
Volume 38 (1), pp. 1–28

http://orion.journals.ac.za

ORiON
ISSN 0259–191X (print)
ISSN 2224–0004 (online)

©2022

A grid-based humanitarian logistics solution

T Olivier∗ H Kruger†

Received: 13 April 2022; Revised: 5 May 2022; Accepted: 5 May 2022

Abstract

Natural disasters often cause large-scale destruction and many studies focus on the support
and evacuation of disaster victims. During a disaster, timely provision of relief items, such
as medical supplies, is a critical task and is considered one of the fundamental functions in a
humanitarian logistics chain. However, many practical problems and challenges often occur
that make the smooth operation of humanitarian logistic functions a difficult and sometimes
impossible task. One such problem is the accessibility to disaster areas where roads, railway
lines and other transport routes have been demolished and which causes residents or other
victims to be cut off from any assistance. In the event that no or little infrastructure exists,
humanitarian workers must find new and innovative ways of reaching people in need. In this
paper, a grid-based maze that can be solved to find optimal traversable routes in a disaster
area is proposed. A matrix maze generation approach is suggested that can be solved by the
Lee algorithm to find an optimal route. To illustrate the proposed methodology, a software
solution was developed and applied to a real-world case study. The results obtained confirm
that the proposed methodology, combined with the Lee algorithm as a solution strategy,
delivers useful and accurate results that humanitarian workers may utilise to assist with the
evacuation of victims and the transportation of relief items.

Key words: Grid-based maze, Humanitarian logistics, Lee algorithm, Natural disaster, Shortest route.

1 Introduction

The World Health Organisation defines a disaster as ”an occurrence disrupting the
normal conditions of existence and causing a level of suffering that exceeds the capacity
of adjustment of the affected community” [62]. A natural disaster refers to an event
in nature (e.g. droughts, earthquakes, hurricanes, floods, tornados) that results in

∗School of Computer Science and Information Systems, North-West University, Potchefstroom Campus,
South Africa, email: thean0723@gmail.com

†School of Computer Science and Information Systems, North-West University, Potchefstroom Campus,
South Africa, email: Hennie.Kruger@nwu.ac.za

http://dx.doi.org/10.5784/38-1-1

1

fatalities, property damage, and social environment disruption [64]. According to Shaluf
[54], natural disasters are typically classified into five broad categories which include
geophysical (earthquakes, landslides, tsunamis, volcanic activity), hydrological (avalanches
and floods), climatological (extreme temperatures, droughts, wildfires), meteorological
(cyclones, storms, wave surges) and biological (disease epidemics, insect/animal plagues).
The average death rate of people killed each year globally in these natural disasters is 60
000, with droughts, floods and earthquakes identified as the deadliest current events [52].
From these brief remarks, it is clear that natural disasters are a worldwide phenomenon
that can cause great destruction and loss of lives. Many examples of natural disasters that
caused significant disruption exist – e.g. the November 2019 wildfires that spread across
the South Wales region of Australia, where thousands of people had to be evacuated and
at least 3000 houses completely destroyed or seriously damaged [12]; Typhoon Hagibis
which caused mayhem in early 2019 in Japan resulting in the evacuation of about 38000
people with more than 138000 households without water and almost 500000 without
electricity [46]; and in the United States of America, Hurricane Sandy caused the death of
approximately 220 people in 2012, destroyed more than 600000 housing units and caused
almost $70 billion in damages [21]. More recently, Hurricane Ida cost the world $65 billion
in losses after hitting the state of Louisiana, USA, in August 2021 [33], while a storm
complex over Europe caused the loss of lives, buildings to collapse, and destroyed roads
and railways from 12 to 15 July 2021 [60].

In the aftermath of a natural disaster, one of the crucial tasks is to make provision for relief
and medical teams to assist victims. Medical, food and relief items (e.g. shelter, clothing,
personal hygiene, etc.) need to be provided to disaster victims in a timely manner. This
critical task is managed through a process called a humanitarian logistics chain which may
be defined as the planning and implementation of efficient and cost-effective procedures to
manage and control the flow and storage of goods and relief items between a point of origin
and people affected by the disaster [18]. However, following a natural disaster, the smooth
operation of the so-called humanitarian logistics chain is often confronted with a significant
number of challenges and practical difficulties. One of the typical problems associated with
natural disasters is the accessibility of certain areas to reach disaster victims. Xu et al. [64]
pointed out that roads, communication and power sources are often damaged by severe
natural disasters, while Bil et al. [9] confirmed that roads and transport infrastructure
is often demolished, causing residents and other disaster victims to be cut off from the
outside world and from any help. To find an optimal traversable route in an area with
no or little infrastructure, that can be used to transport relief resources to victims, lies at
the core of humanitarian logistics. It often leads to new and innovative ways of reaching
people in need and evacuating them to appropriate and safe locations.

In this paper, a grid-based maze approach that can be solved with the well-known Lee
algorithm [38] is proposed to assist with the primary humanitarian logistics problem of
finding a suitable route, or routes, in a disaster-stricken area. A grid-based maze is
constructed for a real-world natural disaster case. The maze is then evaluated, using the
Lee algorithm to solve the primary humanitarian logistics problem of finding an optimum
traversable route between different pre-specified locations. Real-world data from Hurricane
Katrina, which hit New Orleans in the United States of America in 2005, will be used to
demonstrate the proposed solution strategy.

2

The remainder of the paper is structured as follows. A brief overview of related work in
the literature is presented in Section 2. The generation of a grid-based maze is explained
in Section 3 while an overview of the Lee algorithm as a solution strategy is provided
in Section 4. A real-world case study is illustrated in Section 5. Section 6 presents a
discussion of the results, and the paper is then concluded in Section 7 with opportunities
for further research as well as some concluding remarks.

2 Related work

Natural disasters and the associated large-scale destruction caused by them are an
important subject of study. Many researchers performed studies in this area with
topics that range from understanding the nature of natural disasters to the support and
evacuation of disaster victims, e.g. humanitarian logistics. Recent examples of such studies
include [2], [10], [42], and [44]. There is also an abundance of studies that focus exclusively
on humanitarian logistics. For example [23] proposed a decision support system to address
critical time management in humanitarian logistics, while Shao et al. [55] reviewed
deprivation cost (qualification of human suffering) in humanitarian logistics. Lukosch
and Comes [41] implement gaming to simulate specific environments and conditions
in humanitarian logistics, whereas Sigala and Wakolbinger [57] proposed outsourcing
to appropriate specialist service providers as a viable option in humanitarian logistics.
Further examples of research studies that show the dynamic nature of humanitarian
logistics can be found in [30], [53], and [63].

A grid map, defined as a graphical representation of a region that is divided into
equal sub-sections where each sub-section represents a specific measured distance [25],
is typically used where a form of navigation between locations on a map is required.
Grid maps form the basis for many scientific studies and are widely acknowledged as a
useful method in pathfinding and other studies. Examples include Bekker and Schmid [8],
who used a grid map to determine safe routes for ships travelling through sea minefields;
Nelson and Smith [45] implemented a grid map in gaming where objects are placed on
a grid as obstacles to certain travelling routes; grid maps can also be used to represent
populations over large geographical areas [7], or as mapping frameworks for mobile robots
[19]. Additional applications of grid maps are detailed in [34] and [58].

Lee et al. [39] defined a maze as a grid consisting of cells with an entrance (starting
cell) and an exit (ending cell) together with walls that ultimately form both traversable
paths as well as dead ends. There exist several algorithms that can be used to generate a
maze - i.e., algorithms based on greedy principles [20], spanning tree approaches [35], and
graph theory [11]. Arguably the most popular algorithms are Prim’s algorithm [49] and
Kruskal’s algorithm [36]. Mazes prove to be standard tools in many research projects and
are frequently used as a technique in studies on various scientific subjects. For example,
Pershin and Di Ventra [47] employed mazes as a tool to test the proficiency of memristor
networks (resistors within memory), while Adamatzky [1] studied the behaviour of different
organisms with the help of maze structures. Other examples may be found in [3] and [40].

Grid-based maze structures can be constructed by using a grid map combined with
maze generation algorithms (a grid-based maze structure will be discussed in Section 3).

