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Abstract

Fraudulent activity within a financial ecosystem often involves the coordinated efforts of
several bad actors. Expressing the interactions between participants in a system as a math-
ematical graph allows researchers to apply social network analysis to understand the nature
of these relationships better. This article proposes and extends a unified approach using an
autoencoder to detect anomalies in a transactional setting. The methodology begins with
a neural architecture search to determine the best autoencoder model architecture configu-
ration. This is followed by a threshold optimisation process to find a reconstruction error
that best discriminates between non-anomalous and anomalous classes. Gaussian scaling is
applied to the raw anomaly scores in order to represent the output in an interpretable and
universally transferable form. The unified approach is extended by selecting and including
network metrics as features, for the purpose of producing a model that can detect anomalies
from both standard transactional data and network data representing the relationships be-
tween users within a financial system. Applying SHAP on the model output highlighted the
strongest contributing or offsetting network metric features for all anomalies detected. The
PageRank and degree centrality network metrics were most important in detecting anoma-
lous instances within the data. Including network metrics in the feature space generated
encouraging model performance results, leading to a potential low operational cost of fraud.

Key words: Anomaly detection; neural networks; autoencoders; neural architecture search; social

network analysis; Shapley values.

1 Introduction

As the financial landscape becomes more competitive through globalisation and the mass
adoption of technology [100], the number of financial transactions being executed via
digital channels is increasing. Together with benefits such as efficiency and profitability
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[32], this also brings more opportunities for fraudulent actors to take advantage of these
channels, hence increasing the volume and complexity of the fraud, extortion and money
laundering being conducted in the industry [78]. Due to the increase in suspicious activ-
ities, many studies have been conducted to try and find appropriate ways of combatting
the nefarious use of digital financial channels (see [5], [43] and [90]). Despite these studies,
detecting fraudulent transactions remains a non-trivial exercise and has become a common
challenge for many organisations. One of the most popular approaches used for detecting
anomalous transactions is the use of anomaly detection techniques. An anomaly can be
seen as data that deviates substantially from the norm [67]. There are no universally
accepted criteria to define anomaly detection as different mechanisms in different systems
may be the cause of an anomaly (see [87] and [111]). A general description, which will
be accepted for this study is that anomaly detection is the process of identifying rare
observations which differ substantially from the majority of the data from where they are
drawn. Various anomaly detection techniques have been proposed in the literature, and
examples include the use of outlier techniques [47], isolation forests (see [56] and [62]),
and a one-class support vector machine [105] algorithms. Other examples can be found in
[61], [106] and [111].

Another popular approach for anomaly detection that has gained momentum recently is
the use of autoencoders (see [70], [79] and [93]). An autoencoder, which is classified as an
unsupervised learning technique, offers a different approach to anomaly detection. The
technique aims to learn some low-dimensional feature representation space on which the
given data instances can be well reconstructed [93]. In a fraud detection context, an au-
toencoder can be trained to learn to reproduce non-fraudulent transactions only, due to
the fraudulent transactions being removed from the training set. When fraudulent trans-
actions are introduced, the autoencoder’s reconstruction performance worsens, and this
deteriorated performance is then used as the method whereby anomalies are detected.
Another characteristic of autoencoders that makes them suitable for anomaly detection
is that they are mainly applied to tabular data, which is typically the format of finan-
cial transactions. However, attempts have been made to apply them to graphs [64] and
sequence data [33].

Financial transactions in a system typically consist of technical details such as client details
and specifics about the transaction such as the amount. A drawback of these financial
transactions is that they exclude any information concerning the underlying relationship
that may exist among clients, devices, types of transactions etc. Traditional methods of
constructing the handcrafted features required for tabular or transactional data may in
specific scenarios be less expressive of the underlying phenomena making it again much
more complex for fraud investigations. Therefore, network data approaches have been
shown to improve model performance by learning a more expressive representation of the
problem [64]. For example, when analysing the behaviour of their customers, organisations
frequently resort to understanding how users of a system are connected to one another.
These connections are particularly useful when attempting to detect suspicious activity.
An example of performing such an analysis can be found in cases where financial crime
investigators use social network analysis (SNA) to represent the interconnectedness of
multiple users within a system [17].
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In this paper, it will be argued that, given the importance of the underlying relationships
among transactions in unsupervised anomaly detection, the use of certain basic network
metrics in SNA can assist in detecting anomalies by providing metrics that aim to mea-
sure the influence that nodes or users have within a transactional system. This includes
understanding how the nodes are connected by edges that describe the relationship be-
tween users. Having this information available will then improve the accuracy of anomaly
detection systems.

