
Volume 25 (1), pp. 69–86

http://www.orssa.org.za

ORiON
ISSN 0529-191-X

c©2009

Conjugate descent formulation of backpropagation
error in feedforward neural networks

Naveen Kumar Sharma∗ Sanjeev Kumar† Manu Pratap Singh‡

Received: 9 December 2008; Revised: 20 January 2009; Accepted: 18 May 2009

Abstract

The feedforward neural network architecture uses backpropagation learning to determine
optimal weights between different interconnected layers. This learning procedure uses a
gradient descent technique applied to a sum-of-squares error function for the given input-
output pattern. It employs an iterative procedure to minimise the error function for a given
set of patterns, by adjusting the weights of the network. The first derivates of the error
with respect to the weights identify the local error surface in the descent direction. Hence
the network exhibits a different local error surface for every different pattern presented to
it, and weights are iteratively modified in order to minimise the current local error. The
determination of an optimal weight vector is possible only when the total minimum error
(mean of the minimum local errors) for all patterns from the training set may be minimised.
In this paper, we present a general mathematical formulation for the second derivative of the
error function with respect to the weights (which represents a conjugate descent) for arbitrary
feedforward neural network topologies, and we use this derivative information to obtain the
optimal weight vector. The local error is backpropagated among the units of hidden layers
via the second order derivative of the error with respect to the weights of the hidden and
output layers independently and also in combination. The new total minimum error point
may be evaluated with the help of the current total minimum error and the current minimised
local error. The weight modification processes is performed twice: once with respect to the
present local error and once more with respect to the current total or mean error. We present
some numerical evidence that our proposed method yields better network weights than those
determined via a conventional gradient descent approach.

Key words: Feedforward neural networks, backpropagation learning, descent gradient, optimization.

1 Introduction

In the feedforward neural network architecture, the algorithm for modifying the weights
between different interconnected layers is usually known as the backpropagation learning
technique [19]. This algorithm evaluates the first derivative of the error function with

∗CET-IILM-AHL, Knowledge park II, Greater Noida-201306, India.
†Department of Mathematics, Dr. B. R. Ambedkar University, Khandari, Agra, U.P., India.
‡Corresponding author: ICIS, Dr. B. R. Ambedkar University, Khandari, Agra, U.P., India, email:

manu p singh@hotmail.com

69

70 NK Sharma, S Kumar & MP Singh

respect to the weights. The error is defined as the mean square error between the desired
output and the actual output of the network for any input pattern presented. The tech-
nique of backpropagation was popularized in a paper by Rumelhart, et al. [16]. However,
a similar idea was proposed earlier by a number of researchers, including Parker [15] and
Werbos [17].

Various other enhancements and modifications were also proposed for the feedforward neu-
ral network paradigm [2, 8, 12]. The term backpropagation is not always used consistently.
For instance, the feedforward multilayer neural network architecture is sometimes also re-
ferred to as a backpropagation network. The term backpropagation is also used to describe
the training of a multilayer neural network using a gradient descent approach applied to a
sum-of-squares error function for the given pattern. It involves an iterative procedure of
minimising this error function, by modifying the network weights during each iteration of
the process. During each iteration we may distinguish between two distinct stages. In the
first stage, the derivatives of the error function with respect to the weights are evaluated.
In the second stage, the derivatives are then used to compute the adjustment of weights
[16]. It is important to distinguish between these two stages. The first stage, namely the
propagation of errors backward through the network in order to evaluate derivatives, may
be applied to many other kinds of networks, not only to the multi layer perceptron. It
may also be applied to error functions other than merely a simple sum-of-squares, and
the evaluation of other derivatives, such as the Jacobian and Hessian matrices [3], may
thus be obtained. The second stage, namely that of weight adjustment by means of these
derivatives, may similarly be tackled using a verity of optimization schemes.

The derivatives of an error function with respect to weights may be obtained by propa-
gation of errors backwards through the network, as mentioned above. That is, the weight
adjustment is proportional to the negative gradient of the error with respect to the weight,
where the error is the instantaneous error between the desired and actual output of the
network. This instantaneous error is due to the current input pattern from the given
training pattern set and becomes a sample function of a random process. Thus, the error
may be assumed to be a random variable. Therefore the gradient descent method is a
stochastic gradient learning method. Due to this stochastic nature, the path of the mini-
mum along the error surface is haphazard. The error surface itself is an approximation of
the true error surface determined by the entire training set of patterns. Thus, the surface
may contain several local minima in addition to a global or total minimum. Consequently,
the stochastic approximation of the gradient descent used during backpropagation learn-
ing need not converge. However, if the weight change is made using second derivative
information of the error, then a better estimate of the optimal weight change towards the
total minimum may be expected. The conjugate descent is one such method [2] where
both the weight change at the previous step and the gradient at the current step are used
to determine the weight change for the current step. Evaluation of the Jacobian matrix is
required in this respect [4]. The elements of the Jacobian are the derivatives of the network
outputs with respect to the inputs. The matrix provides a measure of the local sensitivity
of outputs to changes in each of the input variables. For instance, if known errors are
associated with input variables, then the Jacobian matrix allows these to be propagated
through the trained network in order to estimate their contribution to the errors at the
output level. In general, the network mapping represented by a trained neural network

Conjugate descent formulation of backpropagation error in feedforward neural networks 71

will be non-linear, and so elements of the Jacobian matrix will not be constant, but rather
depend on the particular input vector used.

