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Abstract

Finding the conditions under which packing algorithms succeed or fail with respect to a set of
test instances is crucial for understanding their strengths and weaknesses, and for automated
packing algorithm selection. This paper tackles the important task of objective packing
algorithm selection. A framework for understanding the relationship between critical features
of packing problem instances and the performance of packing algorithms is proposed. The
framework can be used to predict algorithm performance on previously unseen instances with
high accuracy and can be applied to find predictions in other instances of cutting and packing
problems. It can also be applied to determine the relative strengths and weaknesses of each
algorithm within the instance space. The effectiveness of the framework is demonstrated
using the two-dimensional strip packing problem as a case study.
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1 Introduction

Over the past few years, the development of fast and effective packing algorithms —
mainly employing heuristic and metaheuristic techniques — has been the major concern
of most packing-related research due to the complexity and combinatorial nature of the
problem. Various experimental studies have been reported in the literature demonstrating
the effectiveness of newly developed algorithms proposed by the authors in comparison
with previously published approaches [11, 33, 44]. The popular use of benchmark libraries
of packing instances (e.g. the repository of ESICUP [14]) helps to standardise the compar-
isons and performance evaluations of those algorithms.
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Assessment of packing algorithm performance is however difficult when the conclusions
depend on the chosen test instances. It has been documented that there is a lack of
diversity in the benchmark instances employed in the above-mentioned comparative studies
and there is a risk that algorithms are developed to perform well on these instances without
understanding the effect of benchmark characteristics on the performance of the algorithms
[2, 32]. As cautioned by Rakotonirainy [32], there is a need to consider the aspects of the
test problems employed during comparative algorithmic studies in order to avoid biased
conclusions with respect to the relative performance of algorithms. Moreover, a description
of the conditions under which an algorithm can be expected to succeed or fail is rarely
included in the study [32]. Furthermore, none of the available methods for selecting the
most appropriate algorithm to solve a particular instance in the literature have also been
applied in the context of cutting and packing problems.

Yet for the advancement of the field, it is essential to address such research gap. As raised
by Smith-Miles and Lopes [40], the true value of a comparative algorithmic study lies in
its ability to answer the following questions: “Which algorithm in a (broad) portfolio is
likely to be best for a relevant set of problem instances?”, “On which type of instances
does an algorithm outperform its competitors?”, ”For which types of problem instances
can we expect a given algorithm in a portfolio to perform well, and why?”, and “How
can we describe those instances”? Answers to these questions first lead to understanding
of the conditions under which a particular packing algorithm can be expected to succeed
or fail with respect to the features of the benchmark instances, and help in developing
improved algorithm design. Addressing these questions also hold the key for uncovering
relationships between characteristics of problem instances and algorithm performance, and
have implications for effective packing algorithm selection model capable of predicting the
algorithm from a given portfolio that is likely to be best for a given (unseen) instance.

A small body of literature exists addressing these questions in the cutting and packing
field. In a rare attempt at predicting bin packing algorithm performance predictors, Perez
et al. [31] proposed a methodology that model the relationship between algorithm per-
formance and characteristics of bin packing problem instances using machine learning
techniques. In [40], Smith-Miles and Lopes proposed a methodology for adequately char-
acterising the features of a problem instance and showed how such features can be defined
and measured for various optimisation problems including the bin packing problems. They
suggested that the methodology could be applied to the task of algorithm selection.

A methodology capable of identifying the strengths and weaknesses of algorithms as well
as their relative power with respect to instance space was proposed by Smith-Miles et
al. [38]. Based on a set of problem instances with various properties, they applied data
mining methods to measure algorithm footprint — the boundary in instance space where
an algorithm can be expected to perform well, and relate this boundary to properties of
instances to infer the relative performance of algorithms across all instances. In the same
vein, Smith-Miles et al. [41] explored the ideas of footprints of algorithms in the context
of graph coloring and demonstrated the use of data mining to reveal the performance of
algorithms, their strengths and weaknesses, with respect to the instances space.

Recently, Rakotonirainy [34] developed a methodology for the characterisation of algorithm
performance and its application to algorithm selection in the context of strip packing
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problems. The proposed methodology consists of two phases: The training phase, during
which a set of training test instances is solved with a representative sample of packing
algorithms and machine learning techniques are applied to learn the relationship between
the algorithm performance and the problem instance characteristics, and the prediction
phase, whereby the relationship learned during the training phase is applied to select the
best performing algorithm for a given new instance.

While this previous research has generated an initial methodology, it has raised a number
of questions that need to addressed for a more comprehensive tool to be developed: How
to determine the sufficiency and diversity of the set of test instances? How to select the
appropriate features that best represent the problem instances effectively? How to accu-
rately identify the best algorithm for a given instance? How to determine the boundary of
which an algorithm is expected to perform well based on limited observations? How to re-
veal the strengths and weaknesses of a set of algorithms with respect to the characteristics
of test instances?

This paper extends the framework proposed by Rakotonirainy [34] with the aim of ad-
dressing the aforementioned questions. The methodology adopted in this paper involves
a broader agenda: The concern is not only on the identification of the best performing
algorithm for a given instance, but also to reveal insights into the relative power of the
selected algorithms that were not apparent by considering performance averaged across
all instances. The main objective is to propose a data mining-based framework capable
of modelling the relationship between instance characteristics and algorithm performance,
and for an automated packing algorithm selection. The framework is developed such
that groups of problem instances with similar characteristics, and for which an algorithm
had a better performance than the others, are learned into formal classifiers, which are
predictors that model the relationship between problem characteristics and algorithm per-
formance. Thereafter, the learned classifier can be used to predict the best algorithm to
solve new problem instances. Finally, the relative algorithm power is analysed, and in-
sights are drawn from the analysis to explain algorithm strength or weakness by inspecting
the distribution of instance characteristics across the instance space.

The methodology is applied to the well-known two-dimensional strip packing problem (2D-
SPP). In such problem, the objective is to pack a set of rectangular items orthogonally in
a non-overlapping manner into a single, rectangular object of fixed width but unlimited
height, such that the resulting height of the packed items is a minimum. This problem finds
a wide range of applications, and is typically encountered in the wood, glass and paper
industries. Large scale computational studies involving the assessment of the relative
performance of a variety of strip packing algorithms across a collection of diverse classes
of benchmark instances are investigated. The proposed methodology can be extended to
other cutting and packing problems, such as the bin packing problem (minimise number
of used bins), the knapsack problem (maximise the total value in the knapsack), and the
cutting stock problem (minimise the amount of scrap).