The choice of SNA as an additional tool to enhance the unsupervised anomaly detection
process offers several advantages. As mentioned, modern organisations are typically net-
worked, meaning that the relationships between their employees, customers, and suppliers
can in some sense be linked using data. Examples of data that could link users within a
transactional system include shared IP addresses, credit cards, and digital devices. Fraud
can naturally occur in any part of the network, and SNA can therefore be used to reveal the
connections and behaviours that would be difficult to detect through raw data alone [17].
Furthermore, SNA also proves to be beneficial due to the dynamic nature of fraudulent
activity. Incorporating network analysis techniques into the fraud detection process helps
to augment the performance of human-in-the-loop analysts who typically work in conjunc-
tion with static rule-based systems. It is expected that SNA data will provide additional
insights that these rule-based systems fail to detect. The incorporation of social network
metrics will also provide an alternative viewpoint that highlights connections in a broader
network, thereby providing a more comprehensive view of each fraud investigation in the
context of a more extensive network. Advantages of a more technical nature include the
visual and mathematical capabilities of SNA and the relatively easy translation of data
into matrix form, allowing for the calculation of various network metrics that aim to un-
cover the theoretical properties of the graph [63]. This would further help to characterise
the network as a whole and assist with conducting queries of the social network graph
data.

While SNA is an established technique for identifying fraudulent behaviour in financial
networks, using it for visualisation purposes alone has proved challenging to work with
as the size and complexity of the network increases [17]. The network metrics derived
from SNA can instead act as features that are used to train a machine learning model
able to detect anomalies in a transactional setting. This approach removes the burden
on financial investigators having to struggle to interpret large network visualisations and
placing less emphasis on them having to explicitly interpret the importance of each of the
possible network metrics that typical SNA platforms calculate.

Based on the brief preceding motivational introduction, this paper proposes an approach
that combines the strengths of using an autoencoder for unsupervised learning, with se-
lected metrics offered by SNA to perform anomaly detection. This involves using both
standard transactional data and network metrics to formulate features used to train a
model capable of detecting anomalies in a real-world context. In order to assess the
performance of the proposed method, traditional classification metrics suited for fraud
detection models and Shapley values are considered [3]. The recommended method im-
plements a previously proposed unified approach to anomaly detection [8], where multiple
candidate autoencoder architectures were simulated via a neural architecture search.
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The remainder of this article is organised as follows: Section 2 provides some literature
background on the use of SNA in an anomaly detection context. Section 3 presents the
industry data set used for experimental research. A proposed unified approach is then
introduced and applied in Section 4, including the use of network metrics as features.
The effectiveness of the approach is evaluated using both Shapley values and standard
classification performance metrics, with the results being discussed in Section 5. Finally,
the conclusion of the study is presented in Section 6.

2 Related work

Autoencoders and SNA are two different approaches for modelling relationships in data.
While the former is frequently used for detecting anomalies in data, SNA can be used
to represent the importance of participants in a graph structure. To contextualise the
proposed methodology, a cursory overview of examples of existing work related to autoen-
coders and SNA is presented. Although there are many examples of these concepts in the
literature, this study will highlight only a few key examples to put the topics into context
and show the wide variety of applications for the approaches. Furthermore, the references
aim to provide an understanding of previous attempts to combine both autoencoders and
SNA in order to produce a more effective anomaly detection solution.

2.1 Autoencoders for anomaly detection

Various autoencoders have been developed to detect anomalies in different application
areas (see [2], [20] and [24]). These can be categorised according to the different architec-
tural variations of the autoencoder, where examples from the literature for some of the
categories are presented below.

Schreyer et al. [24], used a sparse autoencoder to detect anomalies in large-scale accounting
data. Nine distinct architectures were evaluated and the approach produced reconstruc-
tion errors that could be used for a highly adaptive anomaly assessment of journal entry
data. In another study, Liang et al. [58] demonstrated applying a sparse autoencoder to
detect pump fault anomalies. Classical principal component analysis is compared with the
autoencoder, where the latter is shown to perform better at detecting anomalies and iso-
late abnormal features. An ensemble approach is proposed by Narayana et al. [73], where
a sparse autoencoder is applied to detect anomalous attacks in an intrusion detection
context. Sparse autoencoders are regularly applied in different domains, and additional
examples of the application for anomaly detection can be found in [69], [85] and [101].

In the category of variational autoencoders, Zavrak and Iskefiyeli [109] showed that these
types of architectures can be used to detect anomalies in network traffic. A semi-supervised
approach is utilised to detect network intrusions using flow-based data, and the experimen-
tal results illustrated that this approach outperformed a one-class support vector machine
baseline model. Variational autoencoders were also found to be helpful in detecting anoma-
lies in multidimensional time-series data [39]. The authors proposed an approach where a
Gaussian mixture model was employed to allow for a series of input distributions. Further
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anomaly detection applications of variational autoencoders are discussed in [13], [22] and
[57].

Denoising autoencoders, another category of autoencoders, also form the basis of many
studies. In the area of network anomaly detection, Mohamed et al. [71] trained a de-
noising autoencoder to detect network anomalies as part of an intrusion detection system.
They found that the model forced the extraction of intrinsic features, which increased the
detection accuracy of the intrusion detection system. Another application of denoising
autoencoders is reported by [22]. In their study, they achieved success in using stacked
denoising autoencoders for detecting anomalies in wind turbine data, where the model
was trained on standard operating data, using the reconstruction error as a monitoring
indicator.