We may also use backpropagation to evaluate the second derivatives of the error, in or-
der to form the Hessian matrix [3]. Several non-linear optimization algorithms used for
training neural networks are, in fact, based on consideration of the Hessian matrix. The
Hessian also forms the basis of a fast procedure for re-training a feedforward neural net-
work following a small change in the training data [1]. Various approximation schemes
exist for evaluating the Hessian, such as the diagonal approximation method [9], the outer
product approximation method and the inverse Hessian method [6]. A method for the ex-
act evaluation of the Hessian matrix has been also proposed, which is valid for a network
of arbitrary feedforward topology. This method is based on an extension of the back-
propagation technique used to evaluate first order derivatives, and shares many desirable
features of it [1, 3, 13].

In the present paper, we provide a general mathematical formulation for the conjugate
descent of the error function for arbitrary feedforward neural network topologies. The error
is backpropagating among the units of hidden layers for modification of connection weights
in order to minimise the error. The generalized delta-learning rule or backpropagation
algorithm, i.e. the descent gradient along the unknown error surface for each of the training
patterns, forms the basis for this formulation. The proposed formulation provides a general
way to obtain optimal weights from the minimisation of the total or mean error which
consists of combining available minimised local errors. To accomplish this we realize second
order derivatives of the error and find weight modifications in order to obtain the minimum
point of every unknown instantaneous local error. Hence, to obtain an optimal weight
vector for a feedforward neural network, the weight modification should be performed
for the total error minimum point among the various local error minima. It is necessary
to modify the weights twice, i.e. to minimise the local instantaneous error and further
to minimise the total or mean error. Generally the conjugate descent method has been
observed to converge much faster than the standard backpropagation learning scheme,
although there is no proof of convergence in this case due to the non-quadratic nature of
the error surface [14]. We provide numerical evidence which supports this observation of
superior convergence of the conjugate descent method over a standard backpropagation
approach.

2 Descent gradient approach for the unknown error surface

Multilayer feedforward neural networks comprise input, output and hidden layers. Process-
ing units in the output layer and hidden layers usually consist of nonlinear differentiable
output functions, while units of the input layer typically employ linear output functions.
If units in the hidden layers and in the output layer are nonlinear, then the number of un-
known weights or connection strengths depend on the number of units in the hidden layers,
in addition to depending on the number of units in the input and the output layers. Such
networks are used for general pattern mapping, and the pattern mapping problem involves
the determination of optimal connection weights for a given training set of input-output
pattern pairs.

72 NK Sharma, S Kumar & MP Singh

In order to determine optimal weights in a supervisory mode it is necessary to know
the error between the derived or expected output and the actual output of the network
for a given training pattern. However, one knows the desired output only for the units
in the final output layer, not for the units in the hidden layers. Hence the combined
error of output layer is backpropagated through hidden layers to guide the updating or
modification of the weights. The instantaneous error may be minimised by updating
weights between the input and hidden layers and between hidden and output layers. We
adopt the approach of gradient descent [18] along the error surface in the weight space for
adjusting the weights in order to obtain an optimal weight vector. The error is defined as
sum-of-squared differences between the desired outputs and the actual outputs obtained
at the output layer of the network due to application of an input pattern from a training
set. The output is calculated using the current setting of weights in all layers. Thus, for
each input-output pattern pair, the network produces different errors so that the local
error is unknown for each given input-output pattern pair. Weights are modified in order
to minimise the local error corresponding to the presented input-output pattern pair by
adjusting the weights in such a way that a gradient descent is achieved along the total error
surface. The total error surface is typically not known, because the set of input-output
pattern pairs is usually large and presented in a continuous stream. Upon presentation of
an input-output pattern pair the corresponding error may be used to calculate a descent
gradient along this local error surface in order to minimise the error by adjusting weights of
the network. Hence weights are adjusted in such a manner that the network approaches a
minimum of the local error surface for the presented input-output pattern pairs. However,
to achieve an optimal weight vector, weights should be modified in a manner that the
network approaches a minimum of the total error or the mean of local minimum errors.
The total error or mean error corresponds to the expected value of the error function for all
training samples. Let {(a`, b`) : ` = 1, 2, . . . , L} be the set of training pattern pairs. It is
not necessary to know the entire training data set at the start, nor need the training data
set be finite. The objective of the network is to determine the optimum weight update for
each presentation of an input-output pattern pair.

Since the input pattern vector [a`
1, a

`
2, . . ., a

`
I] is presented to the input layer and the desired

output vector [b`1, b
`
2, . . ., b

`
K] for the output layer is available only at the output layer, the

error between the desired output layer b`k and the actual output vector s`
k is available only

at the output layer, where k = 1, . . .,K. The error for the `-th pattern from each output
unit is defined as

E` =
1
2

K∑
k=1

[
b`k − s`

k

]2
. (1)

The descent gradient along the error surface for the `-th pattern for obtaining the incre-
ment in the weight connecting units j and k is

∆Wjk = −η ∂E
`

∂Wjk
, (2)

where η > 0 is a learning rate parameter. The weight modification between the hidden
and output layers and between the input and hidden layers for the `-th pattern at the

Conjugate descent formulation of backpropagation error in feedforward neural networks 73

(t+ 1)-th iteration are

Wkj(t+ 1) = Wkj(t) + ∆Wkj(t) = Wkj(t) + η

K∑
k=1

[
b`k − s`

k

]
s`
ks

`
j (3)

and

Wji(t+ 1) = Wji(t) + ∆Wji(t) = Wji(t) + η

K∑
k=1

[
b`k − s`

k

]
s`
kWkjs

`
ja

`
i , (4)

respectively, where ` = 1, 2, . . . , L.