3

These structures allow for the representation of real-world environments in a maze where
real-world obstacles are represented by walls in the maze [32]. As with maze generation
algorithms, there also exist a wide variety of techniques and algorithms that can be used
to solve grid-based maze structures – some of the standard algorithms include the Lee
algorithm [38], which will be elaborated on in Section 4, the A-star algorithm [26], the
flood-fill algorithm [37] and the recursive backtracking algorithm [61]. The many uses of
grid-based maze structures are visible in research studies such as the study by Jannu and
Jana [31], who utilised a grid-based structure in the planning and implementation of a
clustering and routing algorithm to solve problems in wireless sensor networks. Barnouti
et al. [6] combined the use of a grid and maze routing algorithm to find shortest paths in
gaming. Other examples of studies relevant to grid-based maze applications can be found
in [22] and [45].

To conclude this section, a brief mention is made of the large number of studies
in mathematical and computational modelling techniques that are frequently used in
humanitarian logistics. Shortest path models are of particular interest in this study, and
in humanitarian logistics, and many research papers exist on this topic. Probably the
most well-known shortest path algorithm was formulated by Dijkstra [16] and is based on
an iterative modification process of labels. A label details the immediate predecessor of
a node (in a network) on the current shortest path as well as the length of the current
shortest path. Labels and shortest path predecessors are iteratively revised and reduced
until the shortest route is identified. Examples of studies on Dijkstra’s algorithm related
to natural disasters can be found in [27] and [43]. Another popular algorithm that may be
employed to find the shortest route under specific circumstances is the A-star algorithm
[26]. The algorithm, which is defined as a best-first algorithm, uses a combination of
heuristic search and shortest path searching techniques to identify an optimal route [17].
The work of Chaudhari et al. [13] serves as an example of applying the A-star algorithm to
find an optimal path in a maze. The Lee algorithm is proposed in this paper as a solution
strategy to find an optimal path in a grid-based maze structure and will be discussed
in detail in Section 4. Examples in the literature of applications of the Lee algorithm
can be found in Polanczyk et al. [48], who proposed the use of the Lee algorithm (as
opposed to the A-star algorithm) in scenarios with dynamic environments where locations
and obstacles may change; Daneshjo et al. [14] implemented the Lee algorithm in a robot
environment to ensure that robots can move freely and avoid collisions with obstacles; and
Reddy et al. [51] utilised Lee’s algorithm to address various routing constraints.

Humanitarian logistics is a far-reaching area of study and does not only refer to the
formulation of shortest path models and mathematical techniques to determine an optimal
route. A wide range of other studies, particularly the development of mathematical models,
are frequently undertaken in humanitarian logistics. Such studies range from facility
location models [56] and vehicle routing optimisation [5] to humanitarian logistics network
design [50]. For a systematic review of contemporary literature on humanitarian logistics
[29] may be consulted.

4

3 Generating a grid-based maze

In this paper, a grid-based maze structure (solved by the Lee algorithm) is proposed to
assist in humanitarian logistics in the event of a disaster. The relevant concepts were
briefly defined in the previous section, and the aim of this section is to introduce the idea
of generating a grid-based maze structure that may be used for further analysis. The Lee
algorithm as a solution methodology will then be explained in Section 4.

Once a grid has been constructed, a maze can be generated in such a way that the edges
of each cell within the grid represent a possible wall in the maze. Figure 1 shows an
empty 6 × 6 grid on the left and a maze generated on the grid on the right-hand side.
The maze walls (that prevent movement) are indicated in thicker bold black lines. The
traversal between cells can only occur in horizontal and vertical directions, and no diagonal
movements are allowed.

Figure 1: A simple 6× 6 grid-based maze

The use of such a grid-based maze is of significance because it allows for real-world
scenarios and geographical areas to be represented as a maze [32]. It is particularly useful
in humanitarian logistics as a disaster-stricken terrain can be described as a grid-based
maze where walls are indicated as inaccessible areas in the real-world disaster-stricken area.
If the grid-based maze is then solved (finding an optimal path between specific location
points), an equivalent optimal path is found simultaneously in the real-world scenario, thus
allowing for a more efficient humanitarian logistics activity through the predetermining of
an optimal path to traverse by rescue workers. To illustrate these practical advantages,
consider Figure 2, which depicts large-scale destruction and damage in North Carolina
(USA) caused by Hurricane Florence in September 2018.

Placing a grid over the disaster area, a maze can be generated by blacking out those cells
that are not reachable via any form of transportation such as a boat or other vehicle. Air
transport is not considered as the terrain does not prohibit the use of helicopters or drones
for example. A grid-based maze of the disaster area is displayed in Figure 3. The red line

5

Figure 2: Flooding caused by Hurricane Florence in the town of Cartersville, North
Carolina in 2018 (Source: Google Maps Satellite Image)

in Figure 3 is a hypothetical example of a route through the maze.

Figure 4 shows how an equivalent path, indicated again by the red line, to the one in the
maze (Figure 3) is constructed simultaneously in the real-world scenario. Rescue workers
may now use this optimal path to assist victims.

Several techniques and algorithms may be employed to generate a maze that can be
used in scenarios like the one explained above. Reference was made to these algorithms
and the approaches that they are based on in Section 2. The standard maze generation
algorithms (e.g. Prim’s and Kruskal’s algorithms) use some form of randomisation to
construct a maze. This makes the use of traditional algorithms problematic when dealing
with a disaster terrain where certain areas cannot be subjected to random placement
of walls or paths due to the destruction of areas. To address this problem, a matrix
maze generation approach is employed in this study. The proposed method uses a grid,
together with the available image or map data of damaged and non-damaged areas in the
disaster terrain. Based on the cells of the grid and the associated image data, a matrix
(representing the area) is derived where the matrix entries indicate the placement of walls
in a maze. This approach is an adaptation of the work of Aki and Gullu [4] who successfully
implemented a maze using an image with an associated matrix representation. Details of
the implementation of the adapted method used in this study will be presented in Section
5, where a real-world case study is discussed.

6

Figure 3: Grid-based maze overlay – Cartersville, North Carolina

Figure 4: Grid-based maze overlay indicating real-world route – Cartersville, North
Carolina (Source: Google Maps Satellite Image)

7

4 The Lee algorithm as a solution strategy

Following the construction of a grid-based maze as described in Section 3, the next step
would be to solve the maze. As with the generation of a maze, many strategies, heuristics,
and algorithms exist to find a solution. Not all techniques guarantee a solution, while
others may only find sub-optimal solutions. An example of a basic technique to solve a
maze is the wall follower method. The method is also referred to as the left-hand rule or
right-hand rule and operates by simply keeping the left hand, for example, in contact with
the wall of the maze while walking through the maze. By doing this, one is guaranteed
to find the exit if it exists [28]. There are also more formal algorithms that may be used;
these algorithms were highlighted in Section 2. In this study, the Lee algorithm [38] was
chosen as a solution strategy as it is one of the algorithms that will always find a solution
if one exists.

The Lee algorithm was formulated in 1961. The aim was to find a procedure that would
solve path-connection problems efficiently as well as to find optimal routes in route-finding
problems. The algorithm is well suited to solve a maze as it can solve related problems
such as finding a path between two points while avoiding obstacles (walls in a maze) and
finding an optimal path between two points, i.e., the shortest route. Gupta and Sehgal
[24] describes the Lee algorithm as a two-stage method. During the first stage, called the
filling stage, each cell is visited until the goal is reached. In the second stage, called the
retrace stage, the path to the goal is traced back to the starting point to construct a final
path. Using a simple grid, the algorithm can be explained as follows (see Figure 5).

• Start with an empty grid with a starting cell (S) and a goal cell (G) - see Step 1 in
Figure 5.

• Enter a 1 in the starting location and a 2 in all the adjacent cells – see Step 2 in
Figure 5. These values represent the distance from the starting location.

• Repeat the above step by adding an increased value to neighbouring cells until the
goal cell (G) is reached – see Steps 3 and 4 in Figure 5. Note that the goal cell is
reached with a value of 7. This indicates the completion of the filling stage of the
algorithm.

• The retrace stage starts by backtracking from the goal to the starting location. This
is done by selecting an adjacent cell to the current goal cell with a value of i-1, where
i represents the value of the current cell – see Step 5 in Figure 5.

• The final path is now generated, resulting in the shortest path between the starting
location (S) and the goal (G) – see Step 6 in Figure 5. This example uses an empty
grid with no obstacles (walls), and alternative solutions may exist.

8

Figure 5: The filling and retrace stages of the Lee algorithm

The illustration in Figure 5 uses an empty grid. However, a grid is only the underlying
element of a maze which consists of limitations such as walls that restrict movement. To
illustrate how the Lee algorithm solves a maze, the following steps may be used (see Figure
6).