A popular architecture that is often used in autoencoders is a convolutional structure.
Some examples to illustrate the use of this architecture include the following. In a study
by Chow et al. [26] a convolutional autoencoder was leveraged to detect defects (anoma-
lies) in concrete structures. The model was trained in an unsupervised manner, saving
the authors from conducting extensive labelling of the data. Superior precision and re-
call scores were reported in comparison with baseline segmentation methods. Another
research project by Wang et al. [104] illustrated that a convolutional autoencoder could
be used for hyperspectral anomaly detection, with the intention of detecting observations
that differ substantially from their surroundings. Convolutional structures also cater to
problems that contain a time interval element. For example, Cui et al. [28] proposed a
convolutional autoencoder to detect system failures from console log data. To capture time
dependencies in the logs data, a 2D matrix was constructed to reveal more informative
system behaviours, ultimately aiding in determining system failures over time.

The final architecture for which examples from the literature are given is Long Short-
Term Memory (LSTM). In a study by Nguyen et al. [77], the LSTM architecture was
demonstrated to be an effective technique for learning long-term dependencies and for
representing the relationship between current and previous events. It was shown how
LSTM can be included in an autoencoder, for the purposes of detecting anomalies in the
supply chain management industry. In another example, Said Elsayed et al. [91] also
employed an LSTM-based autoencoder to detect malicious attacks in network data. The
actual anomaly detection classifications were made by a one-class support vector machine
algorithm, with the LSTM autoencoder being used to compress the input network data
into latent features. Other examples of studies employing LSTM for anomaly detection
can be found in [21] and [44].

2.2 Social network analysis

SNA has been applied to the problem of fraud and anomaly detection in many ways (see
[18], [54] and [84]). Some of these applications fall into the categories of visual analysis,
network metrics, feature extraction, and SNA for fraud detection.

Visual analysis is a qualitative application of SNA, which according to Decuypere [31],
involves collecting and coding relational data, visualising network diagrams, analysing the
form of network diagrams, and finally interpreting the form of these network diagrams. The
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study claims that using SNA for visualisation purposes offers the possibility to scrutinise
and visualise networks without necessarily inferring causal relationships to the underlying
network structures. The benefits of visual analysis were also displayed in the PeakVis
network visualisation tool developed by Sanvido et al. [97], which analyses social media
data, allowing users to identify relevant segments and grasp the subjects being discussed in
real-time. Kucher et al. [52] agree that SNA can be used for the visual analysis of social and
text-based data. Their research project highlighted that besides text data visualisation,
SNA can also be used for network data visualisation and exploratory analysis. Additional
examples of SNA for visual analysis applications can be found in [14] and [50].

Another important application of SNA is the computation of network metrics. Centrality
metrics are network metrics that are employed as a means to identify essential elements by
determining their behaviour and roles within a complex network [38]. According to Zhang
and Luo [110], social networks focus on the relation of participants to each other within
the network, with network metrics providing a method for surfacing the influence that
participants have on the network as a whole. Their findings indicate that degree central-
ity, betweenness centrality, and closeness centrality are among the most critical network
metrics in SNA. Another study by Riquelme et al. [88] considered the impact that central-
ity metrics have on linear threshold models, with results confirming that network metrics
were important in ranking actors and networks in a distinguishable way. Network metrics
have also shown promise in psychological social networks [16]. The authors state that the
three main centrality metrics mentioned previously should be augmented with additional,
more relevant centrality metric approaches when dealing with psychological social network
data. Suggested examples of more relevant centrality metrics include neighbour-inclusion
and relative ranking-related metrics.

Zandian and Keyvanpour [108] indicated that SNA could be used as a feature extraction
method, whereby network features derived from SNA were combined with other transac-
tional features to assist in detecting fraud in banking accounts. The authors claim that
many fraud detection solutions do not consider both user-level and network-level features
simultaneously, and having a method that is able to learn from both kinds of features
would increase the accuracy of their overall fraud detection approach. A similar approach
was adopted by Beigi et al. [9], who used linked network data to engineer features to build
a signed link analysis model. Due to the sparse nature of the linked network data, other
sources of information are included as features to increase model performance. Another
example of using SNA for feature extraction is presented by Kumari et al. [53]. In this
research, data representing the topological structure of the network is used in conjunction
with content-based information to build a model for link prediction. Finally, Oskarsdot-
tir et al. [81] proposed implementing SNA in the insurance sector, where a network was
created by linking claims data to all involved parties. Features from the network were
extracted and combined with claim-specific transactional features to train a supervised
learning model. This approach yielded results indicating that the combination of network
and claim-specific features improved the performance of supervised learning models.