The remainder of this paper is structured as follows. Section 2 is devoted to a brief
description of the proposed framework. The main components of the methodology are
presented in Section 3. The detailed steps of the methodology when applied to the two-
dimensional strip packing problem are then described in Section 4. Discussion of the
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results obtained follows in Section 5, and a conclusion along with future research directions
is provided in Section 6.

2 Framework: Packing algorithm selection

Recently, Rakotonirainy [34] proposed a framework for automated strip packing algorithm
selection, which models the relationship between packing instance characteristics and al-
gorithm performance in an attempt to predict the best algorithms to solve a set of unseen
problem instances. The model involves seven essential steps:

• The instance generation is the first step aimed at selecting the most suitable packing
instances which help in discovering the limits and behaviour of algorithm perfor-
mance. The generated instances should be diverse enough that the instance distri-
bution seen in both the training and testing sets are similar;

• The feature selection step consists of selecting the most appropriate features in
respect of which to measure the influence of problem characteristics on the algorithm
performance;

• The characteristics measurement entails calculation of characteristic values of each
instance generated in the first step based on the selected features of step 2;

• The performance evaluation step concerns the generation of feasible solutions of the
problem instances by means of packing solution techniques;

• The instance clustering involves a cluster analysis whereby the benchmark instances
of step 1 are grouped into different classes of test problems based on their underlying
features calculated from step 3;

• In the classification step, the identified grouping in step 5 is learned into formal
classifiers, which are predictors that model the relationship between problem char-
acteristics and algorithm performance;

• The relationship learned during the above steps is used to predict the best algorithm
to solve a new given instance in the prediction step.

In this paper, the above framework is utilised and extended to consider a broader scope:
not only the winning algorithm will be identified but the strengths and weaknesses of
algorithms within the instance space will also be defined. Figure 1 presents the proposed
framework. This new framework pictures the two phases in the framework of Rakotoni-
rainy [34] with an additional phase, feedback phase, aimed at improving the prediction
and selection processes performed during the two previous phases. This last phase also
enables the analysis of algorithm power, thus facilitates the identification of the relative
performance of algorithms across all instances.

The key factors and prerequisites for tackling the algorithm selection problem include the
availability of a large set of problem instances with various properties, the extraction of
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Figure 1: A framework for effective packing algorithm selection.

relevant features to characterise the properties of the instances, the existence of a large
number of algorithms for solving problem instances, and performance metrics to evaluate
algorithm performance [43]. The choice of instances, and their diversity, play an important
role in learning the boundaries of algorithm performance, and also in determining the limits
and behaviour of the problem. It is vital to take steps through careful instance generation
mechanisms to produce instances that are diverse and well separated. Measuring such
diversity could be achieved by visualizing the instances in common space and verifying
that they are spatially diverse and are discriminating of algorithm performance, i.e. the
instances are not equally easy or equally hard for all algorithms.

The diversity of the instances depends on how their characteristics or features are selected
and measured. Features must be chosen so that the varying complexities of the problem
instances are exposed, any known structural properties of the problems are captured,
and any known advantages and limitations of the different algorithms are related to the
features. The task of feature selection is critical and is successful if the relative difficulty
of the instances for different algorithms can be adequately measured. The methodology
presented in this paper provides a feature selection method that creates a useful feature
space.

Much can be learnt form the instance and feature spaces. The instance space can be
visualised, by means of dimension reduction methods, to determine whether the diversity
requirement is achieved by the choice of instances and the feature selection. The perfor-
mance of algorithms across the instance space can also be visualised to confirm the degree
to which the selected instances are discriminating of algorithm performance. More pre-
cisely, the diversity of instances and discriminatory algorithm performance in the instance
space consist of criteria which enable the selection of an optimal set of features and set
of instances. Moreover, machine learning techniques can be used to predict algorithm
performance with respect to the feature vector describing an instance, and out-of-sample
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testing can be employed to validate predictive power. An approach is presented in this
paper to identify the regions in instance space where there is sufficient evidence that good
performance can be expected from an algorithm.

It is from within this framework that the following methodology is proposed to develop
the computational resources for the cutting and packing community. It is noted that all
the components of the framework and the methodology are generic and applicable to a
wide variety of cutting and packing problems.

3 Methodology

The proposed methodology consists of three stages:

1 The training stage — a process whereby instances are selected, their features are
calculated, and a set of optimal features is generated to model the relationship be-
tween instance characteristics and algorithm performance and also to create a high-
dimensional summary of the instances in feature space that achieve good separation
of the easy and hard instances.

2 The prediction stage — using the feature and instance spaces, machine learning tech-
niques are used to classify the group of instances or the areas where an algorithm is
predicted to perform well or poorly, and to identify which algorithm is recommended
for which areas of the instance space.

3 The feedback stage — the accuracy of the prediction model is evaluated and construc-
tive recommendation is provided with regards to the performance of an algorithm on
previously unseen instances. The relative strength and weakness of each algorithm
can also be measured objectively by inspecting the distribution of features across
the instance space and conclusion can be drawn about relative algorithm power.

Details of this methodology are now presented before a case study is presented in the next
section to illustrate the methodology.

3.1 Training stage

This stage entails the generation of a suitable instance space, which is a complicated
interplay between selecting diverse instances, measuring the right features that correlate
with instance difficulty, and selecting a set of optimal features that produces the best
separation of instances across all algorithms.

3.1.1 Instance generation

It is apparent that a large collection of problem instances is required when adopting the
proposed methodology. A large set of instances must be selected, which can be achieved
by collecting benchmark problem instances documented in the literature, and if not suf-
ficient by generating new instances from existing benchmark generators. The choice of
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instances, and their diversity, play an important role in learning the boundaries of algo-
rithm performance, and also in determining the limits and behaviour of the problem. It
is vital to take steps to ensure that the generated instances are as broad as possible and
well separated. The key is to include a variety of characteristics of the problem and to
avoid biased information.

For packing problems, a large collection of instances exist (e.g. in the repository of ES-
ICUP [14]). Often these instances are very similar, which does not provide sufficient
diversity with respect to measurable features [26]; hence additional instances may be re-
quired to be generated to extend the boundaries of the instance space. A greater variation
of the problem characteristics may be achieved by using problem generators’ capability to
generate a large number of problem instances with different parameters under controllable
aspects. An example of a packing problem generator, which will be used later in the case
study, is the 2DCPackGen of Silva et al. [37].