Thus, for the next pattern, current weights of the network are updated to accommodate
the new pattern information by moving along the descent gradient of the next error surface.
Hence backpropagation learning is based on the steepest descent along the error surface
of the local error in the weight space. However, it is only a first order approximation of
the descent as the weight change is assumed to be proportional to the negative gradient,
and does not incorporate any optimization criterion. Better learning may be achieved if
the supervised learning process is posed as an unconstrained optimization problem with
the error function as objective function. In this case an optimal value of an increment
in the weights is obtained by considering only up to second order derivatives of the error
function. The resulting expression for the optimal weight change requires computation of
the second order derivatives of instantaneous local errors with respect to all the weights.
The additional work required to obtain these derivatives is expected to yield faster conver-
gence than is obtained via a standard gradient descent method, but there is no guarantee
that this expectation will be realised.

The incorporation of second order derivative information of the error function results in
finding an optimal weight vector corresponding to different local error surfaces, all the
while attempting to minimise the cumulative error corresponding to all the input-output
pattern pairs. Therefore, we may visualize the process as a K-dimensional error surface in
which we have different descent gradients corresponding to different input-output pattern
pairs, but only one descent gradient will be active at any one time. However, it is difficult
to keep track of the entire set of local descent gradients and to search for the total or mean
gradient. Instead, we keep track of the different minimum points of the instantaneous local
errors corresponding to different input-output pattern pairs. These minimum points will
be distributed over the entire error surface, and we shall conveniently trace the mean or
total errors minimum point from these local minimum points. In order to accomplish this,
we require the second order derivatives of the descent gradient of the local errors.

3 Second derivative of descent gradient

The reason for requiring the second order derivatives of the descent gradient of the local
errors was discussed in the previous section. In this section we determine these second
order derivatives and find the weight modification in order to obtain the minimum point
of every instantaneous local error. As mentioned above, the idea is that as the network
trains for every presented input-output pattern pair presented, the weights are modified
in order to minimise the total or mean error point. Modification of the weights therefore

74 NK Sharma, S Kumar & MP Singh

occurs twice: Once during minimisation of the local instantaneous error and once more
during minimisation of the total or mean error.

The error produced by the feedforward neural network for the `-th pattern is given in (1).
The descent gradient for the error is therefore obtained from (1) and (2) as

∆Wkj = −η ∂E
`

∂Wkj
= −η ∂

∂Wkj

[
1
2

K∑
k=1

(b`k − s`
k)2
]
. (5)

Consider the second derivative of the error,

∂2E`

∂W 2
kj

=
∂

∂Wkj

[
∂E`

∂Wkj

]
=

∂

∂Wkj

[
∂E`

∂yk

∂yk

∂Wkj

]
,

where yk =
∑J

j=1Wkjs
`
j (activation from the output layer’s units). Since

∂s`
j

∂Wkj
= 0, it

follows that

∂2E`

∂W 2
kj

=
∂

∂Wkj

[
∂E`

∂yk
s`
j

]
=

∂

∂yk

[
∂E`

∂Wkj
s`
j

]
=

∂

∂yk

[
∂E`

∂yk
(s`

j)
2

]
,

Hence,

∂2E`

∂W 2
kj

=
∂2E`

∂y2
k

(s`
j)

2. (6)

We further extend the derivative term in (6) as

∂2E`

∂y2
k

=
∂

∂yk

[
∂E`

∂s`
k

∂s`
k

∂yk

]
=

∂

∂yk

[
∂E`

∂s`
k

ṡ`
k

]

where ṡ`
k = ∂s`

k
∂yk

and where the nonlinear differentiable output signal is defined as

s`
k = f(y`

k) =
1

1 + exp(−ky`
k)
.

We therefore have

∂2E`

∂y2
k

=
∂

∂yk

[
∂E`

∂s`
k

ṡ`
k

]
=

∂2E`

∂yk∂s
`
k

ṡ`
k +

∂E`

∂s`
k

∂ṡ`
k

∂yk

= ṡ`
k

[
∂

∂s`
k

(
∂E`

∂yk

)]
+
∂E`

∂s`
k

∂ṡ`
k

∂yk

Conjugate descent formulation of backpropagation error in feedforward neural networks 75

and so

∂2E`

∂y2
k

= s`
k(1− s`

k)
[
∂

∂s`
k

(
∂E`

∂s`
k

ṡ`
k

)]
+
∂E`

∂s`
k

ṡ`
k(1− 2s`

k)

= s`
k(1− s`

k)

[(
∂2E`(
∂s`

k

)2 ṡ`
k +

∂E`

∂s`
k

∂ṡ`
k

∂s`
k

)]
+
∂E`

∂s`
k

ṡ`
k(1− 2s`

k)

= s`
k(1− s`

k)
[
∂2E`

(∂s`
k)2

ṡ`
k +

∂E`

∂s`
k

(1− 2s`
k)
]
−

K∑
k=1

(b`k − s`
k)s`

k(1− 2s`
k)

=
K∑

k=1

s`
k(1− s`

k)
[
ṡ`
k − (b`k − s`

k)(1− 2s`
k)
]
−

K∑
k=1

(b`k − s`
k)s`

k(1− s`
k)(1− 2s`

k)

=
K∑

k=1

s`
k(1− s`

k)
[
s`
k(1− s`

k)− s`
k(1− 2s`

k)− δ`
k(1− 2s`

k)
]
, where δ`

k = (b`k − s`
k),

=
K∑

k=1

s`
k(1− s`

k)
[
s`
k(1− s`

k)− 2δ`
k(1− 2s`

k)
]

=
K∑

k=1

ṡ`
k

[
ṡ`
k − 2δ`

k(1− 2s`
k)
]
, (7)

so that
∂2E`

∂W 2
kj

=
K∑

k=1

ṡ`
k[ṡ`

k − 2δ`
k(1− 2s`

k)](s`
j)