SNA is also applied extensively in the fraud detection domain, where users who transact
with one another are modelled as a network, with nodes and edges representing users
and the transactions between them respectively. Colladon and Remondi [27] proposed
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using SNA to prevent money laundering activities, where network metrics were explicitly
created to model clients’ risk profiles within the network. Interesting to note that the
authors suggest the use of a hybrid approach, with SNA being used to determine the risk
profiles through network metrics and create a visual analysis of the network to gain a
broader understanding of suspicious behaviour. Pourhabibi et al. [84] highlighted many
of the key graph-based fraud and anomaly detection approaches. The review argued that
social networks are typically used for anomaly detection in a two-step approach; namely for
selecting and calculating network features and classifying observations from the feature
space determined via the first step. Other researchers [55] argue that visual analysis
is also an essential tool for fraud detection, including examples of the technique being
applied across multiple industries such as telecommunications, stock exchanges, insurance,
and banking. Visual analysis is then considered in parallel to more analytical network
metrics approaches, with the two seen as influencing each other during pre-processing,
post-processing, integrated, and pure visualisation processes.

The preceding examples from the literature clearly indicate the importance and promi-
nence of employing different architectures of autoencoders for anomaly detection. From
the studies quoted, it is also clear that other existing techniques such as SNA can be used
to evaluate and analyse data for fraudulent activities and that this technique is often used
to complement other anomaly detection methodologies.

3 Modelling prerequisites

In this section, a brief review of the concepts that are necessary to construct the network
features for unsupervised anomaly detection is presented. The relevant modelling concepts
include autoencoders for anomaly detection, the previously proposed unified approach for
anomaly detection [8], and SNA.

3.1 Modelling basics of an autoencoder

Autoencoders are neural networks that can be used to detect anomalies in an unsupervised
or semi-supervised manner. According to Goodfellow et al. [37], autoencoders are trained
to reconstruct its input to its output, an example of which is provided in Fig. 1. The
encoder in Fig. 1 is responsible for compressing the feature space down into a lower
dimension, as determined by the bottleneck layer. The compressed data are then mapped
back into a reconstructed vector by the decoder function, where the encoder and decoder
are typically symmetrical architectures, each containing multiple neuron layers.

The main components of an autoencoder can be explained as follows [98]. The model is
trained using a set of N aggregated records

X = {x1, x2, . . . , xn}

where each of the aggregated records consists of a tuple of k transactional attributes

xi = (xi1, x
i
2, . . . , x

i
j , . . . , x

i
k)

xij representing the jth transactional attribute of the ith aggregated record.
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Figure 1: An example of the architecture of an autoencoder.

The network contains a hidden layer h which generates a function that describes the input
of the model. The model architecture also includes an encoder function h = fθ(x) and a
decoder function r = gθ(h), which both assist as nonlinear mappings. More specifically, the
encoder function maps an input vector xi into a compressed representation zi within the
latent space Z. The compressed representation is then mapped back onto a reconstructed
vector x̂i by the decoder function, with the reconstruction of the original input data being
represented by x̂i. While not always the case, the encoder and decoder are typically
symmetrical in nature, where deep autoencoders are those considered to contain a number
of hidden layers within the encoder and decoder.

The encoder can be defined as

f l
θ(·) = σl

(
W l

(
f l−1
θ (·)

)
+ bl

)
while the decoder mapper is defined as

glθ(·) = σ′l
(
W ′l

(
gl−1
θ (·)

)
+ dl

)
where σ and σ′ denote the nonlinear activations, which often takes the form of the rectified
linear unit (ReLU) activation function. W , b and d represent the model weights and biases
respectively, while θ represents the parameters of the model. The number of hidden layers
in the model are described by l.

Training the autoencoder entails attempting to achieve an accurate representation of the
input data, with the model learning parameters θ that minimise the reconstruction er-
ror between the input and the reconstructed output. The training objective therefore
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optimises

argmin
θ
||X − gθ(fθ(X))||.

The approach is well suited for anomaly detection, where the autoencoder is used to
learn the most salient features in a data set, with the intention of reproducing these
salient features. The output, namely the reconstructed features, is the model’s attempt
at producing a reconstruction of the input data based on the data that was used to train
it. If the input data were similar to the data used to train the model, then the output
would be similar to the input, namely due to the model having learnt an effective input
mapping function via the training process. This is relevant for anomaly detection purposes
because input data that is dissimilar from the data used to train an autoencoder will
produce an inferior reconstruction. The quality of the reconstruction can be measured
by means of the mean squared error (MSE), which calculates the mean of the squares
of the differences between the reconstruction and its input. The MSE is known as the
reconstruction error in this context, where a higher reconstruction error is achieved in
instances where the reconstruction deviates substantially from the input data. Conversely,
a lower reconstruction error is achieved in cases where the reconstruction is more similar
to the input data.