It should be noted that measuring the diversity of the instances across the instance space
requires two considerations: instance dissimilarity — the instance should span across a
reasonable region in the instance space, which could be measured by the average distance
to the centroid of the instances, and algorithmic discrimination — the instances should
elicit the behaviours and relative performance of each algorithm across the instance space,
which could be measured by the relative difference between the worse and best performance
metrics averaged across all instances. The process of generating diverse instances is thus
iterative.

3.1.2 Feature selection

The feature selection process consists of selecting the most appropriate features in respect
of which to cluster the benchmark data instances and to measure the influence of problem
characteristics on the algorithm performance. Features must be chosen so that the varying
complexities of the problem instances are exposed, any known structural properties of
the problems are captured, and any known advantages and limitations of the different
algorithms are related to features. Generally, feature selection consists of two-steps: Firstly
the determination of all metrics which likely measure the goodness of a set of features and
then utilisation of search strategies to find the subset that maximises the goodness metrics.
In this methodology, the goodness of a set of features is defined based on the extent to
which instances elicit performance of algorithms in the instance space with respect to the
set of features. That is, for a candidate set of features, the goodness is measured by how
well a machine learning method can discriminate between easy and hard instances and
also the relative performance of algorithms in the feature space.

A wide range of feature selection methods have been proposed in the literature, including
supervised feature selection approaches and principal component analysis (PCA) for di-
mensionality reduction (see [17] for a comprehensive review). Any of these methods could
be used to select appropriate features in the context of packing problems.
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3.1.3 Performance evaluation

Feasible solutions of the problem instances are calculated by means of packing solution
techniques. Various approaches have been proposed in the literature for solving cutting and
packing problems. These approaches may be classified into the classes of exact methods,
heuristic approaches and metaheuristic techniques [32]. Exact methods are typically based
on a mathematical programming modelling approach and find a best packing solution,
but are slow and may hence only be used to solve small problem instances. Heuristic and
metaheuritsic techniques, on the other hand, are approximate solution approaches that
attempt to provide near-optimal solutions in minimal time. They are more practical and
provide solutions to large problem instances within reasonable time frames.

In this paper, the problem instances are solved using a representative sample of metaheuris-
tic algorithms from the literature. The effectiveness of these algorithms are evaluated by
means of a standard performance measure utilised in the packing field. There exist a
variety of performance evaluation methods in the literature but the most commonly used
computational measure for evaluating the performance of a packing algorithm is the rel-
ative difference between the packing height returned by the algorithm and the height of
an optimal solution of the problem [21]. This measure is often expressed in terms of a
percentage gap or ratio. An alternative performance measure is the packing time effi-
ciency or the time required by the algorithm to find a packing solution for the problem
[32]. This computation time may be measured by time tracking during the execution of
the algorithm.

3.2 Prediction stage

The instance space can be used for predicting algorithm performance. For the performance
prediction task, standard machine learning approaches may be used that use a subset of
the instances to learn the relationship between the instance features and the label assigned
to each algorithm for each instance to indicate how well the algorithm performed. The
benchmark instances can also be grouped into different classes of test instances based
on the set of features and the relationship between the instance features and the label
assigned to each cluster is learned to elicit the algorithm performance.

3.2.1 Instance clustering and classification

Instance clustering entails a cluster analysis whereby the benchmark instances are grouped
into different classes of test problems based on their underlying features. Each group is
comprised of instances with similar characteristics, and for which an algorithm had a
better performance than the others according to the performance evaluation. Typical
clustering analysis involves clustering algorithm design and clustering output assessment.
Clustering algorithm design encompasses the selection of a proximity or distance measure,
and the choice of an appropriate clustering algorithm for subsequent use. An abundance
of clustering algorithms has been proposed in the literature for solving different types of
clustering problems in a variety of different fields [6, 46]. There is, however, no clustering
algorithm that is generally applicable to all types of clustering problems. It is, therefore,
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important to investigate the problem at hand properly in order to select an appropriate
clustering method.

Clustering output assessment refers to the process of evaluating the clustering results
derived from the selected and employed algorithms for validation purposes. Usually, dif-
ferent clustering techniques result in different clusters, and even for the same algorithm,
different input parameters typically lead to different cluster results [25]. Effective evalua-
tion or testing criteria are therefore required for the assessment of the performance of the
algorithms considered.

During the classification process, the identified grouping is learned into formal classifiers,
which are predictors that model the relationship between problem characteristics and
algorithm performance. It should be noted that the inclusion of a clustering process before
the classification step is meant that the meaningful characteristics that best describe the
data instances are identified and that the relationship between the identified features
and algorithm performance is accurately explored. The process of directly classifying the
instances based on their characteristics and determining the consequential best performing
algorithms will also be discussed in this paper.

Standard machine learning methodologies that use a subset of the instances generated (the
training set) to learn the relationship between the instance features and the label assigned
to each algorithm (thereof the corresponding cluster) for each instance can be employed
during this task. Machine learning classification methods such as decision tree classifiers,
Naive Bayes classifiers or support vector machines, can be used accordingly.

3.2.2 Algorithm performance prediction

The relationship learned during the classification process is used to predict the best al-
gorithm to solve a new given instance during the prediction phase. For a new problem
instance, which can be generated using the instance generation method of the training
stage, its critical characteristic values are measured based on the selected features. Based
on these characteristics, the learned classifiers from the classification process are employed
to determine the best algorithm for the instance. If a clustering analysis is performed be-
fore classification, the learned classifiers are employed to determine the cluster into which
the instance belongs to and the algorithm associated to this cluster is the expected best
algorithm for the instance.

3.3 Feedback stage

The objective during this stage is to provide feedback on the selection system conducted
during the prediction stage and to maintain continuous training. This stage is also used
to analyse algorithm power or to measure and reveal the relative strength and weakness
of each algorithm across the instance space.

3.3.1 Validation

During this validation process, the selected algorithm obtained from the prediction phase
is compared against the real best one to assess the accuracy of the prediction model. More
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precisely, for each new characterised instance, whose best algorithm was selected during
the prediction phase, the real best algorithm is evaluated. If the prediction is wrong,
that is, the real best algorithm does not match the predicted algorithm, or if the average
accuracy is out of a specified threshold, then the classifiers are rebuilt using the old and
new problem instances; otherwise the new instance is stored and the process ends.