• Given a maze, a valid start cell - indicated in red in Step 1 in Figure 6, and a valid
goal cell – shown in green in Step 1 in Figure 6, are selected. A valid cell is a cell
that is not a wall, and that has at least one neighbouring cell that can be explored.

• Start at the starting cell and select direct neighbouring cells to be explored – see
Step 2 in Figure 6.

• Explore neighbouring cells. Only one neighbouring cell is expanded with each
iteration. Exploration is based on a first-in-first-out basis, meaning that oldest
expanded cells will be explored first before moving on to respective neighbouring
cells – see Steps 3 and 4 in Figure 6.

• Continue to expand each cell iteratively until the goal cell is reached. This signals
the end of the filling stage – see Step 5 in Figure 6.

• Start backtracking from the goal cell by adding the goal cell’s parent cell to the
path. The parent cell is then set as the new current cell and the process is repeated
until the starting cell is reached. The path generated with this process will contain
the least number of expanded cells and constitutes the shortest path – see Step 6 in
Figure 6.

Algorithm 1 presents the pseudo-code of the Lee algorithm as implemented in this study.
The algorithm has certain shortcomings (i.e., being relatively slow with high memory
requirements); however, it remains one of the best options due to its low complexity and
guarantees an optimal shortest path solution if one exists [24].

9

Figure 6: Maze solution generated by the Lee algorithm

Algorithm 1: The Lee Algorithm

Input: start_node // the source node to start from

goal_node // the goal node to reach

Output: PATH - list from start_node to goal_node

lists: OPEN, CLOSE and PATH

1. push start_node to OPEN

2. while OPEN is not empty

3. current_node ← first element of OPEN

4. If current_node = goal_node

5. break to line 15

6. end if

7. for each neighbour of current_node

8. If neighbour is not a wall

9. push neighbour to OPEN

10. end if

11. end for

12. push current_node to CLOSED

13. pop current_node from OPEN

14. end while

15. while current_node != start_node // backtracking phase

16. push current_node to PATH

17. current_node ← parent of current_node

18. end while

19. return PATH

In the next section, a real-world case study illustrates an implementation of the Lee
algorithm.

10

5 A real-world case study

To illustrate the techniques and methodologies proposed in the preceding sections, a
real-world disaster area was chosen, and a computer system was developed to show the
practical advantages the suggested methodology may have for a humanitarian logistics
operation. The case study section will begin with a short background description of the
real-world disaster used in the study, followed by a discussion on how the grid-based maze
was developed. A software implementation and the application of the Lee algorithm will
then be presented.

5.1 The real-world disaster

Hurricane Katrina, which hit New Orleans in the USA in August 2005, was chosen as a
case study. New Orleans (see Figure 7) is a city situated in Louisiana, USA, along the
Mississippi River and houses approximately 494 000 residents [15].

Figure 7: Map of New Orleans (Source: Google Maps)

Hurricane Katrina originated over the Bahamas and hit New Orleans on 29 August 2005.
The hurricane was classified as a category five cyclone – the worst type of storm with wind
speeds of up to 280 km/h. Following the storm, property damages of $108 million were
recorded, while 1388 residents lost their lives [59]. A weather photo of the storm is shown
in Figure 8, while Figure 9 shows part of the damage caused by Katrina.

To transform data from a real-world disaster into a grid-based maze, it is necessary to
obtain data that accurately depicts the severity of damage caused to various locations
in the disaster area. In the case of Hurricane Katrina, detailed data was gathered
and interpreted by the LSU Katrina Survey Team Department of Sociology1. This data

1https://www.lsu.edu/faculty/fweil/KatrinaMaps/index.htm

11

Figure 8: Hurricane Katrina
(Source: GOES Project Science
Office)

Figure 9: Hurricane Katrina damage
(Source: NWS/Lieut. Commander
Mark Moran, NOAA Corps,
NMAO/AOC)

accurately shows the severity of damage in different areas of New Orleans. The accurately
recorded data is of particular interest in this study as it enables the construction of a
matrix that can be used to generate a maze of the area. The data is shown in Figure 10,
where damage severity is indicated by means of a colour code. Areas where no damage
occurred are indicated by green dots; yellow dots are used to show signs of damage, but
not complete destruction; and orange and red dots are used to mark areas where major
damage occurred. The major damage varies from partially destroyed buildings and roads
to completely demolished buildings and roads. In the context of this study, where a
maze will be generated to facilitate path selection, the orange and red dots represent
inaccessible areas that will be translated to walls in a maze. The green and yellow dots
represent accessible areas and will indicate possible paths in a maze.

As depicted in Figure 10, the severity levels of damage can now be used to develop a
grid-based maze that the Lee algorithm will ultimately utilise to determine optimal paths
in the disaster area.

5.2 Generating a grid-based maze for the Greater New Orleans area

The steps to generate the grid-based maze are summarised as follows.

1. Grid placement over the disaster area;

2. Matrix development to represent the disaster area;

3. Generate a maze from the matrix; and

4. Fit the final maze over the disaster-stricken area under consideration.

Grid placement over the disaster area

A grid size of 70 × 70 was chosen. There is no exact rule or algorithm to determine a
suitable grid size for the disaster area used in the context of this study. The grid-size
decision was therefore based on a number of experiments to determine an appropriate
size. The main criterion was that the grid must provide adequate detail within each grid

12

Figure 10: Severity classification of damage to the Greater New Orleans area
(https://www.lsu.edu/fweil/KatrinaMaps/index.htm)

cell to construct a representative matrix of the disaster region, which can be translated
into a representative and reliable maze. The 70×70 grid was placed over the Greater New
Orleans map and is presented in Figure 11. Note that the grid size in Figure 11 has been
adjusted for visual and presentation purposes and does not reflect an actual 70× 70 grid.

Matrix development to represent the disaster area

The development of a matrix to represent the disaster area is based on an adaptation
of the work of Aki and Gulla [4]. A matrix representing the area in Figure 11, can
automatically be developed using image recognition software to recognise the different
colour-coded destruction points. However, in this study, such specialised software was not
considered and the matrix was developed manually based on the damage points and the
70 × 70 grid. This was a relatively simple task and was performed by assigning different
values to different combinations of walls for a cell. For example, an entry of 1 in the matrix
indicates the existence of a wall on the left border of the cell. The value assignment was
done according to the details in Table 1.

Note that the four values 0 – 3 are sufficient to cater for all possible combinations of walls,
e.g. should a wall be required at the bottom border of a cell, a value of 2 (wall at top of

13

Figure 11: Greater New Orleans disaster area with grid overlay

Table 1: Matrix value assignment.

the cell) may be inserted in the cell immediately below the cell that requires the wall at
the bottom border. Other combinations can also be addressed by using the existing four
options.

The actual assignment of the numbers is shown in Figure 12 where a small extract of the
map of the disaster area is shown on the left. This picture is then visually inspected to
derive the matrix values in the middle of Figure 12. Finally, using the value assignment
rules in Table 1, the walls are constructed (on the right of Figure 12) using the matrix
entries.

The complete 70× 70 maze generating matrix is presented in the Appendix.

14

Figure 12: Example of the maze generation process using a matrix

Generating a maze from the matrix

The 70× 70 matrix that was constructed according to the rules presented in the foregoing
paragraph, was used to generate a maze structure that represents the entire disaster region.
Software to perform the maze generation was developed using Visual Studio and the
C# programming language. Algorithm 2 details the pseudo-code of the maze generation
process using the 70× 70 matrix.

Algorithm 2: Matrix maze generation

Input: MAZE // 2D array of maze matrix

gridPen // used to draw the maze walls

gridBrush // fills inaccessible areas of the map (e.g. river

and sea)

HospitalBrush // used to indicate locations of hospitals

Output: g // graphics of completely generated maze

Process: Generating a maze using a matrix

1. For each value in MAZE

2. if value = 1

3. g.draw left wall using gridPen

4. else if value = 2

5. g.draw top wall using gridPen

6. else if value = 3

7. g.draw left wall using gridPen

8. g.draw top wall using gridPen

9. else if value = 4

10. g.fill cell with gridBrush // inaccessible area

11. else if value = 5

12. g.fill cell with hospitalBrush // relief facility

13. end if

14. end for

15

Fit the final maze over the disaster area

The maze generated for the New Orleans disaster area is displayed in Figure 13. The green
and blue squares are illustrative and used as reference points in the final path generating
examples. The squares were chosen randomly and represent starting points (green squares)
and endpoints (blue squares) for the Lee algorithm to find an optimal route. A starting
point may be an area where victims are trapped, while an endpoint may indicate a medical
or relief station.