This approach of assessing the quality of the reconstruction using the MSE is used to
detect input data that differs substantially from the data that was used to train the
autoencoder. An autoencoder can therefore be trained using non-anomalous data only.
As soon as anomalous data are introduced as the input, the MSE would determine that the
mapping function is not familiar with the data, thereby producing a high reconstruction
error. This has powerful implications for fraud detection, where an autoencoder can be
trained on non-anomalous transactional data only, for the purposes of detecting anomalous
transactions. Of particular importance is the fact that, by definition, anomalous data
occurs less frequently.

3.2 A unified approach

One of the frequent problems in implementing autoencoders, and neural networks in gen-
eral, is determining an optimal model architecture. No single solution is guaranteed to
deliver an optimal architecture, which is important because architecture design consider-
ations substantially impact model results. Traditionally, researchers used a grid search
method where a large number of hyperparameter combinations are explored and the best
one selected [95]. There are also other suggestions in the literature ([82]; [86]) on how to
construct autoencoder architectures.

In this study, it was decided to use a unified approach previously proposed by Ball et al. [8]
to ensure that the architecture of the chosen autoencoder is both derived using a structured
methodology, and is optimal from a model performance perspective. The unified approach
uses a combination of performance metrics proven to be well suited for anomaly detection
problems and extensive experimentation conducted in [8], produced satisfactory and highly
accurate results. Other benefits of the approach include the absence of having to make
subjective visual inspections of the model threshold and having an interpretable model
output that is transferable across business domains.
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The approach is comprised of three main phases that are performed sequentially.

• A neural architecture search is performed by simulating multiple autoencoder archi-
tectures;

• A threshold optimisation algorithm is applied to the simulated architectures to assist
with determining optimal fraudulent binary classification outcomes; and

• A Gaussian scaling process is implemented to prohibit any subjective interpretation
of the raw anomaly scores.

In the remainder of this section, the algorithms for the three main phases of the proposed
approach will be highlighted, while the details as well as the initial experimental results
can be found in [8].

Neural architecture search: Algorithm 1 presents the first phase of the approach that is
employed to simulate a population of candidate autoencoder architectures. The architec-
tures themselves are created by assigning them randomly generated depths and numbers
of nodes. An upper bound is applied to the size of the input layer of each architecture,
with each architecture operating under the same regularisation constraint. A balanced
metric, comprised of the average of the area under the receiver operating characteristic
(ROC) curve (AUC), average precision (AP), and normalised Matthews correlation coef-
ficient (MCC), is derived in order to select the best performing architecture. ROC is a
curve that plots the true positive rate against the false positive rate of a binary classifier,
to determine the classification performance across different thresholds. The AUC [48], AP
[42] and MCC [25] have all been used effectively as a classification performance metric
for problems with a class imbalance. Combining these into an average or balanced score
helps normalise the different magnitudes of each performance metric. This is especially
important for the AP metric as the baseline for the AP is the fraction of positive classes
[92]. In a typical anomaly detection problem, this could lead to an AP baseline of 1% or
lower depending on the severity of the imbalance. The AP baseline is in contrast to the
AUC metric which has a baseline of 50%.

Threshold optimisation: The second phase of the approach entails further evaluating the
MCC component of the balanced score obtained in Algorithm 1. The MCC requires that
the output of the autoencoder architecture be presented in binary form, where the class
labels come from two distinct groups, namely positive and negative classes. This is not
necessarily the case for AUC and AP, which can be calculated directly from the raw
anomaly score produced by the autoencoder. In order to represent the raw scores in bi-
nary form, a threshold is required to split the scores into a binary fraudulent classification
outcome. Determining a threshold is subjective, where an optimal split between the non-
anomalous and anomalous classes are sought. Traditionally, the maximum reconstruction
error achieved on the training set was used as the threshold for classifying anomalies [30].
Other approaches suggest using the proportion of anomalous data in the training data as
a heuristic for threshold determination [49]. Neither of these approaches considers classifi-
cation performance metrics as part of the thresholding decision, instead they evaluate the
performance of their thresholds using classification metrics after the fact. A formalised
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Algorithm 1 Neural architecture search algorithm

Input: number of n training epochs, intended population size m of generated architec-
tures, size of the input layer l
Output: An array S = s1, . . . , sm containing the balanced scores of the m simulated
architectures.

1: for i = 1 to m do
2: generate random depth d;
3: generate random architecture A, with a node upper bound l and length d;
4: for j = 1 to d do
5: if A[j] < min then
6: min← A[j];
7: end
8: end
9: remove min from A;

10: encArchitecture ← A sorted in descending order;
11: decArchitecture ← A sorted in ascending order;
12: build input layer of size l;
13: for k = 1 to d− 1 do
14: build encoder layer with encArchitecture[k] nodes;
15: end
16: build bottleneck with min nodes;
17: for n = 1 to d− 1 do
18: build encoder layer with decArchitecture[n] nodes;
19: end
20: build output layer of size l;
21: train the autoencoder;
22: calculate the balanced score si using test data;
23: S ← si;
24: end
25: output S;
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method for determining an optimal threshold is introduced as Algorithm 2, where the bal-
anced score is incorporated as part of the thresholding decision. More specifically, a range
of possible threshold values is simulated to determine the impact that each threshold has
on the balanced score. The threshold that achieves the highest overall balanced score is
chosen as the optimal threshold.