3.3.2 Analysis of algorithm power

With a well-defined description of “good” algorithm performance — an example is to
define an algorithm performance to be “good” if it achieves a solution that lies within 1%
of the known optimal solution after a fixed run time — each algorithm can be assigned
a label of “good” or “bad” and the boundary in instance space between good and bad
performance for each algorithm can be visualised. The region in instance space where an
algorithm is expected to perform well is called the footprint [39]. There exist a number
of methods that can be used to measure the relative size of an algorithm footprint. An
example is the ratio of the area of the convex hull created by the points where good
performance of the algorithm was observed to the area of the hull covering all instances
proposed by Smith-Miles [39]. According to this method, the area of the convex hull of a
region defined by a set of points S = {(xi, yi), i = 1, . . . , n}, denoted by H(S), is given by

Area(H(S)) =
1

2

k−1∑
j=1

(xjyj+1 − yjxj+1) + (xky1 − ykx1),

with the subset {(xj , yj), j = 1, . . . , k − 1, k ≤ n} defining the extreme points of H(S).
The relative size of the footprint of a given algorithm is therefore given by the ratio of
the area of the convex hull of the algorithm footprint to the area of the hull covering all
instances. This method can be used to measure the footprint of algorithms in the context
of packing problems.

The relative size of each algorithm footprint provides information on the algorithm strength
across the instance space. By understanding ‘where’ in the instance space an algorithm
performs best helps us to draw a conclusion about the power of an algorithm. This could
be achieved by measuring the degree of overlap between an algorithm footprint with the
footprint of other algorithms. The final analysis to complete the methodology is to ex-
plore the instance space to gain insights into how the features of instances affect algorithm
footprints. The distribution of each feature across the instance space can be visualised
and conclusions can be drawn about the particular properties of the instances that are
found in certain regions of the instance space, including those that define the footprint
boundaries.

A case study on the 2D-SPP is considered in the following section to illustrate how this
methodology can be applied to achieve effective packing algorithm selection, and to gen-
erate new insights into the strengths and weaknesses of packing algorithms.
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4 Case study: The 2D-SPP

The methodology described in the previous section is demonstrated here when applied to
the 2D-SPP. The process of instance generation is presented in Section 4.1, followed by
the task of feature selection in Section 4.2. Performance evaluation using seven state-of-
the-art strip packing algorithms is described in Section 4.3. This is then followed by the
classification process in Section 4.4. The tasks of algorithm prediction and validation are
presented in Section 4.5. The analysis of algorithm power is finally discussed in Section 4.6.

4.1 Instance generation

The use of data mining techniques to predict the packing algorithm requires a large prob-
lem instance data set, mainly to accurately represent the limits and behaviour of the
problem and the variability that the instances accommodate, and also to consider the
influence of aspects and characteristics that affect the algorithm performance.

A total of 1 718 benchmark 2D-SPP instances were identified in the literature which are
grouped in two classes. The first class consists of zero-waste problem instances for which
the respective optimal solutions are known and do not contain any wasted regions (regions
of the strip not occupied by items). This class of benchmark instances comprises nine data
sets. The second class consists of non-zero-waste instances for which optimal solutions are
not known in some cases. Furthermore, those with known optimal solution involve some
wasted regions. This second class of problem instances comprises eleven data sets. The
main characteristics of these data sets organised by name, number of problem instances,
and source are described in Table 1.

The majority of these instances are, however, very similar and are not diverse enough
to cover some important aspects of the 2D-SPP [26]. Therefore, a set of 1 680 problem
instances generated by the 2DCPackGen problem generator of Silva et al. [37] is also
considered in this study. The 2DCPackGen allows the generation of problem instances,
using different parameters under controllable aspects, and ensures the reproducibility of
the data. Specifically in the 2D-SPP, the parameters that must be defined are: the item
minimum and maximum size dimension (within the range [1-100]), the strip minimum
and maximum width (within the range [10-1,000]), the minimum and maximum number
of different item types (within the range [5-500]), and the minimum and maximum number
for item type demand (within the range [1-10]). The problem instance variation is fitted
using a beta distribution [16]. Different curve behaviours represent different geometric
rectangles and strip shapes.

In order to obtain a variety of problem instances, two different classes were generated
using the 2DCPackGen problem generator. The first class contains 560 instances grouped
into 16 different sets, generated based on the 16 different characteristics of the size and
shape of the rectangles. In each set, the strip width, the number of different item types,
and the item type demand were assigned values according to the 7 proposed distribution
curves, named as subsets. For each subset, 5 similar problem instances were generated,
resulting in a total of 35 problem instances in each set.
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The second class contains 1 120 instances also grouped into 16 different sets as in the first
class. In each set, the strip width, the number of different item types, and the item type
demand were varied according to the 7 proposed distribution curves, representing 7 dif-
ferent combinations. For each combination, 10 similar problem instances were generated,
resulting in a total of 70 instances in each set. Descriptions of these data instances are
given in Table 1 and they can be downloaded from the repository for problem instances
published online by Rakotonirainy [35].

The 1 718 data sets from the literature together with the first class (560 newly generated)
instances are employed as training data, while the second class (1 120 newly generated
benchmark) instances are employed as test data in the classification task.

4.2 Feature selection

The greatest challenge is the derivation of suitable metrics as features to characterise
the data sets. Relevant features of the problem parameters need to be identified, and
expressions to measure the values of identified critical characteristics must be derived. A
methodology based on linear correlations and PCA has been employed by Júnior et al. [26]
to identify the most significant characteristics for the 2D-SPP benchmark instances. They
considered 56 descriptive variables, based on parameters found in the most used packing
problem generators, and conducted an exploratory analysis to determine the most relevant
characteristics with respect to a set of frequently used benchmark data sets. Their analysis
suggested that the problem can be reduced to 19 characteristics, retaining the largest part
of the total variance.

The same analysis was performed in this study. In order to avoid redundancy, 4 descriptive
variables were considered, where 2 of the variables have 4 components each, resulting in 10
characteristics. These features were selected based on the parameters and characteristics
produced by the most popular problem generators as well as some intrinsic factors of the
newly generated problem instances. The four descriptive variables are the aspect ratio of
each item of an instance, the area ratio of any pair of items of an instance, the heterogeneity
ratio, and the width ratio.

• The aspect ratio of an item i is to be

ρ(i) =
dmax(i)

dmin(i)
,

where dmin(i) and dmax(i) denote its length along the smaller side dimension and
its length along the larger side dimension, respectively.