It is important to note that the maze structure in Figure 13 contains a large number
of open cells – these cells were not catered for in the matrix wall generation process.
The open cells indicate areas that are accessible, and it may be argued that the maze
is therefore sufficient. However, there must be a complete maze with no open cells to
apply a maze-solving algorithm. To address this problem, any standard maze generation
algorithms (e.g. Prim’s or Kruskal’s algorithm) are typically used to complete the maze
and eliminate the empty cells.

For this study, it was necessary to choose Kruskal’s algorithm to complete the maze.
Prim’s algorithm was not an option as the algorithm starts with a single randomly
selected cell and then explores in different directions to place walls. This makes the
use of the algorithm infeasible as the existing walls (generated by the matrix) would block
the algorithm’s search path and leave some of the cells unexplored. As opposed to this,
Kruskal’s algorithm chooses a random starting point with each iteration, providing a means
of exploring all the cells regardless of the walls placed by the matrix approach. Due to
the randomisation at each iteration, Kruskal’s algorithm is the ideal candidate to combine
with the matrix approach and to ensure that a complete maze is constructed without any
unexplored or empty cells. However, the algorithm may still create dead ends between
the matrix-generated walls and the walls generated by Kruskal’s algorithm. To avoid any
dead ends, the algorithm was adapted to keep neighbouring cells (of the matrix generated
maze) empty to allow for open paths between the matrix-generated maze and the maze
generated by Kruskal’s algorithm. The pseudo-code of the adapted Kruskal algorithm is
presented in Algorithm 3.

16

Algorithm 3: Adapted Kruskal maze generation algorithm

Input: S // Set of a collection of sets containing cells to explore

X // Set of cells in Matrix Maze

Output: M // Maze is generated

Process: Generating a perfect maze from a set of cells by Kruskal’s

algorithm

1. declare e and c1, c2 // edge and cells

2. Select a random edge e = (c1, c2) ∈ S

3. M ← (c1, c2)
4. while number of sets in S>1 // all cells do not belong to the same set

5. Select random edge e = (c1, c2) ∈ S with c1 and c2 in different sets

6. If e ∈ X // modified statement

7. M ← M ∪ {empty cell} // ensure no dead-ends occur

8. else

9. M ← M ∪ {(c1, c2)}
10. end if

11. unify c1 and c2 in S into a single set

12. end while

The final and complete maze generated by the matrix approach combined with the adapted
Kruskal algorithm is shown in Figure 14.

Figure 13: New Orleans maze from matrix

17

Figure 14: Complete New Orleans maze

5.3 Solving the maze with the Lee algorithm

To illustrate how the grid-based maze developed for the New Orleans disaster area (see
Figure 14, Section 5.2) can be solved using the Lee algorithm, a software solution was
created and implemented. The software demonstration system was developed using Visual
Studio and the C# programming language. The solution strategy is based on the Lee
algorithm presented in Algorithm 1 and explained in Section 4.

The system displays the maze and then provides several options to a user. The final
optimal route, as determined by the Lee algorithm, is then mapped out on the maze.
Figure 15 presents the user interface, the options available to a user, and the final optimal
route generated by the Lee algorithm.

As mentioned earlier, the five green blocks represent starting points (i.e., where victims
are located), and the six blue blocks indicate the possible endpoints (i.e., relief or medical
stations). Note that some of the green starting points are obscured by the blue expansion
area generated by the Lee algorithm – see Figure 14 for all the green starting point
locations.

The different options available to a user are shown on the left-hand side (in Figure 15).
The system also provides for using the A-star algorithm as a solution strategy - this option
is not elaborated on in this paper. In this specific example, starting point B was selected
as well as all six relief stations (hospitals) indicating that all six of them are available as an
end or evacuation point. On the right-hand side, the blue area indicates the filling stage
of the Lee algorithm, while the red line shows the retrace stage with the backtracking and
final optimal route through the maze between starting point B and the nearest hospital,
which is hospital 6. The execution time (31.4 seconds) and the number of moves (66) to
reach the destination are also shown.

18

Figure 15: Optimal route generated by the Lee algorithm

6 Reflection and discussion

The use of the proposed grid-based maze technique to assist with the modelling of optimal
route-finding in disaster areas proved to be reasonably easy to implement and, together
with the use of the Lee algorithm, usable and positive results were obtained successfully.

Optimal paths may play a critical role in humanitarian logistics in reaching and evacuating
victims to relief stations. To further highlight the capabilities of the proposed technique,
all possible optimum paths between the five starting points and the six hospitals were
determined using the software solution shown in Figure 15. Table 2 shows the 30 optimal
routes according to the number of moves necessary to reach the destination.

Table 2: Optimal routes generated by the Lee algorithm.
Lee algorithm

From starting To Hospital To the closest
point 1 2 3 4 5 6 hospital
A 55 87 73 80 60 64 55
B 98 114 97 99 70 66 66
C 31 29 13 26 22 29 13
D 68 72 55 57 30 22 22
E 42 17 8 4 27 31 4

19

Computational complexity is often an important factor, especially in situations where a
time-dependent solution is critical. Under these circumstances, an acceptable trade-off
level between computational time and performance may become significant, and the
modeller must ensure that the time taken to solve a problem does not render the solution
useless if it is not obtained timely. In this study, the modelling and solving of the problem
are applied to a relatively small disaster area and computational complexity did not present
a problem. To highlight the computational aspect of the Lee algorithm, the execution times
(in milliseconds) were recorded for each of the possible 30 solutions and are summarised
in Table 3. From the table, it can be seen that even the longest route (from starting point
B to Hospital 2) is less than a minute (58 seconds).

Table 3: Execution time of the Lee algorithm.
Lee algorithm

From starting To Hospital To the closest
point 1 2 3 4 5 6 hospital
A 27316 55055 41799 49091 31006 34477 27316
B 50093 58080 50132 51543 31519 31405 31405
C 15624 13753 1681 10623 6479 13661 1681
D 47919 52072 35597 37726 11319 6327 6327
E 19667 5463 1096 356 10934 13449 356

The work presented in this paper may be seen as a prototype and exploration of grid-based
methods in humanitarian logistics. Consequently, some aspects may be changed to deliver
even more efficient results. For example, the 70×70 grid size that was fitted over the area
was determined manually – the use of geographic information systems functions, which
can discretise a map, would enhance the grid placing over a disaster area. Similarly, the
matrix development was performed manually, while image processing software may render
a more accurate matrix representation. A more direct problem that may occur is when a
starting point (victims) is situated in an area where there is no path out of the immediate
vicinity. In this scenario, the algorithm would not be able to solve the optimal path
problem as the maze would be seen as an invalid maze. To overcome this problem, the
starting point should be moved to a position as close as possible to the original (invalid)
position and then re-solved to obtain a new path that relief workers can use.

Despite the potential problems and the possible enhancements, the results obtained
were reliable, accurate, and flexible regarding changing start and endpoints to determine
different optimal routes. General characteristics of the Lee algorithm and its performance,
which may help decision-makers when deciding on a grid-based maze solving algorithm,
can be summarised as follows.

1. The algorithm is generally slower in execution time. However, if the results are not
critically time-dependent, the execution time is perfectly acceptable;

2. The Lee algorithm is memory intensive as the filling stage requires the algorithm to
keep track of the cells explored in the maze;

3. The algorithm is a low complexity algorithm and easy to implement; and

4. The Lee algorithm guarantees a solution if one exists.

20

7 Conclusion

The purpose of this paper was to offer a solution that will assist with one of the
primary problems in humanitarian logistics, i.e., finding the best suitable route in a
disaster-stricken area. To achieve this, a grid-based maze approach, that can be solved
with the Lee algorithm, was proposed. A software solution was developed, and a real-world
case study was used to illustrate the feasibility of the approach. Results obtained suggest
that the proposed methodology delivers valuable and useful results typically required in a
humanitarian logistics scenario.