Algorithm 2 Anomaly score threshold optimisation algorithm

Input: Y = {y1, . . . , ym} is a linearly spaced vector, starting at zero and extending to a
value of n, containing m samples.
Output: An optimal threshold value Y [index].

1: for i = 1 to m do
2: read yi from Y ;
3: calculate the binary classification outcomes for y1;
4: calculate the MCC, AUC and AP scores from the binary classification outcomes;
5: populate array R← ri // the balanced score computed
6: end
7: max← R[0];
8: for i = 1 to m do
9: if R[i] > max then

10: max← R[i];
11: index← i;
12: end
13: end
14: output Y [index];

Gaussian scaling: The final phase in the unified approach is scaling the raw scores to
prevent subjective interpretation. The optimal architecture can be discovered after imple-
menting Algorithms 1 and 2, with the output of the autoencoder model taking the form
of a reconstruction error. This error is the MSE between the actual input data and the
reconstructed input data that the autoencoder produced. The reconstruction errors are
the raw anomaly scores, with a higher score indicating that the underlying transaction has
a high likelihood of being anomalous. Interpreting raw anomaly scores is a subjective exer-
cise, which presents an opportunity to normalise the scores into an easy to interpret range
of [0; 1]. A simple approach entails applying linear scaling to the scores, although this
approach does not capture the separation between the classes as required. Alternatively,
a Gaussian scaling approach can be applied, as presented in Algorithm 3.

Kriegel et al. [51] found that the Gaussian technique was a good general choice for trans-
forming raw anomaly scores from a wide variety of anomaly detection algorithms. Ap-
plying Algorithm 3 resulted in a far superior separation between the non-anomalous and
anomalous classes, with the majority of the non-anomalous class residing in the lowest
score tier and the majority of the anomalous class falling within the higher, 90%+ score
tier. Having a distribution of scores that clearly discriminates between the two underlying
classes is useful in an operational context, where fraud detection practitioners can easily
discern the likelihood of a transaction being anomalous based on its probability score.
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Algorithm 3 Gaussian scaling of anomaly score algorithm

Input: S = s1, . . . , sm is an array of anomaly scores, containing m samples.
Output: An array U = u1, . . . , um containing the associated unified scores for m samples.

1: for one pass of array S do
2: calculate µS ; // mean
3: calculate σS ; // standard deviation

4: cdf = S(0)−µS

σS∗
√
2
; // calculate the cumulative distribution function of S

5: erf(cdf); // transform the cdf with the Gaussian error function
6: normalise the transformation to the range [0; 1];
7: output U ;

By combining a neural architecture search, threshold optimisation, and Gaussian scaling,
the unified approach provides practitioners with a structured methodology to create au-
toencoder models for anomaly detection purposes. The output of the process is a trained
autoencoder model, with the threshold calibrated according to performance metrics rele-
vant for problems with imbalanced classes.

3.3 Basic concepts of social network analysis

Social networks refer to the structure of social actors that share interests of activities [96].
O’Malley and Onnela [80] also describe SNA as the understanding of the interdependencies
in behaviour related to configurations of social relations. Both the relationships between
individuals and their attributes can be considered the observations of interest within a so-
cial network. The observations within a social network are thought to be dependent in part
on other observations within the network, due to their interconnected nature. Therefore,
the techniques used to analyse the dependent data in social networks differs somewhat
from the traditional statistical methods used to model independent observations.

In SNA, a graph or network is a finite set of n nodes or vertices that are connected by a
finite set of m edges. In a financial services context, these nodes could be considered users
of a particular system, and the edges would represent the connections or relationships
between the users. A graph is typically referred to as G and is formally expressed as
G = (V,E). V is a finite set, called the vertices of G, while E is a set of two-element
subsets of V , called the edges of G. The edges E are unordered pairs of vertices [10].
Fig. 2 illustrates an example of a simple graph. The graph has five nodes as represented
by the circles and six edges as represented by the pairs of two letters highlighting the
relationships between the nodes. To give an example explaining how Fig. 2 works, B and
C represent nodes, whereas BC is the line or edge that connects these two nodes.

The edges between nodes within a graph can also have a directional element to them,
where the graph is referred to as a directed graph. A directed graph (or digraph) places
importance on the direction of the relationship between the nodes. An example of a
directed graph is displayed in Fig. 3. The direction of the arrow between nodes A and
B, for example, confirms that the edge flows in the direction from node A to node B.
Directed graphs can also have edges that flow in both directions as well as edges that flow
from the starting node back to itself (self-loops).
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Figure 2: An example of a simple undirected graph

Figure 3: An example of a directed graph
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A numerical value can also be assigned to the edges within a graph to represent the
importance of the edge, a concept known as a weighted graph. The importance can
be incorporated by using numerical values or other drawing techniques, where the less
important edges are indicated by the dashed lines in Fig. 4.

