposed in [1] and [2] to verify whether jumps are present in financial time series.

A well-established model that can provide a good fit to the short-term skew is the Bates
[5] stochastic volatility jump (SVJ) model. The Bates SVJ model is an extension of
the classical Heston [14] model that adds random jumps based on a Poisson process.
Poklewski-Koziell [17] performed a detailed analysis of the Heston and Bates SVJ models
and showed that the Bates SVJ model produces a good fit to the S&P500 implied volatility
surface when compared to the Heston model. Note that Poklewski-Koziell calibrated the
Heston and Bates SVJ models to option prices (this calibration is said to be in the risk-
neutral pricing measure).

Models with jump dynamics are better at characterising markets with significant implied
volatility skews than models without jumps (see, [12]). However, past literature on jump
diffusion models tends to focus exclusively on calibration to option prices (i.e., the risk-
neutral measure). In the absence of a liquidly traded options market, calibration using
standard least-squares techniques to minimise the sum of squared differences between
market and model prices is infeasible. This is a common problem that plagues illiquid
option markets like South Africa. Another challenge is that the estimated density resulting
from the calibration to option prices can differ substantially from the estimated density
of the historical log returns (see, Visagie and Grobler [19]).

Calibration of continuous-time models to discrete historical observations has been explored
by Andersen, Benzoni, and Lund [3]; they applied the efficient method of moments (EMM)
technique of Gallant and Tauchan [11] to calibrate a class of SVJ models with Poisson
jumps of time-varying intensity to daily S&P500 returns. The EMM is a simulation-based
technique that estimates the continuous-time model parameters from the expectation of
the derivative of the log-likelihood function where the log-likelihood function takes the
form of a simpler discrete-time auxiliary semi-non-parametric model. Andersen et al.
[3] conclude that stochastic volatility and jumps are both important factors required to
characterise daily S&P500 returns.
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To our knowledge, there has been no attempt made to calibrate stochastic volatility mod-
els, including the Heston and Bates SVJ models, to historical equity returns in South
Africa (i.e., calibration to the so-called real-world measure). The literature tends to focus
solely on calibration to option prices (risk-neutral measure), which, in the context of South
African single stocks, for example, is typically impractical (as no generally liquid traded
market exists). We, therefore, view this as an excellent opportunity to contribute to the
asset-pricing literature with specific focus on calibration of stochastic volatility models in
illiquid markets.

The real-world measure is often neglected in favour of the risk-neutral measure due to
the pricing of contingent claims. However, the real-world measure is extremely useful and
important in risk-management and asset/liability applications (see, e.g., [18]); simulation-
based analysis of trading and investment strategies (see, [16]); analysis of so-called xVA
(counterparty credit, margin, and capital costs); investment based pricing and evaluation
of asset price behaviour; and product development, to name a few.

The goal of this paper is to calibrate the Heston and Bates SVJ models to historical
FTSE/JSE Top40 returns by making use of the EMM and to test which model is better at
characterising the evolution of equity-based risk and return in the South African market.
Furthermore, we show how a real-world stochastic volatility model can be used in the
context of portfolio management by testing a simple volatility targeting strategy.

The remainder of this paper is structured as follows, Section 2 presents the dynamics
for the Heston and Bates SVJ models as well as the EMM technique of Gallant and
Tauchan. Section 3 shows the calibration results of the EMM applied to the S&P500 and
FTSE/JSE Top40. Section 4 focuses on a practical application of real-world stochastic
volatility models by testing a volatility targeting strategy, and Section 5 concludes the
paper.

2 Stochastic volatility models

This section is divided into three parts. Subsection 1 is dedicated to the Heston stochastic
volatility model. Subsection 2 focuses on the Bates SVJ model, and Subsection 3 discusses
the EMM methodology of Gallant and Tauchan.

2.1 The Heston stochastic volatility model

Under the real-world probability measure, P, the Heston model is given by the system of
stochastic differential equations (SDEs)

dS(t) = �S(t)dt+
p
v(t)S(t)dWx(t);

dv(t) =
�
�� �v(t)

�
dt+ �v

p
v(t)dWv(t);

dWx(t)dWv(t) = �x;vdt; (1)

where � denotes the expected rate of return, � is the mean reversion speed of the variance,
�
� is the long-run mean of the variance, �v is the volatility of the variance, and �x;v is the
correlation between the stock and variance processes.
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Taking the log-transform x(t) = logS(t) and applying Itô’s lemma to the equations in (1),
we obtain

dx(t) =
�
�� 1

2
v(t)

�
dt+

p
v(t)dWx(t);

dv(t) =
�
�� �v(t)

�
dt+ �v

p
v(t)dWv(t);

dWx(t)dWv(t) = �x;vdt: (2)

We simulate 100,000 paths over 100 daily time steps from (2) using an Euler discretisa-
tion scheme to illustrate the impact of certain Heston model parameters on the returns
distribution at the end of 100 days. Figure 1 shows the impact of �v.