2. (8)

Thus, the weight adjustment corresponding to the minimum point of the error E` is

∆Wkj = −η
K∑

k=1

ṡ`
k

[
ṡ`
k − 2δ`

k(1− 2s`
k)
]

(s`
j)

2. (9)

Correspondingly, the new weights between the processing units of the hidden and output
layers are

Wkj(t+ 1) = Wkj(t)− η
∑

k

ṡ`
k

[
ṡ`
k − 2δ`

k(1− 2s`
k)
]

(s`
j)

2. (10)

Now, we determine the weight modification between processing units of the input layer
and those of the hidden layer of the feedforward neural network in order to minimise the
local error E` and to obtain the local minimum point of the error. Again we consider the
second order derivative of the error with respect to the weight Wji, namely

∆Wji = −η ∂
2E`

∂W 2
ji

. (11)

Illustrating for the term ∂2E`

∂W 2
ji

, we have

∂2E`

∂W 2
ji

=
∂

∂Wji

[
∂E`

∂Wji

]
=

∂

∂Wji

[
∂E`

∂yj

∂yj

∂Wji

]
,

76 NK Sharma, S Kumar & MP Singh

where yj =
∑I

i=1Wjia
`
i (activation from the hidden layer’s unit) and where a`

i = f(a`
i) is

the input applied to the i-th unit of the input layer. Since ∂a`
i

∂Wji
= 0, it follows that

∂

∂Wji

[
∂E`

∂yj
a`

i

]
=

∂

∂yj

[
∂E`

∂Wji
a`

i

]
=
∂2E`

∂y2
j

(a`
i)

2. (12)

We further expand the derivative term in (12) as

∂2E`

∂y2
j

=
∂

∂yj

[
∂E`

∂yj

]
=

∂

∂yj

[
∂E`

∂s`
j

∂s`
j

∂yj

]
=

∂

∂yj

[
∂E`

∂s`
j

ṡ`
j

]
,

where s`
j = f(y`

j) = 1
1+exp(−yj)

(an output signal with k = 1), so that

∂2E`

∂y2
j

=
∂

∂yj

[
∂E`

∂s`
j

ṡ`
j

]
=

∂

∂yj

[
∂E`

∂yk

∂yk

∂s`
j

ṡ`
j

]
=

∂

∂yj

[
∂E`

∂yk
Wkj ṡ

`
j

]
.

Therefore,

∂2E`

∂y2
j

=
∂

∂yj

[
∂E`

∂yk
Wkj ṡ

`
j

]
=

∂2E`

∂yj∂yk
Wkj ṡ

`
j +

∂E`

∂yk

∂Wkj

∂yj
ṡ`
j +

∂E`

∂yk
Wkj

∂ṡ`
j

∂yj

=
∂

∂yk

[
∂E`

∂yj

]
Wkj ṡ

`
j +

∂E`

∂yk
Wkj

∂ṡ`
j

∂yj
,

since

∂Wkj

∂yj
= 0

=
∂

∂yk

[
∂E`

∂yj

]
Wkj ṡ

`
j −

K∑
k=1

(b`k − s`
k)s`

k(1− s`
k)Wkjs

`
j(1− s`

j)(1− 2s`
j)

=
∂2E`

∂yk∂yj
Wkj ṡ

`
j −∆`, (13)

where ∆` =
K∑

k=1

(b`k − s`
k)s`

k(1− s`
k)Wkjs

`
j(1− s`

j)(1− 2s`
j). Consequently,

∂2E`

∂y2
j

=
∂

∂yk

[
∂E`

∂s`
j

∂s`
j

∂yj

]
Wkj ṡ

`
j −∆`

=
∂

∂yk

[
∂E`

∂s`
j

ṡ`
j

]
Wkj ṡ

`
j −∆`

Conjugate descent formulation of backpropagation error in feedforward neural networks 77

and so

∂2E`

∂y2
j

=
∂

∂yk

[
∂E`

∂yk
Wkj ṡ

`
j

]
Wkj ṡ

`
j −∆`

=
∂2E`

∂y2
k

Wkj ṡ
`
j +

∂E`

∂yk

∂Wkj

∂yk
ṡ`
j +

∂E`

∂yk
Wkj

∂ṡ`
j

∂yk
Wkj ṡ

l
j −∆`

=
[
∂2E`

∂y2
k

Wkj ṡ
`
j

]
Wkj ṡ

l
j −∆`,

because ∂Wkj

∂yk
= 0 and

∂ṡ`
j

∂yk
= 0 (the output signal of the hidden layer unit is independent

of the change in the activation of the output layer unit). Hence

∂2E`

∂y2
j

=− ∂

∂yk

[
K∑

k=1

(b`k − s`
k)ṡ`

k

]
Wkj ṡ

`
j −∆`

=
K∑

k=1

[
(ṡ`

k)2 − (b`k − s`
k)ṡ`

k

]
Wkj ṡ

`
j −∆`

=
K∑

k=1

[
(ṡ`

k)2 − (b`k − s`
k)ṡ`

k(1− 2s`
k)
]
Wkj ṡ

`
j −∆`

=
K∑

k=1

ṡ`
k

[
ṡ`
k − (b`k − s`

k)(1− 2s`
k)
]
.Wkj ṡ

`
j −∆`

=
K∑

k=1

ṡ`
k

[
ṡ`
k − δ`

k(1− 2s`
k)
]
Wkj ṡ

`
j −∆`.