Four components of the aspect ratio variable are considered in this study: The
maximum aspect ratio of all items of an instance, which is determined by ρmax =
max {ρ(1), . . . , ρ(n)}; the minimum aspect ratio of all items of an instance, which
is given by ρmin = min {ρ(1), . . . , ρ(n)}; the mean aspect ratio of all items of an
instance, which is given by ρmean = mean {ρ(1), . . . , ρ(n)}; and the variance aspect
ratio of all items of an instance, which is given by ρvar = var {ρ(1), . . . , ρ(n)}. The
parameter n represents the total number of items involved in the given instance.
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• The area ratio of a pair of items i, j is given by

γ(i, j) =
a(i)

a(j)
,

where a(i) denotes the area of item i.

Four components of the area ratio variable are also considered. The maximum area
ratio of all pairs of items of an instance, which is defined as γmax = max {γ(i, j) |
i, j = 1, . . . , n; i ̸= j}; the minimum area ratio of all pairs of items of an instance,
which is given by γmin = min {γ(i, j) | i, j = 1, . . . , n; i ̸= j}; the mean area ratio
of all pairs of items of an instance, which is defined as γmean = mean {γ(i, j) | i, j =
1, . . . , n; i ̸= j}; and the variance area ratio of all pairs of items of an instance,
which is given by γvar = var {γ(i, j) | i, j = 1, . . . , n; i ̸= j}.

• The heterogeneity ratio is given by ν = nt/n, where nt denotes the number of distinct
types of items in an instance. Two items are of the same type if they have identical
smaller and larger side dimensions.

• The width ratio is determined by δ = W/dmean, where W denotes the width of
the strip, and dmean represents the mean value of all (smaller and larger) items
dimensions.

The critical characteristic values of each instance of the 3 398 data sets described in Section
4.1 were calculated using the aforementioned selected features. A scatter plot of the
data instances based on four features: the mean aspect ratio, the mean area ratio, the
heterogeneity ration, and the width ratio, is shown in Figure 2.

The aspect ratio provides information on the shapes of the items in an instance: Relatively
small values of the four components of aspect ratio feature indicate that the respective
instance is heavily populated by approximately square-shaped items. The variety in the
size of the items in an instance, on the other hand, may be deducted from the area ratio:
Large values of the four components of the area ratio feature imply that the corresponding
instance is dominated by items of widely varying sizes. Furthermore, the miscellany of
items in an instance may be gauged from the heterogeneity ratio: An instance with a
value of the heterogeneity ratio feature close to unity indicates that the dimensions of the
items involved in that instance are all different (i.e.heterogeneous). Finally, the width
ratio characterises the mean item width relative to that of the strip: That is, an instance
with a relatively large value of the width ratio feature contains a large number of wide
items.

4.3 Performance evaluation

The problem instances were solved using seven state-of-the-art strip packing metaheuristics
from the literature. The first algorithm is the two-stage intelligent search algorithm (ISA)
of Leung et al. [28], which combines a local search algorithm with the method of simulated
annealing (SA) in an attempt to find feasible packing solutions. The second algorithm
is a hybrid technique, where a genetic algorithm is executed in conjunction with the
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Figure 2: A scatter plot of the data instances of Section 4.1 based on four of the ten
features, mainly the mean aspect ratio, the mean area ratio, the heterogeneity ratio, and
the width ratio, of Section 4.2. The axes represent the calculated features, standardised
to have values between 0 and 1.

constructive heuristic of Leung et al. [28]. The simple randomised algorithm (SRA) of
Yang et al. [47] and the efficient intelligent search algorithm (IA) of Wei et al. [45] are also
considered, which are both improvements of the ISA algorithm.

The last three algoritms are among the recently proposed strip packing techniques: The
improved skyline based heuristic algorithm (ISH) of Wei et al. [44], which may be consid-
ered as an improved version of the constructive heuristic embedded in the IA algorithm,
the CIBA algorithm of Chen and Chen [11], and the modified intelligent search algorithm
(IAm) of Rakotonirainy and Van Vuuren [33]. These algorithms have been selected for con-
sideration as they were among the most recently proposed algorithms, and were reported
as best algorithms, for solving instances of the 2D-SPP [33].

The relative effectiveness of these algorithms were evaluated according to a performance
measure — the relative difference between the packing height returned by an algorithm
and the height of an optimal solution or the appropriate lower bound. How to define
“similar performance” may involve some tolerance and one can define this specifically
by considering the concept that two algorithms would achieve the same result if their
performance are within ϵ% of each other. In this paper, a set of best algorithms, which
is defined in such a way that the performance ratios of any pair of algorithms in the set
are equal to almost 1%, was extracted for each sample instance. An example of 5 data
instances, each associated with the best performing algorithms, is shown in Table 2.

These seven packing algorithms were coded in Python using Spyder Version Python 3.7.
They were run in the same environment on an Intel Core i7-4790 CPU running at 3.60 GHz
with 8 GB RAM in the Windows 10 operating system. Further details on the algorithms’
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implementations, together with the appropriate parameter fine-tuning, can be found in
Rakotonirainy [32].

Problem Instances Best Algorithms

1985BeasleyJORS11.csv Hybrid GA
2000HopperT3b.csv SRA, Hybrid GA
2000HopperN2a.csv CIBA, ISA, IAm
2001WangNice10.25.csv ISH, CIBA, IA
2001WangPath2.50.csv IAm

Table 2: Example of instances with their respective best performing algorithms.

4.4 Classification

An attempt is made to cluster the instances before the classification process. This is
meant to identify the meaningful characteristics that best describe the data instances and
to explore the relationship between features and algorithm performance.

The cluster analysis performed in this step consists of grouping the 2 278 training data
instances described in Section 4.1 into different classes of test problems based on their
characteristics identified in Section 4.2. Recently, Rakotonirainy [34] has conducted such
analysis in an attempt to cluster the data instances from the literature. In the mentioned
study, the clustering process consisted of three steps: The first step involved preparation
of the data set based on their selected features. This entailed feature scaling using the
normalisation method. The next step consisted of estimating the optimal number of
clusters in which to partition the benchmark data by means of a variety of indices. The
final step involved evaluation of the performances of different clustering algorithms with
respect to a set of validation measures so as to choose the best performing one.

The same clustering process was adopted in this paper in order to generate a sound data
clustering output result. The R package, NbClust, of Charrad et al. [10] was employed to
estimate an appropriate number of clusters that best partitions the normalised benchmark
instances. With a single function call, it computes thirty indices and determines the
relevant number of clusters accordingly. A histogram of the distribution of the output
is shown in Figure 3. The majority of the indices suggested four as the best number of
clusters, and this was utilised in the clustering algorithm of the next step.