Figure 1: E�ect of �v on returns.

Note that the kurtosis of the returns distribution increases as �v increases (kurtosis values
of 3.13, 5.90, and 12.18 corresponding to �v values of 0.1, 0.5, and 0.9). Figure 2 illustrates
the impact of �x;v.

Figure 2: E�ect of �x;v on returns.

The parameter �x;v controls the skewness of the returns distribution – a negative value for
�x;v produces a negatively skewed distribution and vice versa.
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Even though the Heston model displays some desirable properties, it still underestimates
the kurtosis of returns observed in practice (see, [13]). Therefore, we consider the Bates
SVJ model next.

2.2 The Bates stochastic volatility jump model

Under the P-measure, the Bates SVJ model is presented by the system of SDEs

dS(t) =
�
�� ��S

�
S(t)dt+

p
v(t)S(t)dWx(t) + JS(t)dN(t);

dv(t) =
�
�� �v(t)

�
dt+ �v

p
v(t)dWv(t);

dWx(t)dWv(t) = �x;vdt; (3)

where N(t) is a Poisson process with jump intensity �. Furthermore, J denotes the
percentage jump size of the underlying where

log(1 + J) � N
�
log(1 + �S)� 0:5�2

S ; �
2
S

�
;

with �S and �S the mean and volatility of the jump size, and N (�; �) a normally distributed
random variable.

Taking the log-transform x(t) = logS(t) and applying Itô’s lemma to the equations in (3),
we get

dx(t) =
�
�� ��S �

1

2
v(t)

�
dt+

p
v(t)dWx(t) + log(1 + J)dN(t);

dv(t) =
�
�� �v(t)

�
dt+ �v

p
v(t)dWv(t);

dWx(t)dWv(t) = �x;vdt: (4)

Similar to what was done using the Heston model, we simulate 100,000 paths over 100
daily time steps from the equations in (4) to illustrate the impact of the jump parameters
on the returns distribution. Figure 3 shows the impact of �.

Figure 3: E�ect of � on returns.
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Note that the kurtosis of the distribution increases as � increases (kurtosis values of 3.12,
3.14, and 3.18 corresponding to � values of 0.5, 2.5, and 5). Figure 4 illustrates the impact
of the mean jump size �S .

Figure 4: E�ect of �S on returns.

Similar to the parameter �x;v, the mean jump size �S controls the skewness of the distri-
bution – a negative value for �S produces a negatively skewed distribution and vice versa.
Lastly, the Figure 5 shows the impact of the volatility of the jump size �S .

Figure 5: E�ect of �S on returns.

Note that the kurtosis of the distribution increases as �S increases (kurtosis values of 6.08,
6.21, and 6.34 corresponding to �S values of 0.05, 0.15, and 0.3).

It should be clear that the Bates SVJ model provides more flexibility than the Heston
model to capture additional features of returns. In the next subsection, we present the
EMM technique of Gallant and Tauchan that will be used to calibrate the Heston and
Bates SVJ models to historical equity returns.

2.3 Efficient method of moments

The EMM procedure is outlined in Andersen, Chung, and Sorensen [4]. Suppose there is
a historical time series Yt = fy1; :::ytg and the aim is to estimate the vector of stochastic
volatility model parameters � from this series. There is no analytical expression for the
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likelihood function of the Heston or Bates SVJ models. Therefore, the first step in the
EMM procedure is to choose an auxiliary model (score generator) with transition density
function f(ytjYt�1;�) parameterised by the pseudo parameter vector �. To this end,
we choose the semi-nonparametric density of Gallant and Nychka [10] where a leading
parametric term is chosen to capture the majority of the dependency in the conditional
mean and variance. The transition density function is then extended by adding Hermite
polynomials that capture any remaining non-Gaussian features in the time series. The
semi-nonparametric density is given by

fK(ytjYt�1;�) =

 
v + (1� v) [PK(zt)]

2R
R[PK(u)]2�(u)du

!
�(zt)p
ht
;

where v = 0:01 to avoid instability during the EMM estimation when PK(zt) = 0, �(�) is
the standard normal density function, and

zt =
yt � �tp

ht
;

with

�t = 0;

ht = ! + 
0y
2
t�1 + 
1ht�1 � GARCH(1; 1);

where �t and ht denote the conditional mean and variance, respectively. Note that �t
need not be zero, and ht may be specified by alternative discrete-time models like ARCH
or EGARCH (see, [4], for details).