A number of contributions was made in the paper. Examples of new contributions
include a grid-generating matrix representing the disaster area, that was developed. This
new approach was necessitated as existing grid-generating algorithms were inappropriate
because of their random generating nature which is not feasible in a disaster-damaged
area. Furthermore, because the matrix method left open spaces in the grid area, the
matrix algorithm was combined with an adapted version of the Kruskal algorithm to
ensure that a perfect grid was generated. A user-friendly software solution was created
that allows users to specify locations where victims are located and where relief or medical
facilities are. The system then implements the Lee algorithm to find an optimal traversable
route that may be used for evacuation purposes or to send medical or food supplies to the
victims. Opportunities for further work, such as the use of GIS functionalities and image
processing software, were highlighted in the reflection and discussion section.

21

Appendix

The complete 70×70 matrix representing the damage to the New Orleans area is presented
in this Appendix. The matrix is used to generate a maze for the New Orleans disaster
area. See Algorithm 2 in Section 5.2.

{4,0,0,0,0,0,0,0,0,0,0,0,0,0,3,4,4,4,4,0,0,0,0,0,0},
{4,0,4,0,0,0,0,0,3,0},
{4,0,4,4,4,4,4,0},
{4,4,4,4,4,4,4,4,4,4,4,4,4,4,0,0,0,0,0,4,4,4,4,4,0,0,0,0,0,0,0,0,0,4,4,4,0,3,0,0,0,0,0,0,0,0,0,0,0,1},
{4,4,4,4,4,4,4,4,4,4,4,4,4,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,1,0,0,0,0,0,0,0,1,2,0,2,3,0,0,0,0,0,0,0},
{4,4,4,4,4,4,4,4,4,4,4,4,4,0,0,0,0,0,0,1,0,0,0,0,0,1,2,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,3,3,1,0,0,0,0,0,0},
{4,4,4,4,4,4,4,4,4,4,4,4,4,0,0,0,0,0,0,2,0,0,3,1,0,1,0,0,0,0,3,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,1,3,0,0,1,0,2,3,1,0,3,0,0,0,2,3,1,0,0,0,0,0,0},
{4,4,4,4,4,4,4,4,4,4,4,0,0,0,0,0,1,0,0,0,1,2,2,0,0,2,0,0,3,2,0,0,0,0,0,3,0,0,1,0,0,0,1,0,0,3,1,2,0,0,2,0,0,1,1,3,0,1,0,0,0,0,0,3,0,0,0,0,0,0},
{0,0,0,0,0,0,0,0,0,0,0,1,0,0,3,0,2,1,0,2,3,1,0,0,1,3,1,0,1,0,0,3,2,0,0,0,0,0,0,1,0,0,2,0,0,3,0,0,0,3,0,0,0,2,0,2,0,3,3,0,0,0,0,3,0,0,0,0,0,0},
{0,0,0,0,0,0,0,3,3,1,2,0,0,0,1,2,2,0,3,3,3,1,3,2,3,3,0,2,0,0,0,2,1,0,0,0,0,0,0,1,0,3,3,3,1,3,1,2,0,0,0,0,0,3,0,0,1,2,3,1,0,0,0,2,1,0,0,0,0,0},
{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,1,2,3,2,3,3,2,0,3,0,0,0,0,0,0,0,0,0,0,0,0,2,0,3,2,2,2,1,3,3,1,0,2,0,0,0,2,0,2,1,3,3,3,0,0,3,1,1,0,0,0,0,0},
{1,0,0,1,0,0,0,1,0,3,1,1,0,0,3,1,2,1,3,3,3,2,1,0,2,2,1,0,0,0,0,0,0,0,0,0,3,1,0,2,2,0,3,1,0,3,2,1,0,0,1,3,1,0,0,3,0,1,2,3,1,0,2,3,1,0,0,0,0,0},
{2,0,0,0,0,2,0,0,2,2,3,3,1,0,0,0,1,0,1,3,3,2,0,3,3,3,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,2,0,0,3,3,0,2,2,2,0,1,0,3,2,0,2,3,2,2,3,3,0,0,0,0,0},
{0,0,3,0,0,0,1,1,0,3,1,2,0,0,3,3,1,2,3,3,1,1,2,2,2,3,1,0,0,0,0,0,0,0,0,0,1,2,0,3,3,1,0,2,1,0,2,0,0,0,0,0,0,0,2,0,2,0,0,2,2,1,2,3,1,1,0,0,0,0},
{0,0,0,0,0,0,2,2,0,3,0,1,1,0,2,0,3,0,2,3,1,2,3,0,3,1,0,0,0,0,0,0,0,0,0,0,2,0,0,3,3,2,1,0,0,2,1,2,0,0,0,0,0,0,3,1,2,0,0,2,3,3,3,3,3,3,0,0,0,0},
{0,0,0,0,0,0,0,0,3,3,0,2,1,3,3,2,1,0,1,2,2,2,0,3,3,1,0,0,0,0,0,0,0,0,0,0,2,2,0,1,3,1,0,0,0,1,0,3,1,0,1,1,3,2,2,0,0,0,0,3,2,3,3,3,3,2,3,1,0,0},
{0,0,0,0,0,0,0,2,0,0,2,1,1,2,2,0,2,0,1,0,3,1,1,2,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,1,0,0,0,1,0,2,0,3,1,0,2,1,0,2,3,1,0,2,3,3,2,2,0,0,0,0,0,0},
{3,0,0,0,0,0,0,0,0,2,0,2,0,3,3,3,3,1,0,3,3,3,1,0,2,2,0,0,0,0,0,0,0,0,0,0,1,0,0,2,0,0,2,0,0,2,0,1,0,2,0,0,0,2,2,0,0,0,0,0,2,0,0,0,0,2,0,0,0,0},
{0,0,0,0,0,1,0,0,0,1,2,0,0,2,2,3,3,0,1,2,3,3,3,3,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,1,1,0,0,0,0,0,0,0,0,0,0,0,3,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},
{0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,3,3,3,3,2,3,3,3,1,0,0,0,0,0,0,0,0,0,1,2,1,0,3,0,0,0,0,0,0,0,0,0,0,3,1,0,2,0,1,0,0,0,2,1,0,0,0,0,0,0,0,0,0},
{0,0,0,0,0,0,0,0,0,0,0,0,2,3,3,3,2,3,3,3,0,3,2,3,3,2,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,1,1,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0},
{0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,1,3,2,1,3,0,3,3,3,1,0,0,0,0,0,0,0,0,0,0,0,0,0,3,1,0,0,1,0,0,0,0,0,0,0,0,2,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0},
{0,0,0,0,2,0,2,0,0,0,0,0,2,2,2,2,0,0,3,3,3,2,3,1,3,2,0,0,0,0,0,0,0,0,0,0,0,3,1,2,1,0,3,3,1,0,0,0,0,0,2,0,0,0,0,3,3,1,0,0,0,0,0,0,0,0,0,0,0,0},
{0,0,0,0,0,0,0,0,0,0,0,0,0,3,1,0,0,0,2,1,1,1,1,2,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,0,2,0,0,2,0,0,0,0,0,0,0,3,1,0,3,3,0,0,0,2,1,0,0,0,0,0,0,0,0,0},
{0,0,0,0,0,0,0,0,1,0,0,0,2,1,2,1,0,3,1,2,2,3,2,0,3,1,0,3,0,3,2,0,2,2,2,0,3,0,0,0,0,0,0,0,2,0,0,0,0},
{0,0,0,2,0,2,0,0,0,0,0,0,0,3,3,1,0,2,2,0,3,3,3,3,3,1,0,0,0,3,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,2,1,0,0,0,0,0,3,0,2,1,0,1,0,0,0,0,0,0,0},
{0,0,0,0,0,0,3,0,0,0,0,0,2,2,0,0,2,2,0,2,3,3,2,2,2,0,0,0,0,0,0,0,0,0,2,0,0,2,2,0,0,1,0,0,0,1,0,0,2,1,0,0,0,0,0,0,0,2,0,0,0,1,0,0,1,0,1,0,0,0},
{0,0,0,0,0,0,2,0,1,0,0,0,2,0,0,0,0,0,0,0,1,2,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,1,0,3,0,0,0,2,2,0,3,1,0,2,0,0,0,0,0,0,0,0,0,0,2,0,0,1,1,2,0,0,0,0},
{0,0,0,0,0,0,2,0,2,0,0,2,0,0,2,0,0,2,0,0,3,3,3,1,0,0,0,0,0,1,0,0,0,1,0,0,2,0,2,0,0,0,0,0,0},
{0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,0,1,0,0,0,3,1,1,0,0,0,0,2,0,0,2,0,0,1,0,0,0,0,1,0,0,0,0},
{0,1,2,2,0,3,3,1,0,0,0,0,0,0,0,0,2,0,0,0,0,2,0,2,0,1,0,0,3,2,0,0,0,0,0,0,0,0,0,0,3,0,0,2,2,1,0,3,0,1,0,0,3,1,3,1,0,0,0,0,2,0,0,0,2,3,0,0,0,0},
{3,0,0,0,0,2,2,0,0,0,1,0,0,0,0,0,0,0,0,0,0,3,1,0,0,1,0,0,3,1,3,0,0,0,2,1,3,1,0,1,0,0,0,0,0,0,2,2,3,0,0,0,3,0,1,0,3,2,1,0,0,0,1,0,0,0,1,0,0,0},