The k-means algorithm was selected as the clustering method adopted in this study to
cluster the instances into groups, whereby the similarity among members of each group
was determined through the characteristic indicators of the instances and the number
assigned to the best performing algorithms obtained in the performance evaluation of
Section 4.3. The k-means algorithm was performed repetitively until it generates the best
clustering results, whereby each cluster was associated a label with respect to the aggregate
characteristic values of the instances and a best performing algorithm for it. A summary of
the best performing algorithm for each cluster is given in Table 3. It is noted that the ISA,
SRA, and IA algorithms were outperformed by the three algorithms reported in this table
(or do not differ significantly from their performances for certain instances), and that
CIBA and ISH (respectively CIBA and IAm) algorithms performed relatively similarly
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Figure 3: Histogram of the distribution of the results obtained when estimating the number
of clusters in which to partition the training data instances of Section 4.1 by means of the
NbClust function in R (Charrad et al. [10]). According to the majority rule, the preferred
number of clusters is clearly 4.

with respect to the fourth benchmark cluster (respectively third benchmark cluster), so
the ISH (respectively IAm) algorithm was selected as the best algorithm for that cluster.
This dominance result applies only to the benchmark instances explored in this work.

Cluster Best Algorithm

Cluster 1 IAm

Cluster 2 Hybrid GA

Cluster 3 IAm

Cluster 4 ISH

Table 3: Summary of the clustering output obtained when performing the clustering
analysis. The first cluster contains 520 instances, the second cluster 472 instances, and
the third and fourth clusters contain 785 and 501 instances, respectively.

The identified grouping is learned into formal classifiers, which are predictors that model
the relationship between problem instance characteristics and algorithm performance. De-
cision trees can be very powerful tools for modelling this relationship and for elucidating
rules that can be used to predict the best performing algorithm for new instances. The
decision tree algorithm in [36] was, therefore, employed as a machine learning technique to
generate classification rules for this purpose. The decision tree algorithm builds a decision
tree from the training data instances, which is then converted to a set of classification
rules using the cluster labels as target variables. The rules are ordered by accuracy and
are applied in sequence to classify instances in the corresponding group.

To obtain the classification rules, the ten indicators of Section 4.2 were used as independent
variables (to generate the corresponding clusters), and the best algorithms associated to
each cluster as class variables. The percentage of new correctly classified observations
is an indicator of the effectiveness of the classification rules. If these rules are effective
on the training data sets, it is expected that they will perform well on new observations
with unknown group. The classification analysis was conducted using the Decision Tree
Classification package available in Python Scikit-learn and the classifier was trained on
the 2 278 data sets of Section 4.1.
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In order to optimise the performance of the decision tree classifier, two decision tree
methods with two different attribute selection criteria were applied and compared. The
first decision tree method employs the “information gain”1 as a selection criterion, while
the second decision tree approach uses the “gini index”2 criterion. The accuracy of these
two methods when applied to the training data sets is shown in Table 4. A pre-pruning
was also conducted. This is achieved by controlling the values of parameters and variables
defining the classifier. The parameter ”maximum depth of the tree”, which defines the
height or the number of nodes in the tree, was varied in this experimental work. The
corresponding accuracy results on the training data sets are also shown in Table 4.

Decision tree methods with Gini index Information gain

Maximum depth of the tree = 10 88% 89%

Maximum depth of the tree = 8 68% 71%

Maximum depth of the tree = 5 62% 65%

Table 4: Classification accuracy of the various decision tree methods described in Section
4.4 when applied to the training data sets of Section 4.1.

The accuracies ranged from 89%, for the decision tree classifier using information gain
method as a selection criterion and a value equal to 10 for the ‘maximum depth of the
tree’ parameter, down to 62% accuracy for the decision tree classifier with gini index as
a selection criterion and a value equal to 5 for the ‘maximum depth of the tree’ parame-
ter. The method which exhibits the highest accuracy was employed to predict algorithm
performance in this work.

4.5 Algorithm prediction and validation

The learned classifier of Section 4.4 was applied to predict the best performing algorithm
for each one of the 1 120 test instances of Section 4.1. The decision tree method using
information gain method as a selection criterion and a value equal to 10 for the ’maximum
depth of the tree’ parameter was employed for this purpose, as it provides the highest
accuracy results according to Table 4. The output results are given in Table 5. Column 2
of this table contains the real best algorithms for each instance and column 3 corresponds
to the algorithm selected by the prediction. As shown in this table, the classifier predicted
the correct best performing algorithm with an accuracy of 88%.

To validate the effectiveness of the algorithm performance predictor applied above, the
predicted algorithms are compared to the real best algorithms for the test instances. If
the predicted algorithm is one of the real best algorithms, the match is counted (equal to
1), as shown in column 4 of Table 5. A ‘Match’ value equal to 0, for a particular instance,
indicates that the classifier fails to predict the correct algorithm for that instance. During
the feedback phase, all instances with ‘Match’ values equal to 0 are combined with the
training data sets and the classifiers are rebuilt using this new data set. The prediction
phase is repeated to predict the best algorithm for new instances.

1Information gain is a statistical property that measures how well a given attribute separates the
training data according to their target variables [30].

2Gini index is a cost function used to evaluate splits in the data sets. It is calculated by subtracting
the squared probabilities of each class from one [30].
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Instance Real best Predicted Match
algorithms best Algorithm

Inst1-ID1-Class1234.txt Hybrid GA IAm 0
Inst2-ID1-Class2345.txt IA IAm 0
Inst3-ID1-Class3456.txt Hybrid GA Hybrid GA 1
Inst4-ID1-Class4567.txt SRA, Hybrid GA Hybrid GA 1
...

...
...

...
Inst8-ID1-Class5671.txt ISA, CIBA ISH 0
Inst9-ID1-Class6712.txt Hybrid GA, SRA Hybrid GA 1
Inst10-ID1-Class7123.txt Hybrid GA ISH 0

Accuracy 88%

Table 5: Classification results for the 1 120 problem instances of Section 4.1 after per-
forming the clustering process. The column ‘Match’ indicates if the predicted algorithm
is correct (its value equal to 1) or not (its value equal to 0).

Of course, it is natural to wonder how heavily the classification outputs depend on the
clustering results. How likely is it that a given instance really belongs to cluster i (i =
1, . . . , 4), and if algorithm A is assigned to be the best algorithm for problem instances in
cluster i (i = 1, . . . , 4) how likely that decision is wrong? Obviously the result depends
on the clustering outputs. One could expect a different result by directly classifying the
instances based on their characteristics and their best performing algorithms. This process
was investigated in this study and the resulting outputs are reported in Table 6. As shown
in this table, the classifier predicted the correct best performing algorithm with accuracy
of 90%.