The Hermite polynomials are given by:

PK(zt) =

KzX
i=0

aiz
i
t;

where a0 = 1 and Kz denotes the order of the Hermite polynomial. Note that the EMM
procedure requires the dimension of the pseudo parameter vector � to be greater than or
equal to the dimension of the stochastic volatility parameter vector �.

Once an auxiliary model has been chosen, the pseudo parameter vector � is estimated
using maximum likelihood. The maximum likelihood estimator �̂T satisfies the first-order
conditions

1

T

TX
t=1

@

@�
log f(ytjYt�1; �̂T ) =

1

T

TX
t=1

sf (Yt; �̂T ) = 0;

where sf (Yt; �̂T ) =
@
@� log f(ytjYt�1; �̂T ) denotes the score function of the auxiliary model.

The second step in the EMM procedure is to simulate a series ŷn(�), n = 1; :::; N , from
the stochastic volatility model for a given � and evaluate the sample moments at the fixed
maximum likelihood estimate �̂T , i.e.,

mN (�; �̂T ) =
1

N

NX
n=1

@

@�
log f(ŷn(�)jŶn�1(�); �̂T ):
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Andersen et al. [4] mention that mN (�; �̂T )! m(�; �̂T ) as N !1; hence, the simulated
time series should be large enough so that the Monte Carlo error can be ignored.

Finally, the vector of stochastic volatility parameters � is estimated by minimising the
objective function

’ = argmin
�

[mN (�; �̂T )
0Î�1
T mN (�; �̂T )]; (5)

where ÎT is a consistent estimator of the asymptotic covariance matrix I of the sample
pseudo score vector. The estimator ÎT is calculated as the outer product of scores, i.e.,

ÎT =
1

T

TX
t=1

@

@�
log f(ytjYt�1; �̂T )

@

@�
log f(ytjYt�1; �̂T )

0:

A major advantage of the EMM is that T multiplied by the minimised value in (5) follows
a �2 distribution with n� � n� degrees of freedom where n� and n� denote the number
of parameters in the semi-nonparametric and stochastic volatility models. Therefore,
a goodness-of-fit test can be performed by comparing the final estimate of the objective
function multiplied by the number of observations used in the calibration with the relevant
percentile from the �2 distribution. Andersen et al. [4] explain that the null hypothesis
in this case is that the model has been correctly specified. Hence, if the minimised value
in (5) multiplied by the number of observations is less than the critical value from the �2

distribution, the hypothesis is not rejected.

In the next section, we calibrate the Heston and Bates SVJ models to historical S&P500
and FTSE/JSE Top40 returns using the EMM.

3 Empirical results

This section is divided into two parts. The first subsection focuses on the S&P500 and
compares our EMM implementation of the Heston and Bates SVJ models to the results in
Andersen et al. [3]. The reason for this is to validate the accuracy of our implementation.
We further extend the analysis of Andersen et al. [3] by calibrating the Heston model over
different periods to test the stability of the model parameters. The second subsection uses
the EMM to calibrate the Heston and Bates SVJ models to the FTSE/JSE Top40 to test
which model is better at capturing risk and return in the South African equity market.

3.1 S&P500

The S&P500 is considered by many to be the best indicator of global equity market
performance. It consists of 500 leading companies that are publicly traded in the United
States. Andersen et al. [3] calibrated the Heston and Bates SVJ models using the EMM
over the period 02/01/1953 to 31/12/1996 to S&P500 returns. Figure 6 below shows the
daily historical closing prices for the S&P500 from 02/01/1953 to 31/12/1996.
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Figure 6: S&P500 historical closing prices.

Figure 7 below shows the daily log returns for the S&P500 from 02/01/1953 to 31/12/1996.

02
-01

-19
53

16
-12

-19
58

02
-12

-19
64

23
-12

-19
70

02
-12

-19
76

09
-11

-19
82

13
-10

-19
88

20
-09

-19
94

Date

0.20

0.15

0.10

0.05

0.00

0.05

0.10

Lo
g 

Re
tu

rn
s

S&P 500 Log Returns

Figure 7: S&P500 log returns.