Figure 4: An example of a weighted graph

Graphs can also be further divided into smaller components known as subgraphs. A
subgraph H of graph G is considered a clique if each node in the subgraph is connected
by an edge to every other node within H. A particular subgraph H can also be thought
of as a maximal clique in G in cases where H is a clique and there is no node in G but
not in H that sends an edge to every node of H [76].

SNA is a broad field of study and many relations and sub-specialisations have been iden-
tified and studied. Because this paper uses SNA and some of its associated metrics, it was
necessary to mention only a few of the basic ideas of SNA. This section is by no means
an exhaustive overview of graph theory or SNA. The field itself is a highly mathematical
area of study, and although the mathematical details do not form part of the scope of
this research, interested readers are referred to [7] for more detail on the mathematical
foundations of graph theory.

4 Methodology and experimental work

The validation of the proposed approach using a real-world data set sourced from the
financial services industry is presented in this section. The discussion includes the data
used in the study, the creation of network features using SNA, conducting a practical
experiment whereby the network features are included to train an anomaly detection
model, and finally, a discussion on the experimental results of the study.
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4.1 The transactional dataset

The study was conducted using a data set sourced from an organisation operating in the
financial services industry. The data are anonymous in nature, and care was taken not to
expose any sensitive user information during the data extraction process. Two components
make up the data set, namely a set of standard transactional features and a set of links
between the same users in the set of standard transactional features, which makes the
calculation of SNA metrics possible.

The standard transactional features are comprised of 120,676 records, of which 439 records
are confirmed as fraudulent. This equates to a class imbalance where only 0.36% of the
data are attributed to the minority class. The reason for the imbalance is that levels
of fraud usually are far lower than the number of valid transactions that an organisa-
tion process. Therefore, far more data are collected on valid transactions compared with
anomalous transactions, hence the imbalance in favour of the valid transactions. Highly
imbalanced data sets are also reported in the literature as commonplace in the fraud
detection context [66]. While class imbalances generally occur in standard classification
problems, highly imbalanced tend to fall into the anomaly detection domain, where algo-
rithms have been specifically developed to handle these imbalances. Standard classification
approaches are not well suited to highly imbalanced problems, as the majority class over-
whelms the training process and performance metrics associated with these. An example
of a sampling technique that addresses oversampling the minority class is the synthetic
minority oversampling technique (SMOTE) [34].

To address the problem of an imbalanced data set, this paper uses stratified sampling com-
bined with a well-known and proven anomaly detection approach that trains a model on
the majority class only, for which there is sufficient data [36]. This combined methodology
was devised in order to prevent bias when creating the various data partitions required
for effective model training and performance evaluation.

Stratified sampling is a sampling approach where the population data set is partitioned into
non-overlapping groups known as strata [46]. In the case of a binary classification problem,
the population data set can be partitioned into two strata, namely the positive and negative
classes. When constructing training, validation, and test data sets, proportional allocation
of the classes can be applied via stratified sampling. This means that any class imbalance
exhibited in the population data set can be enforced in the subsequent training, validation,
and test set samples, ultimately removing potential bias from the sampling process by
ensuring that the balance of the classes is represented correctly in all samples.

The approach to train a model on the majority class only, produces a function that can
be leveraged to detect non-anomalous transactions that are similar to the data that were
used to train the model. Conversely, the anomaly detection model would flag anomalous
transactions that are highly dissimilar from the data used to train the model. This is
advantageous, as it allows researchers and practitioners to circumvent the issues related
to training a binary classifier on data with limited instances of the minority class. In cases
where there are no opportunities to collect additional positively labelled data, or where
over and under-sampling techniques fall short, this approach becomes a viable option.
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The sampling and model building, based on the above methodologies, is presented in
Figure 5 and can be summarised as follows. The sampling process begins with n = 120, 676
records, which are sorted in random order to prevent sampling bias. These are then split
into training set T1 and test set T2, where T1 contains 90% and T2 contains the remaining
10% of the transactional dataset D. T1 and T2 are split using stratified sampling, so that
each resulting partition contains a proportional share of the anomalous class. T2 can then
be considered the hold-out test set, while T1 is used for further processing.

Training set T1 is randomised again and subsequently split into a further training set T3

and a validation set T4. T3 comprises 90% of T1 while T4 is made up from the remaining
10%, with stratified sampling again ensuring that the partitions receive their proportional
share of the minority class.

S1 is the set of fraudulent instances in T3, and is removed so that the final training set
contains data from the non-anomalous class only. On the other hand, validation set T4

keeps its set of fraudulent instances S2. This enables training on the non-anomalous
cases only while validating the performance on data including both classes. Following the
determination of the optimal architecture, hold-out test set T2 is used to make a final
evaluation of the model’s performance on unseen data.