{0,1,2,0,0,0,0,3,0,0,2,0,0,0,0,0,0,0,0,0,0,3,1,3,1,0,0,0,2,0,1,1,0,2,0,0,3,1,2,1,3,1,1,2,3,2,0,0,2,0,3,2,0,2,1,1,2,0,0,0,0,1,0,0,0,2,0,0,0,0},
{3,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,3,0,0,3,1,0,0,0,0,3,0,1,0,0,2,3,2,0,1,0,2,0,1,0,2,0,0,0,0,3,0,0,2,2,1,0,0,0,0,2,2,0,1,0,0,3,1,0,0,0},
{2,2,0,0,0,0,0,2,0,0,0,3,0,0,0,0,0,0,0,0,2,0,1,2,0,2,0,0,0,0,0,0,1,3,3,2,0,2,1,0,0,0,3,3,0,0,1,2,2,2,3,3,3,3,2,2,2,0,0,0,3,3,2,0,0,2,0,0,0,0},
{0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,1,0,2,2,3,1,0,0,3,0,0,0,0,2,0,0,1,0,2,0,2,0,0,0,0,2,3,2,0,0,3,3,2,2,3,0,0,1,0,0,0,1,3,2,1,0,0,0,1,0,0,0},
{0,0,0,0,0,0,0,0,0,0,0,2,0,0,1,0,2,0,3,1,0,1,2,0,0,0,1,0,1,0,0,0,0,2,3,0,3,0,1,2,3,2,3,3,2,0,1,0,1,0,2,1,0,0,0,1,2,2,0,0,2,2,0,0,0,3,0,0,0,0},
{0,0,0,0,0,0,0,0,0,0,0,0,3,1,1,3,3,1,2,0,0,0,0,0,0,0,3,1,2,0,0,0,0,0,0,2,0,1,2,0,3,3,2,3,0,1,3,3,3,1,3,1,0,2,0,2,0,0,0,0,0,0,0,0,2,3,2,0,0,0},
{0,0,0,0,0,0,0,0,0,0,0,1,2,3,2,3,2,2,1,1,0,0,0,0,0,3,2,2,0,0,0,2,0,2,1,0,0,0,0,0,0,3,1,2,0,2,3,3,2,2,2,0,0,0,2,1,0,0,2,0,0,0,0,0,0,2,0,0,0,0},
{0,0,0,0,0,0,0,0,0,0,2,0,0,0,3,3,0,3,1,1,0,0,0,0,0,0,3,1,3,3,0,0,0,2,0,3,1,0,1,0,0,0,2,1,0,3,2,2,0,3,1,0,1,3,0,3,1,0,0,0,1,0,0,0,2,0,3,3,1,0},
{0,0,0,3,1,0,0,0,2,3,3,1,2,1,2,0,0,2,0,2,0,0,0,0,0,0,2,0,2,2,0,0,1,0,0,2,0,2,0,2,2,0,3,3,0,3,0,0,3,0,0,2,2,3,1,1,0,3,1,0,0,0,3,1,0,0,2,2,0,0},
{0,0,0,2,0,0,0,0,0,2,2,2,3,0,1,2,0,0,0,0,0,0,0,2,0,0,0,0,0,2,0,2,0,0,1,0,2,0,0,0,0,2,3,1,0,3,0,0,2,0,3,1,3,0,1,0,0,2,0,0,0,2,2,2,0,0,2,0,0,1},
{0,0,0,0,0,0,0,0,0,0,2,0,2,3,2,1,0,0,3,1,0,0,0,3,1,3,0,0,1,0,0,0,0,3,3,0,1,3,0,2,0,0,0,0,0,2,3,1,0,0,0,1,0,0,2,0,0,0,0,0,0,1,0,2,0,0,0,0,0,0},
{0,0,0,0,0,0,0,0,0,0,0,2,1,2,2,3,3,3,2,2,1,3,1,2,0,2,0,2,0,0,0,0,0,2,2,0,0,2,0,0,1,0,0,0,0,3,3,3,1,2,0,0,4,4,4,4,4,4,4,4,0,0,0,0,0,0,0,0,2,1},
{0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,3,2,2,2,3,2,2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,2,2,2,0,0,4,4,4,4,4,4,4,4,4,4,4,4,4,0,0,0,0,0,2,0},
{4,0,0,0,0,0,1,0,0,0,3,3,1,0,0,2,0,3,0,2,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,3,1,0,0,2,2,0,0,0,4,0,0},
{4,4,0,0,0,1,2,2,2,0,1,2,1,0,3,0,0,2,2,0,2,2,1,0,0,1,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,4,4,0,0,1,0,0,0,0,0,0,0,4,4,4,4,4,4,4,4,4},
{4,4,4,0,0,3,3,1,0,3,3,1,1,0,2,1,3,1,0,3,2,2,0,0,1,2,0,0,0,3,1,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,4,4,0,0,2,2,0,0,0,2,0,0,2,0,0,0,4,4,4,4,4,4},
{4,4,4,0,0,2,2,0,0,2,2,2,3,3,0,1,2,0,0,1,3,0,1,2,1,0,0,3,1,2,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,4,0,0,0,0,0,0,0,3,1,0,0,0,0,0,0,0,0,4,4,4},
{4,4,4,4,0,0,0,0,0,0,0,0,3,1,2,0,1,3,1,0,2,2,3,3,3,3,1,2,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,4,4,0,0,0,0,1,0,2,0,0,0,0,0,0,0,0,0,0,0,4},
{4,4,4,4,0,0,0,0,0,0,0,0,3,2,0,3,1,2,2,3,0,3,2,3,1,3,1,0,4,4,0,0,0,2,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0},
{4,4,4,4,0,0,0,1,0,2,0,3,1,0,0,3,1,0,2,0,2,3,3,3,3,3,0,0,0,2,0,0,2,1,0,3,1,0,0,0,0,0,0,0,0,0,0,0,0,4,4,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0},
{4,4,4,4,0,0,0,0,1,0,0,3,1,1,0,2,0,0,2,0,3,2,3,3,2,3,3,0,1,0,2,1,2,0,1,2,2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},
{4,4,4,4,4,0,0,1,2,0,2,2,0,3,2,0,2,1,0,2,2,3,2,2,3,3,2,2,1,0,0,0,0,2,0,3,1,2,0,0,0,0,0,0,0,0,0,2,1,4,4,0,0,2,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0},
{4,4,4,4,4,0,1,2,0,0,0,0,0,0,0,0,2,1,0,0,0,2,1,2,0,1,2,3,0,0,2,2,2,3,3,2,2,0,0,0,0,0,0,0,0,0,0,0,0,4,4,4,0,0,0,2,0,0,0,0,0,0,1,0,0,0,0,0,0,0},
{4,4,4,4,4,0,2,1,0,2,0,2,0,0,0,0,0,0,2,1,3,0,0,0,1,0,0,3,1,0,2,0,2,2,2,1,0,2,0,0,0,0,0,0,0,0,0,0,0,4,4,4,0,0,0,0,0,1,0,0,0,0,0,3,1,0,0,0,0,0},
{4,4,4,4,4,0,0,2,1,0,0,0,0,0,0,0,1,0,0,1,2,0,0,0,0,3,3,1,1,0,0,1,1,2,1,2,0,0,0,0,0,1,3,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,2,1},
{4,4,4,4,4,0,0,2,3,0,0,0,1,0,0,2,0,2,1,2,0,2,1,0,2,0,2,3,1,3,1,2,0,3,3,0,1,0,0,2,2,0,1,0,0,0,0,0,0,4,4,4,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,2,0},
{4,4,4,4,4,0,2,0,1,0,0,0,0,0,0,0,0,0,3,1,0,0,0,3,0,2,3,3,1,2,2,0,0,2,1,2,2,0,0,0,0,2,0,0,0,1,0,0,4,4,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},
{4,4,4,4,4,0,0,2,0,2,1,0,0,1,0,0,0,0,1,0,0,1,1,2,0,0,2,2,0,2,0,3,3,3,3,0,2,0,0,0,1,1,0,3,1,2,0,0,4,4,4,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0},
{4,4,4,4,4,0,0,0,3,1,0,0,0,1,0,2,1,0,2,0,2,0,0,0,1,0,1,3,1,0,0,3,3,1,3,1,0,0,0,2,2,0,1,2,0,0,0,0,4,4,4,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,3,0},
{4,4,4,4,4,0,0,2,2,0,0,0,0,2,0,0,2,0,0,2,0,0,1,0,3,2,0,2,0,2,2,0,2,0,2,0,0,0,0,1,1,0,0,0,0,0,0,4,4,4,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0},
{4,4,4,4,4,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,2,0,2,0,3,1,2,0,0,0,0,2,0,0,0,0,1,0,0,2,0,0,0,0,0,0,4,4,4,4,0},
{4,4,4,4,4,0,2,0,0,0,0,0,0,0,2,1,1,0,0,0,3,2,0,0,2,0,0,0,0,0,0,0,0,0,0,0,1,2,1,0,0,0,0,0,0,4,4,4,4,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,0,0},
{4,4,4,4,4,0,0,0,0,0,0,0,3,1,3,1,2,3,0,1,2,0,0,0,0,0,0,0,0,1,2,0,0,0,0,2,2,0,2,0,1,0,0,0,4,4,4,4,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0},
{4,4,4,4,4,0,0,0,0,0,0,0,2,0,2,0,3,3,3,3,2,0,0,1,1,0,0,3,1,2,0,0,0,2,0,0,3,1,0,2,0,0,0,0,4,4,4,0,2,0,0},
{4,4,4,4,4,0,0,0,0,0,0,0,2,2,0,2,2,2,0,2,0,1,2,1,2,0,0,3,1,0,0,0,1,0,0,0,2,0,0,0,4,4,4,0,0,4,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0},
{4,4,4,4,4,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,2,0,0,1,3,2,3,1,0,0,0,1,0,0,0,0,4,4,4,4,4,4,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0},
{4,4,4,4,4,4,0,0,0,0,0,0,2,1,0,0,0,0,1,0,0,0,0,2,0,0,0,2,0,0,0,0,0,0,4,4,4,4,4,4,4,4,4,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0},
{4,4,4,4,4,4,4,0,0,0,0,0,2,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,4,4,4,4,4,4,4,4,0,2,0,0,0,0,0,0}.