The most significant event over the period 02/01/1953 to 31/12/1996 was Black Monday,
19 October 1987, when the S&P500 fell by more than 20%. Prior to Black Monday, equity
market behaviour was relatively stable. The concept of a volatility skew was unknown and
the assumption of log-normal returns seemed reasonable. Figure 8 below shows the daily
S&P500 log returns with the normal distribution superimposed over the returns.
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Figure 8: S&P500 and normal density.

It is clear from Figure 8 that the normal distribution cannot capture the high peaks and fat
tails of the S&P500 returns (sample kurtosis of 60.08). Assuming a log-normal distribution
of returns is, therefore, not consistent with historical equity behaviour and significantly
underestimates the size and frequency of equity price drops.

Our first goal is to reproduce the calibration results in Andersen et al. [3] for the Heston
and Bates SVJ models over the same period from 02/01/1953 to 31/12/1996 to validate
the accuracy of our EMM implementation. The results for the Heston stochastic volatility
model are shown below.

Heston stochastic volatility model

Table 1 below shows a comparison of the Heston model parameters based on our EMM
implementation to the parameters in Andersen et al. [3].

Parameter Andersen et al. Our implementation

� 0.0756 0.0768
� 0.0438 0.0485
� 3.2508 4.2142
�v 0.1850 0.1768
�x;v -0.5877 -0.4323
T’ 31.9400 15.6099

Table 1: Comparison of annualised calibrated Heston parameters.

The calibrated parameters achieved using our method and those of Andersen et al. [3]
align well. We do not expect to match their parameters exactly since we are likely using
a different optimisation routine and have access to better software compared to what was
available 20 years ago. The goodness-of-fit statistic, T’, is also shown in Table 1 for
completeness.

Interestingly, the goodness-of-fit statistic is significantly smaller in our implementation
than in Andersen et al. [3]. This indicates that our implementation of the Heston model
yields a better fit to the S&P500 returns than the Heston model in Andersen et al. [3].
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Figures 9 and 10 below show a visual comparison of the densities generated by the model
parameters in Table 1.

Figure 9: Comparison of densities under the calibrated Heston stochastic volatility model.

Figure 10: Comparison of calibrated Heston models and S&P500 densities.

Figure 9 indicates that the two sets of model parameters yield very similar results. Figure
10 shows that our implementation of the Heston model captures the peak of the S&P500
returns slightly better than Andersen et al. [3].

Table 2 below shows the first four statistical moments and the minimum/maximum values
generated by the Heston model compared to the S&P500.

Statistic S&P500 index Andersen et al. Our implementation

Mean 0.0301% 0.0231% 0.0235%
Std dev 0.8346% 0.7498% 0.6880%
Skewness -2.0220 -0.0179 -0.0066
Kurtosis 60.0830 4.0254 3.9219
Minimum -0.2290 -0.0379 -0.0349
Maximum 0.0871 0.0319 0.0310

Table 2: Calibrated Heston model daily statistics for the S&P500.
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The first two moments of the S&P500 (mean and standard deviation) are captured rela-
tively well by the Heston model. However, the Heston model substantially underestimates
the skewness and kurtosis over the period 02/01/1953 to 31/12/1996. The minimum and
maximum values are calculated by simulating a single trajectory for the log returns from
the Heston model over a long period. The minimum/maximum is then calculated from
the simulated return series. As explained by Andersen et al. [3], stochastic volatility on
its own is not adequate to describe the observed S&P500 returns.

Next, we extend the results of Andersen et al. [3] by calibrating the Heston model over
different periods spanning approximately 20 years to test the stability of the model pa-
rameters. Table 3 below shows the first four statistical moments and the minimum and
maximum values over each period.

Statistic 1950-1970 1960-1980 1970-1990 1980-2000 1990-2010 2000-2022

Mean 0.0342% 0.0117% 0.0264% 0.0520% 0.0224% 0.0174%
Std dev% 0.6740% 0.7508% 0.9861% 0.9996% 1.1724% 1.2474%
Skewness -0.6828 0.04194 -2.5083 -2.6223 -0.1980 -0.4009
Kurtosis 11.6208 7.5054 64.9265 62.9018 12.1684 13.5220
Minimum -0.0691 -0.0691 -0.2290 -0.2290 -0.0947 -0.1277
Maximum 0.0454 0.0490 0.0871 0.0871 0.1096 0.1096

Table 3: S&P500 daily statistics over di�erent periods.

The periods 1970 to 1990 and 1980 to 2000 both contain Black Monday and show substan-
tially different values for the skewness and kurtosis compared to the other periods. Not
even the global financial crisis of 2008 or the COVID-19 pandemic came close to the crash
of 19 October 1987. Table 4 below shows the calibrated parameters and goodness-of-fit
statistic for the Heston model using the EMM for each period.