It follows from (12) that

∂2E`

∂W 2
ji

=
K∑

k=1

ṡ`
k

[
ṡ`
k − δ`

k(1− 2s`
k)
]
Wkj ṡ

`
j(a

`
i)

2 −∆`(a`
i)

2. (14)

Combining the expressions in (11) and (14) we therefore have

∆Wji = −η∆`(a`
i)

2 − η
K∑

k=1

ṡ`
k

[
ṡk
` − δ`

k(1− 2s`
k)
]
Wkj ṡ

`
j(a

`
i)

2. (15)

Thus, new weights between processing units of the input layer and the hidden layer may
be obtained as

Wji(t+ 1) = Wji(t)− η∆`(a`
i)

2 − η
K∑

k=1

ṡ`
k

[
ṡ`
k − δ`

k(1− 2s`
k)
]
Wkj ṡ

`
j(a

`
i)

2. (16)

This relationship represents a weight modification for the feedforward neural network
which minimises the local error for the presented input-output pattern pair. To prove
that we indeed have a local minimal error point, we evaluate the second derivative of the

78 NK Sharma, S Kumar & MP Singh

error with respect to the weights. This is achieved by evaluating the second derivative
separately with respect to the weights between hidden and output layers, and between
input and hidden layers. Again we consider the local error in (1) and the gradient descent
of the error surface in the weight space

∆Wh0 = −η ∂2E`

∂Wji∂Wkj
, (17)

where Wh0 represents the single weight from each hidden and output layer, so that

∂2E`

∂Wji∂Wkj
=

∂

∂Wji

[
∂E`

∂Wkj

]
=

∂

∂Wji

[
∂E`

∂yk

∂yk

∂Wkj

]
=

∂

∂Wji

[
∂E`

∂yk
s`
j

]
=

∂

∂Wji

[
∂E`

∂s`
k

ṡ`
ks

`
j

]
=

∂

∂s`
k

∂E`

∂Wji
ṡ`
ks

`
j +

∂E`

∂s`
k

∂ṡ`
k

∂Wji
s`
j +

∂E`

∂s`
k

ṡ`
k

∂s`
j

∂Wji

=
∂

∂s`
k

∂E`

∂Wji
ṡ`
ks

`
j +

∂E`

∂s`
k

∂ṡ`
k

∂Wji
s`
j −

K∑
k=1

(b`k − s`
k)ṡ`

kṡ
`
ja

`
i

=
∂

∂s`
k

∂E`

∂Wji
ṡ`
ks

`
j −

K∑
k=1

(b`k − s`
k)(s`

j)
2ṡ`

k(1− 2s`
k)−

K∑
k=1

(b`k − s`
k)ṡ`

kṡ
`
ja

`
i

= (ṡ`
ks

`
j)

2 −
K∑

k=1

(b`k − s`
k)(1− 2s`

k)(s`
j)

2ṡ`
k −

K∑
k=1

(b`k − s`
k)(s`

j)
2ṡ`

k(1− 2s`
k)

−
K∑

k=1

(b`k − s`
k)ṡ`

kṡ
`
ja

`
i

= (ṡ`
ks

`
j)

2 −
K∑

k=1

(b`k − s`
k)
[
(1− 2s`

k)(s`
j)

2ṡ`
k + (s`

j)
2ṡ`

k(1− 2s`
k) + ṡ`

kṡ
`
ja

`
i

]
= (ṡ`

ks
`
j)

2 −
K∑

k=1

(b`k − s`
k)
[
ṡ`
k

[
2
[
(1− 2s`

k)(s`
j)

2
]

+ ṡ`
ja

`
i

]]
.

The weight change is therefore

Wh0 = η
K∑

k=1

(b`k − s`
k)
[
ṡ`
k

[
2(1− 2s`

k)(s`
j)

2 + ṡ`
ja

`
i

]]
− η(ṡ`

ks
`
j)

2. (18)

This expression represents the weight modification in terms of the second derivative of
the error with respect to combined weights of the hidden-input layer and output-hidden
layer. The weight modification has been obtained for units of the hidden layer in the terms
of the backpropagated error and for units of the output layer in terms of the local error
generated from units of the output layer. The weight modification has also been obtained
for the single weight from each hidden and output layer in combination. Therefore, we
may represent the weight update for the entire network in terms of the updated weight

Conjugate descent formulation of backpropagation error in feedforward neural networks 79

vector

∆W =



∂2E`

∂W11∂W11

∂2E`

∂W11∂W12
. . . ∂2E`

∂W11∂W1k

∂2E`

∂W12∂W21

∂2E`

∂W12∂W22
. . . ∂2E`

∂W12∂W2k
...

... . . .
...

∂2E`

∂W21∂W11

∂2E`

∂W21∂W12
. . . ∂2E`

∂W21∂W1k
...

... . . .
...

∂2E`

∂Wij∂W11

∂2E`

∂Wij∂W12
. . . ∂2E`

∂Wij∂W1k

...
... . . .

...
∂2E`

∂Wij∂Wj1

∂2E`

∂Wij∂Wj2
. . . ∂2E`

∂Wij∂Wjk


(i+j)×k

(19)

in order to determine the second derivative of the local error. By presenting an input-
output pattern pair for training, the weight vector will modify itself by means of the
learning equation W (t+ 1) = W (t) + ∆W . This process will continue for each presented
input-output pattern pair, either as a new pattern or as a repeated pattern. We are in effect
finding the minimum point of each local error by determining its second derivative. In this
way, we have a collection of minimum points of local errors and hence we can determine the
total error or mean error minimum point by taking the mean of current local error point
with respect to the current mean of error points (i.e. employing a dynamic mean) and it
will be the current mean or total error point. We initialize the total error as zero, and
determine the local error point corresponding to the presented pattern, i.e. (a

′`, b
′`) = E`.