22

References

[1] Adamatzky, A. 2012, Slime mold solves maze in one pass, assisted by gradient of
chemo-attractants. IEEE Transactions on Nanobioscience, 11(2):131-134.

[2] Ahmed, W., Najmi, A., Khan, F. & Aziz, H. 2019, Developing and analyzing
framework to manage resources in humanitarian logistics. Journal of Humanitarian
Logistics and Supply Chain Management, 9(2):270-291.

[3] Ashlock, D., Lee, C. & McGuinness, C. 2011, Search-based procedural generation
of maze-like levels. IEEE Transactions on Computational Intelligence and AI in
Games, 3(3):260-273.

[4] Aki, O. & G ull u, A. 2016, Obtaining path data from maze image using image
processing techniques. In Conference proceedings. International Scientific Conference
(UNITECH2016), Gabrovo, Bulgaria. Gabrovo, UNITECH, 326-329.

[5] Anuar, W.K., Moll, M., Lee, L.S., Pickl, S. & Seow, H.V. 2019, Vehicle
routing optimization for humanitarian logistics in disaster recovery: A survey.
International Conference, Security and Management (SAM19).

[6] Barnouti, N.H., Al-Dabbagh, S.S.M. & Naser, M.A.S. 2016, Pathfinding in
strategy games and maze solving using a search algorithm. Journal of Computer and
Communications, 4(11):15-25.

[7] Batista e Silva, F., Gallego, J. & Lavalle, C. 2013, A high-resolution
population grid map for Europe. Journal of Maps, 9(1):16-28.

[8] Bekker, J.F. & Schmid, J.P. 2006, Planning the safe transit of a ship through a
mapped minefield, ORiON, 22(1):1-18.

[9] B̀ıl, M., Vodàk, R., Kubeček, J., B̀ılovà, M. & Sedoǹık, J. 2015, Evaluating
road network damage caused by natural disasters in the Czech Republic between 1997
and 2010. Transportation Research Part A: Policy and Practice, 80:90-103.

[10] Boustan, L.P., Kahn, M.E., Rhode, P.W. & Yanguas, M.L. 2020, The effect
of natural disasters on economic activity in US counties: A century of data. Journal
of Urban Economics, 118:1-26.

[11] Bollobás, B. 2013, Modern graph theory. New York, NY: Springer Science &
Business Media.

[12] Calma, J. 2020, What you need to know about the Australia bushfires.
https://www.theverge.com/2020/1/3/21048891/australia-wildfires-koalas-climate
-change-bushfires-deaths-animals-damage Date of access: 28 Feb. 2020.

[13] Chaudhari, A.M., Apsangi, M.R. & Kudale, A.B. 2017, Improved A-star
algorithm with least turn for robotic rescue operations. In Mandal J., Dutta
P. & Mukhopadhyay S. (eds) Computational Intelligence, Communications, and
Business Analytics. CICBA 2017, Communications in Computer and Information
Science, vol 776. Springer, Singapore.

23

[14] Daneshjo, N., Kralik, M., Petrovcikovà, K., Pajerskà, E.D. & Paštéka,
M. 2019, Avoiding the obstacles in the robot working zone by using the Lee algorithm.
Coordinates, 13(2):72-83.

[15] DeWaard, J., Curtis, K.J. & Fussell, E. 2016, Population recovery in New
Orleans after Hurricane Katrina: exploring the potential role of stage migration in
migration systems. Population and Environment, 37(4):449-463.

[16] Dijkstra, E.W. 1959, A note on two problems in connexion with graphs. Numerische
Mathematik, 1(1), 269–271.

[17] Duchoň, F., Babinec, A., Kajan, M., Beňo, P., Florek, M., Fico, T. &
Jurǐsica, L. 2014, Path planning with modified A star algorithm for a mobile robot.
Procedia Engineering, 96:59-69.

[18] Duran, S., Ergun, Ö., Keskinocak, P. & Swann, J.L. 2013, Humanitarian
logistics: advanced purchasing and pre-positioning of relief items. In James, H. eds.
Handbook of Global Logistics. New York: Springer, 447-462).

[19] Fankhauser, P. & Hutter, M. 2016, A universal grid map library:
Implementation and use case for rough terrain navigation. In Koubaa, A. eds. Robot
operating system (ROS). Cham, Germany: Springer, 99-120.

[20] Foltin, M. 2011, Automated maze generation and human interaction. Masaryk
University (Thesis – PhD).

[21] Gibbens, S. 2019, Hurricane Sandy, explained. https://www.nationalgeographic.
com/environment/natural-disasters/reference/hurricane-sandy/ Date of access: 12
Dec 2019.

[22] Gordon, V.S. & Matley, Z. 2004, Evolving sparse direction maps for maze
pathfinding. In Conference proceedings, Congress on Evolutionary Computation
(04TH8753), Portland, USA. New York: IEEE, 835-838).

[23] Griffith, D.A., Boehmke, B., Bradley, R.V., Hazen, B.T. & Johnson,
A.W. 2019, Embedded analytics: improving decision support for humanitarian
logistics operations. Annals of Operations Research, 283:247-265.

[24] Gupta, B. & Sehgal, S. 2014, Survey on techniques used in autonomous maze
solving robot. In Conference proceedings: 5th International Confluence - The Next
Generation Information Technology Summit (Confluence 2014), Noida, India. New
York: IEEE, 323-328.

[25] Harabor, D.D. & Grastien, A. 2011, Online graph pruning for pathfinding on grid
maps. In Conference proceedings: 25th AAAI Conference on Artificial Intelligence.
San Francisco, USA. California: AAAI. pp. 1114-1119.

[26] Hart, P.E., Nilsson, N.J. & Raphael, B. 1968, A formal basis for the heuristic
determination of minimum cost paths. IEEE Transactions on Systems Science and
Cybernetics, 4(2):100-107.