Parameter 1950-1970 1960-1980 1970-1990 1980-2000 1990-2010 2000-2022

� 0.0816 0.0277 0.0670 0.1359 0.0891 0.0858
� 0.0744 0.0534 0.0769 0.0774 0.0602 0.1137
� 8.4560 4.8925 5.0140 5.0555 3.0968 4.9395
�v 0.2574 0.2341 0.2015 0.2266 0.2292 0.3747
�x;v -0.5416 -0.5703 0.0347 -0.4144 -0.8891 -0.8801
T’ 5.6453 2.9665 6.7840 22.8005 18.1143 7.2800
�2

0:05 9.4877 9.4877 9.4877 9.4877 9.4877 9.4877

Table 4: Calibrated Heston model parameters (annualised).

The expected return, �, can vary substantially between periods and follows a similar trend
to the mean of the S&P500 returns in Table 3. The Heston stochastic volatility parameters
(�, �, �v) are relatively stable over time. The correlation parameter, �x;v, shows a strong
negative relationship between returns and asset volatility except for the period 1970 to
1990. Interestingly, �x;v changes from 0.0347 in the period 1970 to 1990 to -0.4144 in 1980
to 2000. Both these periods include Black Monday. This instability suggests that the
estimation of �x;v is sensitive to outliers.
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The goodness-of-fit statistic shows interesting results. From Table 3, the goodness-of-
fit statistic suggests that the hypothesis that the observed data are realised from the
calibrated Heston model is not rejected for the periods 1950 to 1970, 1960 to 1980, 1970
to 1990, and 2000 to 2022. However, this hypothesis is rejected for the periods 1980 to
2000 and 1990 to 2010, which indicates that the calibration is not stable over time.

In the next section, we compare our implementation of the Bates SVJ model to the reslts
of Andersen et al. [3].

Bates stochastic volatility jump model

The Bates SVJ model adds three additional jump parameters, �, �S , and �S to the
standard Heston model. Andersen et al. [3] explain that the mean jump parameter, �S ,
is of less importance and poorly identified in general. Therefore, we follow Andersen et
al. [3] by imposing the restriction �S = 0. The Bates SVJ model in (4) then becomes

dx(t) =
�
�� 1

2
v(t)

�
dt+

p
v(t)dWx(t) + log(1 + J)dN(t);

dv(t) =
�
�� �v(t)

�
dt+ �v

p
v(t)dWv(t);

dWx(t)dWv(t) = �x;vdt; (6)

where

log(1 + J) � N
�
� 0:5�2

S ; �
2
S

�
:

Table 5 below compares the Bates SVJ parameters based on our implementation of
the EMM to that of the results in Andersen et al. [3] over the period 02/01/1953 to
31/12/1996.

Parameter Andersen et al. Our implementation

� 0.0766 0.0815
� 0.0438 0.0481
� 3.0240 3.6782
�v 0.1792 0.2133
�x;v -0.6220 -0.4926
� 5.0904 4.0147
�J 0.0134 0.0151
T’ 14.9000 2.3648

Table 5: Comparison of annualised calibrated Bates SVJ parameters.

Once again, the two sets of parameters align well. Based on our implementation, the
goodness-of-fit statistic decreases from 15.6099 under the Heston model to 2.3648 under the
Bates SVJ model. This indicates that both stochastic volatility and jumps are important
factors to consider when modelling S&P500 returns; this aligns with the findings reported
in Andersen et al. [3].
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Similar to the Heston calibration in Table 1, an interesting observation is that the goodness-
of-fit statistic based on our implementation is significantly smaller than Andersen et al.
[3], which suggests a better fit to the S&P500 returns. Figures 11 and 12 below show a
visual comparison of the densities generated by the model parameters in Table 5.

Figure 11: Comparison of densities under the calibrated Bates SVJ model.

Figure 12: Comparison of calibrated Bates models and S&P500 densities.

Figure 11 shows that the distributions generated by the Bates SVJ model using our pa-
rameters versus the parameters in Andersen et al. [3] yield similar results. Figure 12
shows that our implementation captures the peak of the S&P500 returns slightly better
than Andersen et al. [3]. Table 6 below shows the first four statistical moments and
the minimum/maximum values generated by the Bates SVJ model compared with the
S&P500.