The current mean error or total error point is

Emin
g =

Emin
g + E`

2
, (20)

where, initially, Emin
g = 0.

Now, the weight vector is modified using (9), (15) and (17) in order to minimise the total
error or mean error point Emin

g .

This process is continued for all presented input-output pattern pairs, every time modifying
Emin

g once the local error point for the presented pair has been obtained. This mean of
the total error minimum point will change with every new local error minimum and the
weight modification will accomplish the minimisation of the total or mean error after the
minimisation of the current local error corresponding to the presented input pattern. The
optimal change in the weight vector may be represented as

∆W min =



∂2Emin
g

∂W11∂W11

∂2Emin
g

∂W11∂W12
. . .

∂2Emin
g

∂W11∂W1k

∂2Emin
g

∂W12∂W21

∂2Emin
g

∂W12∂W22
. . .

∂2Emin
g

∂W12∂W2k
...

... . . .
∂2Emin

g

∂W21∂W11

∂2Emin
g

∂W21∂W12
. . .

∂2Emin
g

∂W21∂W1k
...

... . . .
∂2Emin

g

∂Wij∂Wj1

∂2Emin
g

∂Wij∂Wj2
. . .

∂2Emin
g

∂Wij∂Wjk


(i+j)×k

. (21)

80 NK Sharma, S Kumar & MP Singh

In this way we may determine the optimal connection strengths (weights) for the feedfor-
ward neural network to capture the relationship between all the presented input-output
pattern pairs.

An algorithm for the entire method may be represented in a straight-forward manner
as an extension of the backpropagation procedure for feedforward neural networks. We
summarize the algorithm in the following nine steps.

1. Initialize weights and thresholds. Also initialize the total error as Emin
g = 0 [Define

Wji(t) and Wkj(t), i = 1, 2, . . ., I, j = 1, 2, . . ., J , k = 1, 2, . . .,K to be weights from
the i-th unit of the input layer to the j-th unit of the hidden layer, and weights
from j-th unit of the hidden layer to the k-th unit of the output layer at time t,
respectively. The parameters θj and θk are the threshold values for the j-th unit of
the hidden layer and the k-th unit of the output layer, respectively. Set Wji(0) and
Wjk(0) to small random values not exceeding the threshold values].

2. Present the input a` = [a`
1, a

`
2, . . . , a

`
I] and the target output b` = [b`1, b

`
2, . . . , b

`
K].

3. Evaluate the output of all hidden and output units, for the given input pattern,
i.e. compute s`

j = f(
∑I

i=1Wjiai − θj) for the hidden layer’s unit and s`
k =

f(
∑J

j=1Wkjs
`
j − θk) for the output layer’s unit. (The function f(·) is a sigmoidal

function, which is nonlinear, differentiable and monotonically increasing).
4. Evaluate the local error

E` =
1
2

K∑
k=1

[lk` − s`
k]2

corresponding to the input pattern presented.
5. Evaluate the second derivative of the error with respect to the weights between

hidden and output layers and also with respect to the weights between input and
hidden layers separately as

∂2E`

∂W 2
kj

=
K∑

k=1

ṡ`
k

[
ṡ`
k − 2(b`k − s`

k)(1− 2s`
k)
]

(s`
j)

2

and

∂2E`

∂W 2
ji

=
K∑

k=1

ṡ`
k

[
ṡ`
k − 2(b`k − s`

k)(1− 2s`
k)
]
Wkj ṡ

`
j(a

`
i)

2

−
K∑

k=1

(b`k − s`
k)s`

k(1− 2s`
k)Wkjs

`
j(1− s`

j)(1− 2s`
j)(a

`
i)

2,

respectively. Next, evaluate the second derivative of the error with respect to the
weights from both hidden and output layers in combination, i.e.

∂2E`

∂Wkj∂Wji
= ṡ`

ks
`
j −

K∑
k=1

[
(b`k − s`

k)ṡ`
k

[
2(1− 2s`

k)(s`
j)

2
]

+ ṡ`
ja

`
i

]
.

Conjugate descent formulation of backpropagation error in feedforward neural networks 81

6. Determine the weight vectors and assign these new weights to the network as the
current weights. Let Wkj(t+1) = Wkj(t)+∆Wkj(t) for the output layer, Wji(t+1) =
Wji(t)+∆Wji(t) for the hidden layer, or W (t+1) = W (t)+∆W , where ∆W is given
in (19). Repeat Steps 3 to 5 until the local error (E`) corresponding to presented
input-output pattern pair (a`, b`) does not decrease.

7. Calculate the current mean of the errors as the total error point: Emin
g = (Emin

g +
E`)/2, where E` is the local error point corresponding to the input pattern presented
and Emin

g is the current total or mean error minimum point.
8. Modify the weights in order to minimise the total or mean error and assign new

weights to the network as W (t+ 1) = W (t) + ∆W , where ∆W min is given in (21).
Calculate the output of all hidden and output units with currently assigned weights
for the presented input pattern as smin

j = f [wT
j (t)a−θj] (for a hidden layer unit) and

smin
k = f

[
wT

k (t)smin − θk

]
(for an output layer unit), respectively. Repeat Step 8

until Emin
g = 1

2

∑K
k=1

[
b`k − smin

k

]
does not decrease.