Instance Real best Predicted Match
algorithms best Algorithm

Inst1-ID5-Class1234.txt IAm IAm 1
Inst2-ID5-Class2345.txt IA, ISH, CIBA CIBA 1
Inst3-ID5-Class3456.txt Hybrid GA Hybrid GA 1
Inst4-ID5-Class4567.txt SRA, IAm Hybrid GA 0
...

...
...

...
Inst8-ID5-Class5671.txt ISA, Hybrid GA IAm 0
Inst9-ID5-Class6712.txt Hybrid GA, SRA Hybrid GA 1
Inst10-ID5-Class7123.txt Hybrid GA, ISH ISH 0

Accuracy 90%

Table 6: Direct classification results for the 1 120 problem instances of Section 4.1, without
performing the clustering process. The column ‘Match’ indicates if the predicted algorithm
is correct (its value equal to 1) or not (its value equal to 0).

4.6 Analysis of algorithm power

By evaluating the performance of each of the seven metaheuristics described in Section
4.3 with respect to the 3 398 generated instances, one can assign each algorithm a label
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of “good” or “bad” on the instance space. For this case study, the goodness is arbitrarily
defined as the algorithm achieving a packing solution that lies within 1% of the known
optimal solution. In the following sections, the footprints as well as the strengths and
weaknesses of the various algorithms, based on the aforementioned goodness, are presented.

4.6.1 Algorithm footprints

(a) IAm footprint (b) ISH footprint

(c) Hybrid GA footprint

Figure 4: Algorithm footprints with (red) diamond instances showing good performance.
Black circle instances are not within the algorithm footprint. The axes, labelled PC1
and PC2, indicate respectively the first and second principal components obtained from
applying a principal component analysis to the data and represent a projection that best
spreads the data.

Figure 4 shows the footprint of each of the three best algorithms (IAm, Hybrid GA,
and ISH), with (red) diamond instances showing good performance. The area of each
footprint can be measured using the method described in Section 3.3.2, as shown in the
second column of Table 7. Clearly, the algorithm with the largest footprint is the IAm
algorithm, since there are only small regions of the instance space where it is not “good”. It
is interesting to note that the IAm is not best everywhere and it could lose its competitive
advantage if the definition of “good” performance is relaxed. The third column of Table 7
shows the relative size of the algorithm footprints if one relaxes the definition of good
performance to be any algorithm that achieves a solution that lies within 5% of the known
optimal solution. Larger footprints are obtained for each algorithm and one can see that
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the performance of the ISH and Hybrid GA algorithms are not substantially different from
the performance of the IAm algorithm.

Algorithm Area (goodness = 1%) Area (goodness = 5%)

IAm 53.1% 57.2%

Hybrid GA 21.7% 50.1%

ISH 23.9% 51.8%

Table 7: Relative size of algorithm footprints expressed as a percentage of the total area
of the instance space.

4.6.2 Insights into algorithm strengths and weaknesses

Following all the above analysis, a natural question to ask is how the characteristics of
the instances may contribute to good performance of a given algorithm. That is which
features and what characteristics are found in certain regions of the instance space where
algorithm performance is good. One can answer this question by exploring the instance
space and developing a good understanding of where the unique strengths and weaknesses
of each algorithm lie. The first step is to visualize where each algorithm offers a unique
advantage where others struggle and vice versa. If an algorithm is found to be good where
many other algorithms are not good, then it is useful information to assess the relative
power of algorithms across the instance space. Once such insights are gained, the next step
is to locate the regions in the instance space where an algorithm has a unique strength and
determine the underlying conditions with respect to the features of the instance space.

Algorithm Number of instances Percentage (%)

IAm 437 64.83%

Hybrid GA 138 20.47%

ISH 59 8.75%

CIBA 40 5.93%

IA, ISA, SRA 0 0%

Total 674 29.59%

Table 8: Number and percentage of instances that are uniquely solved by each of the
algorithm considered in this case study.

Figures (5a)-(5b) show the location of the instances that are easily solved by many algo-
rithms and the instances that are more challenging since only one algorithm attains the
best result. Among the hard instances, it is important to know which algorithm provides
unique advantage over others, and this is shown in Figures (??)-(??). Interestingly, only
two algorithms exhibit consistent regions where they are uniquely best: The IAm and
Hybrid GA algorithms. These two methods combine local search strategies with global
operators that allow much larger changes to be made to a solution. The ISH and CIBA
algorithms are sometimes uniquely best but the type of instances that they are best are
not well located in the instance space. The remaining algorithms (IA, ISA, SRA) do not
differ substantially or are outperformed by the four aforementioned algorithms in terms
of performance with respect to the benchmark instances.
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(a) Easy instances (b) Hard instances

(c) Instances uniquely solved by Hybrid GA (d) Instances uniquely solved by IAm

Figure 5: (a) Instances that are easily solved, where multiple algorithms achieve good
performance. (b) Instances that are hard to solve (solved uniquely by one algorithm for
a goodness equal to 1%). (c) (Red) diamond instances that are uniquely solved by the
Hybrid GA algorithm. (d) (Red) diamond instances that are uniquely solved by the IAm
algorithm. The axes, labelled PC1 and PC2, indicate respectively the first and second
principal components obtained from applying a principal component analysis to the data
and represent a projection that best spreads the data.

Table 8 shows the relative unique strengths of each algorithm, focusing on how many
instances are uniquely solved well by each algorithm. For 70.41% of the instance space
there is no uniquely winning algorithm, but for the 674 discriminating instances, it is the
IAm algorithm which uniquely perform best in 64.83% of the instances. The Hybrid GA
algorithm is uniquely best for 20.47% of the discriminating instances. The ISH algorithm
is uniquely good for 8.75%, while the CIBA algorithm is uniquely good for 5.93% of the
discriminating instances.

In addition, considering the unique footprints shown in Figure ??, it is possible to gain
insight into what region in the instance space can inform about the conditions under which
an algorithm has a unique strength. To achieve this, one can inspect the distribution of
the four main features (maximum aspect ratio, maximum area ratio, width ratio, and
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heterogeneity ratio) across the instance space, looking in particular for criteria about why
the IAm algorithm does not perform well on the majority of instances defined by the thin
right-most edge of the instance space, and why the Hybrid GA algorithm seems to struggle
in the large portion of the hard instance space.