Statistic S&P500 index Andersen et al. Our implementation

Mean 0.0301% 0.0239% 0.0209%
Std dev 0.8346% 0.7717% 0.7433%
Skewness -2.0220 -0.0133 -0.0923
Kurtosis 60.0830 4.6294 4.5946
Minimum -0.2290 -0.0498 -0.0460
Maximum 0.0871 0.0566 0.0407

Table 6: Calibrated Bates model daily statistics for the S&P500.
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The minimum and maximum values are calculated by simulating a single trajectory for
the log returns from the Bates SVJ model over a long period. The minimum/maximum is
then calculated from the simulated series. Adding jumps to the return process improves
the results for the skewness and kurtosis, but not nearly enough to capture the severe
market shock of 19 October 1987.

In the next section, we calibrate the Heston and Bates SVJ models to FTSE/JSE Top40
returns to test which model captures risk and return best in the South African market.

3.2 FTSE/JSE Top40

The FTSE/JSE Top40 is an index consisting of the 40 largest publicly traded companies
by market capitalisation in South Africa. Figure 13 below shows daily historical closing
prices for the FTSE/JSE Top40 from 30/06/1995 to 30/06/2022.
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Figure 13: FTSE/JSE Top40 historical closing prices.

Figure 14 below shows the daily log returns for the FTSE/JSE Top40 from 30/06/1995
to 30/06/2022.
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Figure 14: FTSE/JSE Top40 log returns.
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Figure 15 below shows the normal distribution superimposed over the daily FTSE/JSE
Top40 returns.
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Figure 15: FTSE/JSE Top40 and normal densities.

Note that the normal distribution is not able to capture the high peak and fat tails observed
in the empirical distribution of daily FTSE/JSE Top40 returns (sample kurtosis of 9.43).
Next, we calibrate the Heston model to daily FTSE/JSE Top40 returns.

Heston stochastic volatility model

Table 7 below shows the calibrated Heston parameters to daily FTSE/JSE Top40 param-
eters over the period 30/06/1995 to 30/06/2022 using the EMM.

Parameter Estimate

� 0.0982
� 0.2342
� 6.9424
�v 0.4782
�x;v -0.9364
T’ 13.4381
�2

0:05 9.4877

Table 7: Annualised calibrated Heston parameters.

Note that the asset-volatility correlation, �x;v, for the FTSE/JSE Top40 is much more
pronounced (negative) than the asset-volatility correlation for the S&P500. The goodness-
of-fit statistic suggests that the hypothesis that the observed data are realised from the
calibrated Heston model is rejected at a 5% level of significance.

Figure 16 compares the density generated by the Heston model parameters in Table 7 to
a kernel density estimate of the FTSE/JSE Top40.
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Figure 16: Comparison of densities under the Heston model.

Visually, the Heston model fits the FTSE/JSE Top40 density well. Table 8 below compares
the first four moments and minimum/maximum values generated by the Heston model
with the daily FTSE/JSE Top40 returns.

Statistic FTSE/JSE Top40 index Our implementation

Mean 0.0385% 0.0270%
Std dev 1.3290% 1.1679%
Skewness -0.4369 -0.1313
Kurtosis 9.4344 4.1614
Minimum -0.1429 -0.0585
Maximum 0.0845 0.0588

Table 8: Calibrated Heston model daily statistics for the FTSE/JSE Top40.

Similar to the results reported for the S&P500 in Table 2, the Heston model captures
the mean and standard deviation of the FTSE/JSE Top40 well. However, the model
underestimates the observed skewness and kurtosis. Next, we implement the Bates SVJ
model to test if jumps improve the calibration.

Bates stochastic volatility jump model

Table 9 below shows the calibrated Bates SVJ parameters to daily FTSE/JSE Top40
returns over the period 30/06/1995 to 30/06/2022 using the EMM.
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Parameter Estimate

� 0.0893
� 0.1815
� 5.4469
�v 0.4328
�x;v -0.8705
� 3.9973
�J 0.0147
T’ 4.7879
�2

0:05 5.9915

Table 9: Annualised calibrated Bates parameters.

Note that the jump parameter, �, indicates that jumps occur approximately four times per
year. The goodness-of-fit statistic suggests that the hypothesis that the observed data are
realised from the calibrated Bates SVJ model is not rejected at a 5% level of significance.
The Bates SVJ model is, therefore, a plausible data generating model for the FTSE/JSE
Top40. Figure 17 compares the density of the calibrated Bates SVJ model to a kernel
density estimate of the FTSE/JSE Top40.

Figure 17: Comparison of densities under the Bates SVJ model.

Once again, the two densities align well. Table 10 below compares the first four statistical
moments and minimum/maximum values generated by the Bates SVJ model with the
daily FTSE/JSE Top40 returns.