24

[27] Hartomo, K., Ismanto, B., Nugraha, A., Yulianto, S. & Laksono, B. 2019,
Searching the shortest route to distribute disaster’s logistical assistance using Dijkstra
method. 4th Annual Applied Science and Engineering Conference, Journal of Physics:
Conference Series. 1402, 1-7.

[28] Hendrawan, Y.F. 2020, Comparison of hand follower and dead-end filler algorithm
in solving perfect mazes. Journal of Physics: Conference Series, 1569(2):22-59.

[29] Jabbour, C.J.C., Sobreiro, V.A., Lopes de Sousa Jabbour, A.B., De Souza
Campos, L.M., Mariano, E.B. & Renwick, D.W.S. 2019, An analysis of the
literature on humanitarian logistics and supply chain management: paving the way
for future studies. Annals of Operations Research, 283:289–307.

[30] Jahre, M., Persson, G., Kovács, G. & Spens, K.M. 2007, Humanitarian
logistics in disaster relief operations. International Journal of Physical Distribution
& Logistics Management. 37(2):99-114.

[31] Jannu, S. & Jana, P.K. 2016, A grid based clustering and routing algorithm
for solving hot spot problem in wireless sensor networks. Wireless Networks,
22(6):1901-1916.

[32] Jubair, F. & Hawa, M. 2020, Exploiting obstacle geometry to reduce search time
in grid-based pathfinding. Symmetry, 12(7):1186.

[33] Jordans, F. 2022, The Times of Israel, Hurricane Ida, Europe Floods made
2021 a costly year of disasters. https://www.timesofisrael.com/hurricane-ida-europe-
floods-made-2021-a-costly-year-of-disasters/ Date of access: 26 May 2020.

[34] Kim, J.H., Min, K.S. & Yeo, W.Y. 2014, A design of irregular grid map for
large-scale Wi-Fi LAN fingerprint positioning systems. The Scientific World Journal,
1-13.

[35] Kim, P.H. 2019, Intelligent Maze Generation. Ohio: The Ohio State University.
(Thesis – PhD).

[36] Kruskal, J.B. 1956, On the shortest spanning subtree of a graph and the traveling
salesman problem. Proceedings of the American Mathematical society, 7(1):48-50.

[37] Law, G. 2013, Quantitative comparison of flood fill and modified flood fill algorithms.
International Journal of Computer Theory and Engineering, 5(3):503-508.

[38] Lee, C.Y. 1961, An algorithm for path connections and its applications. IRE
Transactions on Electronic Computers, 3:346-365.

[39] Lee, H.L., Lee, C.F. & Chen, L.H. 2010, A perfect maze based steganographic
method. Journal of Systems and Software, 83(12):2528-2535.

[40] Lerch, J.P., Yiu, A.P., Martinez-Canabal, A., Pekar, T., Bohbot, V.D.,
Frankland, P.W., Henkelman, R.M., Josselyn, S.A. & Sled, J.G. 2011,
Maze training in mice induces MRI-detectable brain shape changes specific to the
type of learning. Neuroimage, 54(3): 2086-2095.

25

[41] Lukosch, H. & Comes, T. 2019, Gaming as a research method in humanitarian
logistics. Journal of Humanitarian Logistics and Supply Chain Management,
9(3):352-370.

[42] Massazza, A., Brewin, C.R. & Joffe, H. 2019, The nature of “natural disasters”:
survivors’ explanations of earthquake damage. International Journal of Disaster Risk
Science, 10(3):293-305.

[43] Mirahadi, F. & McCabe, B.Y. 2020, EvacuSafe: A real-time model for
building evacuation based on Dijkstra’s algorithm. Journal of Building Engineering,
34(2021):1-14.

[44] Munyaka, J.C.B. & Yadavalli, V.S.S. 2020, Decision support framework for
facility location and demand planning for humanitarian logistics. International
Journal of System Assurance Engineering and Management, 11(5):1-20.

[45] Nelson, M.J. & Smith, A.M. 2016, ASP with applications to mazes and levels. In
Shaker, N., Togelius, J., & Nelson, M.J. eds. Procedural content generation in
games. Switzerland, Cham: Springer. 143-157.

[46] Olano, G. 2019, After the storm: Japan’s recovery efforts post-Hagibis.
https://www.insurancebusinessmag.com/asia/news/breaking-news/after-the-storm-
japans-recovery-efforts-posthagibis-189234.aspx Date of access: 20 Dec. 2019.

[47] Pershin, Y.V. & Di Ventra, M. 2011, Solving mazes with memristors: a massively
parallel approach. Physical Review E, 84(4):1-7.

[48] Polanczyk, M., Strzelecki, M. & Slot, K. 2012, Lee-algorithm based path
replanner for dynamic environments. In Conference proceedings: 2012 International
Conference on Signals and Electronic Systems (ICSES 2012). Wroclaw, Poland. New
York: IEEE. pp. 1-4).

[49] Prim, R.C. 1957, Shortest connection networks and some generalizations. Bell
System Technology Journal, 36(6):1389–1401.

[50] Qureshi, A.G. & Taniguchi, E. 2020. A multi-period humanitarian logistics
model considering limited resources and network availability. Transportation Research
Procedia, 46(2020):212–219.

[51] Reddy, A.V., Vinoth, G. & Chiranjeevi, G.N. 2018, Implementation of
Lee’s algorithm for different routing constraints. In Conference proceedings: 3rd
IEEE International Conference on Recent Trends in Electronics, Information &
Communication Technology (RTEICT 2018), Bengaluru, India. New York: IEEE,
2488-2491.

[52] Ritchie, H. & Roser, M. 2019, Natural Disasters. https://ourworldindata.org
/natural-disasters Date of access: 5 Nov 2020.

[53] Rodŕıguez-Esṕındola, O., Albores, P. & Brewster, C. 2018, Disaster
preparedness in humanitarian logistics: a collaborative approach for resource
management in floods. European Journal of Operational Research, 264 (3):978-993.

26

[54] Shaluf, I.M. 2007, An overview on disasters. Disaster Prevention and Management:
An International Journal, 16(5):687-703.

[55] Shao, J., Wang, X., Liang, C. & Holgúın-Veras, J. 2020, Research progress
on deprivation costs in humanitarian logistics. International Journal of Disaster Risk
Reduction, 42:1-12.

[56] Shavarani, S.M. 2019, Multi-level facility location-allocation problem for
post-disaster humanitarian relief distribution. Journal of Humanitarian Logistics and
Supply Chain Management, 9(1):70-81.

[57] Sigala, I.F. & Wakolbinger, T. 2019, Outsourcing of humanitarian logistics to
commercial logistics service providers. Journal of Humanitarian Logistics and Supply
Chain Management, 9(1):47-69.

[58] Sturtevant, N.R. 2012, Benchmarks for grid-based pathfinding. IEEE Transactions
on Computational Intelligence and AI in Games, 4(2):144-148.

[59] Sydnor, S., Niehm, L., Lee, Y., Marshall, M. & Schrank, H. 2017, Analysis
of post-disaster damage and disruptive impacts on the operating status of small
businesses after Hurricane Katrina. Natural Hazards, 85(3), 1637-1663.

[60] United Nations. 2022. https://unric.org/en/2021-floods-un-researchers-aim-to-better-
prepare-for-climate-risks/ Date of access: 12 Mar 2020.

[61] Walker, R.J. 1960, An enumerative technique for a class of combinatorial problems.
In American Math Society, eds. Conference proceedings. Proceedings of Symposia in
Applied Mathematics, Indonesia. Providence, American Mathematical Society, 91-94.

[62] WHO. 2020. World Health Organisation https://www.who.int/hac/about/definitions/
en/ Date of access: 13 April 2020.

[63] Widera, A., Lechtenberg, S., Gurczik, G., Bähr, S. & Hellingrath, B. 2017, Integrated
logistics and transport planning in disaster relief operations. In Comes, T., Bénaben,
F., Hanachi, C., Lauras, M., & Montarnal, A., eds. Conference proceedings.
14th International Conference on Information Systems for Crisis Response and
Management. Albi, France. 752-764.

[64] Xu, J., Wang, Z., Shen, F., Ouyang, C. & Tu. Y. 2016, Natural disasters and
social conflict: A systematic literature review. International Journal of Disaster Risk
Reduction. 17:38-48.

27

28