9. Repeat all the steps, from the Step 2, for each patterns in the training set, i.e. for
all ` = 1, . . . , L.

4 Simulation design and result

A simulation was performed to analyze the performance of the backpropagation algorithm
with changing training patterns of handwritten words consisting of three characters when
using second order derivatives of the error surface to minimise the total or mean error
in the feedforward neural network. It was found that use of the second order derivative
of the error surface to minimise the total error yields superior network convergence. A
hundred and fifty sample words were presented to the vertical segmentation program which
was designed in MATLAB, based on the portion of average height of the words. These
segmented characters were clubbed together after binarization to form training patterns for
the neural network. The proposed conjugate gradient descent of each presented training
pattern is calculated to obtain the total or mean error minimum. The network was designed
to learn its behaviour from a presentation of each one of 5 samples 100 times (i.e. achieving
500 trials). To accomplish the simulation we considered a feedforward neural network
consisting of 150, 10 and 26 neurons in the input, hidden and output layers, respectively.
Five hundred experiments were conducted by applying different kinds of constraints for
the segmentation of individual characters from words presented in cursive hand-written
text. The constraints were based on the height of the words. The segmented characters
were resized onto 15×10 binary matrices and were exposed to the 150 input neurons. The
26 output neurons correspond to letters in the English alphabet. The steps outlined in
the following subsections were followed in the experiments.

4.1 Preprocessing

Preprocessing is considered mandatory before segmentation and analysis of the perfor-
mance of the neural network with respect to recognition. All hand-written words were
scanned into gray-scale images. Each word was fitted into a rectanglar box in order to

82 NK Sharma, S Kumar & MP Singh

facilitate extraction from the document and to enable calculation of height and width of
characters.

4.2 The segmentation process

The observed average character height and width (Havg and Wavg) formed the basis for
implementation of the segmentation process. It has been observed that in cursive hand-
written text, the characters are connected to each other to form a word at a height less
than approximately half of the average maximum height. The samples in Figure 1 depict
this phenomenon. We therefore considered 1

2Havg (half of the average height) for deciding
on segmentation points. Each word was traced vertically after converting the gray scale
image into a binary matrix. This binarization was achieved using the following logical
operation on the gray-scale intensity level: (I ≥ Level). Here 0 ≤ Level ≤ 1 is a threshold
parameter. The value of Level was based on the gray-scale intensity of the text in the
document. A higher intensity leads to a larger threshold value. Determining segmentation
points was carried out by means of Algorithm 1.

Figure 1: Connections between the characters of a word in cursive hand-written text.

Algorithm 1 VerticalSegment I

1: for all columns i in image matrix I starting from position I(0, 0) do
2: for all rows j do
3: if I(i, j) = 0 (black pixel) and row number j > Height/2 then
4: if (column i < 5) or (i−last segmentation column < 5) then
5: Process the next element
6: else
7: Store this segmentation point (column number i)
8: end if
9: else if no black pixel found in entire column then

10: i is a segmentation point
11: Cut the image according to the segmentation points identified
12: end if
13: end for
14: end for

Figure 2: Vertical segmentation technique and binary representation of a character.

Conjugate descent formulation of backpropagation error in feedforward neural networks 83

4.3 Reshaping and resizing of characters for pattern creation

As mentioned, every segmented character was first converted into a binary matrix and then
resized to a 15×10 matrix using nearest neighborhood interpolation [20]. This matrix was
then reshaped to a 150× 1 logical vector so that it could be presented to the network for
learning. These characters were clubbed together in a matrix to form the training pattern
set.

4.4 Experimental results

In order to analyze the performance of the feedforward neural network with conjugate
descent for the character recognition problem, the parameter values in Table 1 were used
in all the experiments.

Sr.
No.

Parameter Name Value

1 Learning/ Training Goal for entire network 0.01
2 Acceptable Error 0.001
3 Classical Momentum Term (α) 0.90
4 Modified Momentum Term(β) 0.05
5 Maximum Epochs 50 000
6 Initial Weights and biased term values Randomly generated

values between 0 and 1

Table 1: Parameters and their values used in the learning processes.

After applying the segmentation technique, as specified in Algorithm 1, the results in
Table 2 were obtained.

Segmentation Correctly Segmented Incorrectly Segmented Success
Constraint Words (Out of 600) Words (Out of 600) Percentage

1
2
Havg 427 173 71.16 %

Table 2: Results of vertical segmentation technique.

Thus, out of 600 words, a total of 427 words were segmented correctly and used as the
patterns for the training of the neural network. The network was trained using both
the conventional descent gradient method and the proposed conjugate descent method
employing a dynamic mean of the total error. The values of the gradient descent and the
proposed conjugate descent were computed for each learning trial and the mean values of
the resulting performance is presented in Table 3 and in Figures 3–4.

It may be concluded from the table that the proposed method of conjugate descent for
hand-written word recognition shows a remarkable enhancement in performance over the
conventional method.

84 NK Sharma, S Kumar & MP Singh

Sample Gradient Network Error

Classical Proposed Classical Proposed
Method Method Method Method

Sample 1 1 981 400 2 029 280 0 0
Sample 2 5 792 000 2 021 500 0 0
Sample 3 7 018 400 1 723 310 0 0
Sample 4 1 173 900 843.094 0.003 437 87 0
Sample 5 62 263.9 21 897.8 0.007 875 74 0.004 917 16

Table 3: Comparison of gradient values and errors in the network for five samples.

Sample 1 Sample 2 Sample 3 Sample 4 Sample 5

1

2

3

4

5

6

7

G
ra

di
en

t
(×

10
1
6
)

Classical Method
Modified Method

Figure 3: Comparison of descent gradient and proposed conjugate descent methods.

5 Conclusion

The method discussed in this paper uses second order derivative information to minimise
the local error in the weight space, based on input-output pattern pairs presented to the
feedforward network. Weights in the network are repeatedly modified in order to minimise
the local error for each such pair. There are separate local errors for each different input-
output pattern pair presented. The descent gradient of the local error in the weight space
gives only the surface of error minimisation. The second derivative of the error generates
the minimum point in the error surface. Hence, weights are modified to account for
each of the local errors. This modification is achieved via the second derivative of the
local error which is obtained with respect to weights for the output and hidden layers
individually and also in combination. In this way a difference matrix is generated for the
weight modification. The process of weight modification is iterative, and continues until
the minimum of the local error is obtained.