Statistic FTSE/JSE Top40 index Our implementation

Mean 0.0385% 0.0246%
Std dev 1.3290% 1.1532%
Skewness -0.4369 -0.2039
Kurtosis 9.4344 4.9364
Minimum -0.1429 -0.0714
Maximum 0.0845 0.0652

Table 10: Calibrated Bates model daily statistics for the FTSE/JSE Top40.



On the calibration of stochastic volatility models to estimate the real-world measure 83

The Bates SVJ model still underestimates the skewness and kurtosis observed in the
FTSE/JSE Top40, but improves the fit compared to that of the Heston model.

Given that the Bates SVJ model captures the higher order moments better than the Heston
model, we conclude that both stochastic volatility and jumps are required to characterise
equity returns in the South African market.

In the next section, we show how the real-world Bates SVJ model can be used in practice
by considering a simple volatility targeting strategy.

4 Volatility targeting

In this section, we extend the work of Khuzwayo and Maré [15] by implementing a
simulation-based approach to assess the risk and return of various volatility targeting
strategies in the South African equity market.

As explained by Khuzwayo and Maré, volatility targeting is an asset allocation strategy
that aims to keep the volatility of a portfolio stable by updating the allocation between a
risky asset and cash on a regular basis.

Let Π(t) denote the time t value of a portfolio consisting of a single risky asset (an equity
index) and cash. Mathematically, the value of the portfolio at time t+ dt can be written
as

Π(t+ dt) = wS(t)Π(t)

 
S(t+ dt)

S(t)

!
+ wC(t)Π(t)(1 + rdt) + qwS(t)Π(t)(1 + rdt);

where r is the rate earned on cash, q is the continuously compounded dividend yield per
annum; wS and wC are the equity and cash weights given by

wS(t) =
�Target

�Model(t+ 1)
; wC(t) = 1� wS(t):

Following Khuzwayo and Maré, we impose the restriction wS � 1 so that gearing (bor-
rowing funds to increase equity exposure) is not allowed.

At each time t, we must generate a volatility forecast for time t + 1. To do this, we fit a
GARCH(1,1) model (see, [7]) to each return series simulated from the Bates SVJ model.

To simplify matters and focus on equity, we use an interest rate of r = 0% to ignore
the effect of interest compounding. For the dividend yield, we set q = 2:5%, roughly
representing the long-term dividend yield of the equity market.

Figures 18 to 22 below illustrate a 10% volatility targeting strategy by simulating two
paths for the equity index from the Bates SVJ model using an Euler Monte Carlo scheme
over a period of one year (252 trading days):
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Figure 18: Bates SVJ equity forecast.

For each return series simulated from the Bates SVJ model, we fit a GARCH(1,1) model
to forecast the volatility. The GARCH(1,1) model is calibrated once every month to a
rolling 1000-day history of returns and used to predict 1-week volatility. This is illustrated
in Figure 19.

Figure 19: Weekly volatility forecast.

At the start of each week, we use the volatility forecast to calculate the equity/cash weights
and track the performance of an initial investment of R100.

Figure 20: Equity weight based on 10% volatility target.
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Figure 21: Cash weight based on 10% volatility target.

Figure 22: Portfolio value through time.

Note that the equity and cash weights are updated at the start of each week and held
constant for a one-week period.

Next, we scale the number of simulations to 1000 and test the performance of different
volatility targeting strategies over different investment horizons. We consider volatility
targets of 10%, 15%, and 20%, and investment horizons of one, three, and five years
and compare the performance to that of an equity-only holding strategy. Note that the
simulation-based approach allows us to analyse a distribution of returns. The distribution
and statistics for each investment horizon and volatility targeting strategy are shown
below.

One-year performance

Figures 23 and 24 compare the return and volatility distributions for the various volatility
targets and equity-only holding strategy over a 1-year investment horizon.
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Figure 23: 1-year returns.

Figure 24: 1-year volatility.

Table 11 shows the 1-year statistics for the various trading strategies. The results will be
discussed at the end of the section.

Statistic 10% vol target 15% vol target 20% vol target Equity only

Mean return 5.9035% 8.9714% 11.2965% 11.8627%
Mean of volatility 8.8023% 13.1699% 16.6214% 17.6328%

Volatility of volatility 1.0873% 1.6691% 2.6237% 3.3337%
Skewness -0.3488 -0.2320 -0.2628 -0.3214
Kurtosis 3.0587 2.8589 2.7879 2.9088
Minimum -33.5001% -46.0088% -55.4725% -60.3300%
Maximum 32.1040% 46.1876% 56.5016% 55.8077%

Table 11: Statistics for volatility targeting strategies over one year.