Figure 6 shows that these interesting regions of unique strength of the two algorithms cor-
respond to lower values of the three features (maximum aspect ratio, maximum area ratio,
and width ratio) defining the instances, and higher value of the heterogeneity ratio feature.
In particular, the Hybrid GA algorithm appears to outperform all algorithms (including
the IAm algorithm), when the benchmark instances are dominated by square items (the
maximum aspect ratio assumes values in a small range) and mainly heterogeneous (the
corresponding mean heterogeneity ratio is close to 1 as shown in Figure 6 (b)); while the
IAm algorithm is the most effective technique to solve instances that contain items which
are relatively small (the width feature varies over a small range of value) and of equal size
(the respective maximum area ratio assumes values in a small range as shown in Figure 6
(a)).

(a) Distribution of the hard instances’ features
that are uniquely solved by the IAm algorithm

(b) Distribution of the hard instances’ features
that are uniquely solved by the Hybrid GA
algorithm

Figure 6: Distribution of the four selected features (maximum aspect ratio, maximum area
ratio, width ratio, heterogeneity ratio) across the hard instance space uniquely solved by
the IAm and Hybrid GA algorithms.

5 Discussion

The algorithm prediction result presented in the previous section suggests that the method-
ology adopted in this paper achieves an 88% accuracy in correctly predicting the best per-
forming algorithm for a new strip packing instance. This could be considered as a highly
accurate prediction of algorithm performance on the basis of packing instances grouping
according to their underlying features. The systematic selection of the features that char-
acterise the problem instances was crucial for obtaining this result accuracy. Ten different
characteristics, extracted from various parameters and factors used in popular packing
generators, were considered to group the benchmark instances into four categories in this
work. These chosen features have proven to be sufficient for discovering the properties of
the benchmark instances.
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The result shows a 3% decrease in the prediction accuracy compared to the result ob-
tained by the recent work of Rakotonirainy [34]. The analysis conducted in this paper, in
fact, includes a much broader set of instances than those used by Rakotonirainy, and that
the instance space subsequently created was a good representation of the strip packing
benchmark problems. In addition, in the latter study, four features were considered to
group the benchmark instances into different categories, resulting in a 91% accuracy in
correctly identifying the best algorithm for a new instance. It is noted that the test in-
stances employed in [34] are those from the literature which exhibit approximately similar
characteristics as of the training instances. In contrast, a new set of instances was consid-
ered as test instances in this study which exhibits different features as of the training sets
and ten features were considered instead of four.

Furthermore, it is noted that the decision to include a clustering process before the clas-
sification step has meant that the meaningful characteristics that best describe the data
instances are identified and that the relationship between the identified features and algo-
rithm performance is accurately explored. Each cluster was assigned one best performing
algorithm and it was learned into classifiers for predicting the best algorithm for a new
given instance. An improved result was obtained when the clustering process was omit-
ted, that is the classification process was applied directly to the instances based on their
underlying characteristics and their best performing algorithms. The result shows a 2%
increase in the prediction accuracy, indicating that a more robust classification of the
problem instances is obtained.

Besides, the majority of the instances incorrectly classified are tied results. In fact, it was
assumed a definition of a best algorithm as an algorithm with performance ratio relatively
1% higher than others and that ties are solved by randomly choosing one of the algo-
rithms. The latter case was applied to the best algorithm assigned to instances of clusters
3 and 4: The IAm algorithm (respectively the ISH algorithm), of which its performance
did not differ significantly with the CIBA algorithm (respectively the CIBA algorithm),
was selected as the best algorithm for these clusters in this work. In reality, however,
the assigned algorithm may be best for some proportion (possibly, not for all) of problem
instances in a cluster and that it may perform well for a specific instance of other clusters.
An example is the classification result of (Inst1-ID1-Class5671.txt) instance, whereby the
real best algorithm of the instance is actually the CIBA algorithm, while the classifica-
tion model predicts the ISH algorithm as its best algorithm. A more robust condition
is probably needed to avoid such biased prediction and to improve on the performance
accuracy.

The methodology presented in this paper was also able to provide new insights into the
packing algorithm power, mainly the identification of strengths and weaknesses of the
various algorithms with respect to the instance features defining the instance space. The
results indicated that the size of an algorithm footprint depends on the definition of
goodness. Moreover, 29.59% of the overall instances are hard instances which are uniquely
solved by one algorithm for a goodness equal to 1%, indicating that the instance space
generated in this study is a relatively good representation of the set of all strip packing
benchmark instances that are typically studied in the literature.
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While this paper focused on the application of the methodology to the strip packing prob-
lem, the proposed framework can be applied to any type of packing problem and can also
be easily adopted for automated algorithm selection in other combinatorial optimisation
problems. The adaptation of the methodology to other problems presents no difficulties
aside from the challenge of selecting and deriving relevant features to characterise the
problem instances, which might require a careful check.

6 Conclusion

An improved methodology for the characterisation of packing algorithm performance and
its application to algorithm selection was introduced in this paper. By building upon the
framework of Rakotonirainy [34], a pathway to develop the tools required to model the
relationship between features of packing problem instances and the performance of packing
algorithms was proposed. This model was applied to predict best performing algorithms
for unseen instances with high accuracy. The model was also employed to identify the
regions of instance space where algorithms have unique strengths and weaknesses and
to generate insights of where the unique power of each algorithm lies within footprints
based on the instance features. This paper addressed some questions in the methodology
developed by Rakotonirainy, and demonstrated the usefulness of the approach by revisiting
and extending the case study of Rakotonirainy [34].

It was shown, through a case study of strip packing problems, that data mining techniques
like clustering analysis and decision trees can be employed to explore the high-dimensional
feature space of the problem instances, to cluster the test problems into different classes
of instances according to their features, and to learn the clusters into classifiers for an
effective automated packing algorithm selection. The result obtained suggested a 90%
(respectively 88%) accuracy in predicting the best performing algorithms on a new set of
packing problem instances based on their characteristics and best peforming algorithms
(respectively by performing a clustering analysis prior the classification process).
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The next steps for this research include application of the methodology to other packing
problems, and make them available to the operations research community via a user-
friendly computerised decision support system tool. Such software should take as input
a new packing problem instance. After reading in the given problem instance, it should
apply the framework — compute the relevant characteristics, assign the instance to a
relevant cluster, and generate the best performing algorithm, and report the result as
output to the user accordingly. The user may also choose to solve the problem directly by
means of an appropriate algorithm, and compare the outputs.
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