At each iteration we attempt to find optimal weights for the network. These weights are
responsible for producing the behaviour of the network for the test patterns. However,
there is no guarantee of optimal behaviour for all patterns, because weights are modified

Conjugate descent formulation of backpropagation error in feedforward neural networks 85

Sample 1 Sample 2 Sample 3 Sample 4 Sample 5

1

2

3

4

5

6

7

8
E

rr
or

in
ne

tw
or

k
(×

10
−

3
)

Error with classical momentum Error with modified momentum

Figure 4: Comparison of the minimised error for the descent gradient and proposed conjugate

descent methods.

for an unknown local error surface. Once the local error minimum point has been obtained,
the mean of this local error minimum point provides a measure of the current total error
or mean error point among the existing local error minima. Thereafter, the weights are
again modified for the current total or mean error. Thus, the network is trained for the
global or mean behaviour rather than for the individual local behaviours. This iterative
process continues until the total or mean error does not decrease for all the input pairs
presented in the training set.

The proposed conjugate descent method accelerates the process of convergence and yields
better network performance. Despite the significant reduction of network error shown in
Figure 5 when using the conjugate descent approach over the traditional approach for
our five sample recognition experiments, we still cannot claim any guarantee or general
statement with respect to the convergence of this method. Although we have the different
local error minimum points corresponding to the pattern pairs presented as input, these
local error minima cannot be visualized simultaneously. If the local error corresponding
to a pattern has been minimised, there is a possibility that another previously obtained
error minimum may change and hence that these errors are no longer minimised.

Further experimentation is required before a general conclusion may be reached with
respect to the convergence rate. The complexity of the algorithm should also be analysed
and compared with those of other methods. These avenues of investigation may be pursued
in future work.

References

[1] Backer S & Cun YL, 1989, Improving the convergence of backpropagation learning with second
order methods, Proceedings of the 1988 Connectionist Models Summer School, Morgan Kaufman,
San Mateo (CA).

86 NK Sharma, S Kumar & MP Singh

[2] Battiti R, 1992, First- and second-order methods for learning: Between steepest descent and New-
ton’s method, Neural Computation, 4(2), pp. 141–166.

[3] Bishop CM, 1991, A fast procedure for retraining the multilayer perceptron, International Journal of
Neural Systems, 2(3), pp. 229–236.

[4] Bishop CM, 1992, Exact calculation of the Hessian matrix for the multilayer perceptron, Neural
Computation, 4(4), pp. 494–501.

[5] Bishop, CM 1995, Neural networks for pattern recognition, Oxford University Press, New York (NY).

[6] Buntine WL & Weigend AS, 1993, Computing second derivatives in feedforward networks: A
review, IEEE Transactions on Neural Networks, 5(3), pp. 480–488.

[7] Casey RG & Lecolient E, 1996, A survey of methods and strategies in characters segmentation,
IEEE Transactions on Pattern Analysis and Machine Intelligence, 18, pp. 690–706.

[8] Fahlman SE, 1988, An empirical study of learning speed in backpropagation networks, Technical
report CMU-CS-88-162, Carnegie Mellon University, Pittsburgh (PA).

[9] Hassibi B & Stork DG, 1993, Second order derivatives for network pruning: Optimal brain surgeon,
Advances in Neural Information Processing Systems, 5, pp. 164–171.

[10] Haykin S, 1994, Neural networks: A comprehensive foundation, Macmillan College Publishing Com-
pany Inc., New York (NY).

[11] Jacobs RA, 1988, Increased rates of convergence through learning rate adaptation, Neural Networks,
1, pp. 295–307.

[12] Jacobs R, Jordan M, Nowlan S & Hinton G, 1991, Adaptive mixtures of local experts, Neural
Computation, 3, pp. 79–87.

[13] Kramer, AH & Sangiovanni-Vincentelli A, 1989, Efficient parallel learning algorithms for neural
networks, Advances in Neural Information Processing Systems, 1, pp. 40–48.

[14] Mandic DP, Hanna AI & Razaz M, 2001, A normalized gradient descent algorithm for nonlinear
adaptive filters using a gradient adaptive step size, IEEE Signal Processing Letters, 11, pp. 1–3.

[15] Parker DB, 1985, Learning logic, MIT Special Report TR-47, MIT Center for Research in Com-
putational Economics and Management Science, Massachusetts Institute of Technology, Cambridge
(MA).

[16] Rumelhart DE, Hinton GE & Williams RJ, 1986, Learning internal representations by error
propagation, pp. 318–362 in Rumelhart DE & McClelland JL (Eds), Parallel distributed processing:
Explorations in the microstructure of cognition, MIT Press, Cambridge (MA).

[17] Werbos PJ, 1974, Beyond regression: New tools for prediction and analysis in the behavioral sci-
ences, PhD dissertation, Harvard University, Cambridge (MA).

[18] Widrow B & Michael AL, 1990, 30 years of adaptive neural networks: Perceptron, madaline and
backpropagation, Proceedings of the IEEE, 78, pp. 1415–1441.

[19] Williams RJ & Zipser D, 1995, Gradient-based learning algorithms for recurrent networks and their
computational complexity, pp. 433–486, in Chauvin Y & Rumelhart, DE (Eds), Backpropagation:
Theory, architectures and applications, Lawrence Erlbaum Publishers, Hillsdale (NY).