Three-year performance

Figures 25 and 26 compare the return and volatility distributions for the various volatility
targets and equity-only holding strategy over a 3-year investment horizon.
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Figure 25: 3-year returns.

Figure 26: 3-year volatility.

Table 12 shows the 3-year statistics for the various trading strategies.

Statistic 10% vol target 15% vol target 20% vol target Equity only

Mean return 5.9788% 8.7532% 10.5564% 10.9141%
Mean of volatility 9.2840% 13.7929% 17.0814% 18.0664%

Volatility of volatility 0.5179% 0.8613% 1.5903% 2.1366%
Skewness -0.0584 -0.0509 -0.1559 -0.2347
Kurtosis 2.9797 2.8436 2.8178 2.9164
Minimum -14.1057% -20.7017% -25.8108% -29.3130%
Maximum 25.7383% 36.8075% 41.1602% 41.1486%

Table 12: Statistics for volatility targeting strategies over three years.

Five-year performance

Figures 27 and 28 compare the return and volatility distributions for the various volatility
targets and equity-only holding strategy over a 5-year investment horizon.
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Figure 27: 5-year returns.

Figure 28: 5-year volatility.

Table 13 shows the 5-year statistics for the various trading strategies.

Statistic 10% vol target 15% vol target 20% vol target Equity only

Mean return 6.5284% 9.4335% 11.0569% 11.4293%
Mean of volatility 9.4985% 13.9930% 16.9624% 18.0113%

Volatility of volatility 0.2990% 0.5538% 1.1693% 1.6878%
Skewness 0.0483 0.0028 -0.1638 -0.3107
Kurtosis 3.3085 3.1773 3.1763 3.4514
Minimum -9.7357% -14.5351% -18.8936% -23.4266%
Maximum 21.8382% 30.0869% 34.7505% 35.3795%

Table 13: Statistics for volatility targeting strategies over �ve years.

Results discussion

There are a couple of interesting observations from the results. Firstly, the mean of the
volatility estimate is close to the volatility target for each of the investment horizons. Fur-
thermore, the volatility of volatility estimate decreases as the investment horizon increases.
This indicates that the volatility targeting strategy improves for longer investment hori-
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zons. Investors can, therefore, expect a targeted volatility with a greater level of certainty
for longer investment horizons.

Our results indicate that the volatility target strategy serves to reduce the likelihood of
extreme returns and reduces the volatility of volatility.

For all investment horizons, the risk and return of the portfolio increases as the volatility
target increases. The 10% volatility target has the lowest risk when viewing the mean of
volatility and volatility of volatility estimates, but also the lowest return. On the other
hand, an equity only-holding strategy has the highest risk but also the highest expected
return. Volatility targeting, therefore, gives investors an effective way of managing the
downside risk of a portfolio, but limits the upside potential as shown by the minimum and
maximum statistics.

Our findings are consistent with the results in Khuzwayo and Maré [15]. The simulation-
based framework introduced in this paper gives investors and fund managers a way of
testing portfolio strategies for a wide variety of stressed and benign market conditions.

5 Conclusion

In this paper, we calibrated the Heston and Bates SVJ models to historical S&P500 and
FTSE/JSE Top40 returns using the EMM technique of Gallant and Tauchan. First, we
confirmed the accuracy of our implementation by comparing our calibrated parameters
with Andersen et al. [3] by calibrating the Heston and Bates SVJ models over the period
02/01/1953 to 31/12/1996. Our results confirmed that stochastic volatility and jumps are
both required to characterise equity returns in the US equity market.

Next, we used the EMM to calibrate the Heston model over different periods to test the
stability of the model parameters. Our results suggest that the calibration is sensitive to
the input data used and not necessarily stable over time.

The EMM method was then used to calibrate the Heston and Bates SVJ models to
FTSE/JSE Top40 returns over the period 30/06/1995 to 31/06/2022. Our calibration
results suggest that both stochastic volatility and jumps are required to capture the be-
haviour of the South African equity market.

The final step was to show a practical application of the Bates SVJ model in the real-world
measure. We performed a simulation-based study of various volatility targeting strategies
and showed that the risk of a portfolio can be managed effectively by targeting a specific
volatility and regularly allocating an investment between a risky asset and cash.

The real-world measure is extremely useful to forecast risk and return. We hope that port-
folio managers will find use in our technique to identify future investment opportunities.
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