The set of fraudulent instances (S1) removed from T3 are then added onto validation set
T4 to augment the validation process with additional fraudulent samples. Removing the
set S1 from the training set yields the final training set T5, whereas the updated validation
set including S1 becomes T6. The final validation set T6 ends up including set S1, which
contains 395 fraudulent instances, while the hold-out test set T2 contains set S2 with 44
fraudulent instances. Together these make up the set S, which includes all 439 fraudulent
instances from the original transactional data set.

There are 49 features in the data set, where one is the unique identifier of each user,
and another is the class label or target variable indicating a confirmed credit card fraud
case. Instances of confirmed fraud are assigned a target variable of 1, while instances
of no credit card fraud are assigned a target variable of 0. For the purposes of model
training, the identifier is excluded but can be used to map the vectors and their respective
prediction output back to each user’s unique identifier. The class label is also kept aside
but will be used for classification purposes. Therefore, the 49 features are reduced to
47 features for the purposes of training each model. No missing values are found in
the data set, as the aggregation process used returns a 0 rather than a null value in
instances where no values are counted for the respective feature. The real-world data
features are transformed via standardisation to a N(0, 1) distribution. Standardisation
entails centering each feature around its mean with a unit standard deviation. The values
returned by the standardisation process are not defined to a particular range as is the case
with normalisation, and therefore values greater than 1 are to be expected.

Due to the confidentiality of the data, and considering the sensitivity of financial data, the
remaining 47 features will not be described in detail. These features are typical features
found in a transactional database and relate to financial and behavioural attributes asso-
ciated with each transaction. Examples include the IP address from where the transaction
originates, how many cards the user has attempted to use, and whether there are differ-
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Figure 5: Sampling process.



Anomaly detection using autoencoders with network analysis features 19

ences between which country the user is signed in from and where their identity documents
suggest they are located.

4.2 Extending the unified approach to include social network analysis
metrics

Following on from the creation of the transactional features in Section 4.1, data repre-
senting the links or relationships between users are considered in order to structure the
users and their interactions as a graph. Examples of links between users would include
the same credit card, IP address, or login device used. Using the links between users as
edges, and the users themselves as nodes, a network structure was formed, which could be
explored via several network modelling techniques. This exploration led to the creation of
features describing the underlying network metrics. The intention is to extend the unified
approach by incorporating SNA metrics into the transactional features so that a final,
comprehensive feature set can be used for anomaly detection.

Considering the large size of the clusters of network data, only certain visual examples
of the process to incorporate the social network metrics will be given. Firstly, a smaller
cluster with predominantly non-anomalous nodes is shown in Fig. 6, highlighting the
non-anomalous and locked nodes, as well as the edge connections between them. In Fig.
6, the white nodes indicate non-anomalous users, whereas the black node indicates a user
account in a locked state. A locked state is defined as the state when an account has been
closed and all of its associated functionality has been removed. This can be temporary
or permanent, depending on the severity of the suspicious activity associated with the
account. The edges are comprised of a combination of device or IP address links between
users.

The largest cluster in the entire social network is presented in Fig. 7. This cluster is a
densely connected web of anomalous, locked, and non-anomalous accounts and contains
1,515 distinct nodes, including 8 instances of fraud as indicated by the large dark nodes.
Some segments of the cluster splinter off into smaller, yet connected clusters, while the
majority of the remaining nodes form a dense mesh of hundreds of accounts. This cluster,
while alarming, would be challenging to investigate manually.

In terms of selecting the appropriate network metrics to calculate on this graph, a number
of related studies were considered to provide assistance with these choices. Centrality met-
rics were an essential set of features used by Bonilla [12] and Van Vlasselaer et al. [103],
prompting the selection of the degree, eigenvector, closeness, betweenness, load, and har-
monic centrality in this study. Van Vlasselaer et al. [103] combined transactional features
with network-based features to effectively detect credit card fraud in an e-commerce set-
ting, where the inclusion of the network features was shown to have a powerful impact on
the prediction results. Similarly, Bonilla [12] used a variety of network features to detect
blockchain-related fraud, with their feature importance process indicating that centrality
metrics were strong indicators of fraud.

Degree centrality is the fraction of nodes that a node is connected to within a network and
can be summarised as the number of ties that any nodes have to other nodes in a graph
[38]. A higher degree centrality indicates that nodes are well connected within the net-



20 Ball, Krüger, Drevin

Figure 6: An example of a subgraph within the real-world dataset.

work, which is not standard behaviour in a financial services context. Users should ideally
not be sharing devices, credit cards, or IP addresses, and therefore the more connected a
user is, the more likely they are involved in suspicious activity. The second centrality mea-
sured used is eigenvector centrality. Eigenvector centrality is similar to degree centrality,
although it considers that connections to nodes that are themselves influential contribute
more to the centrality score of the node. Therefore, the higher the eigenvector centrality
score of a node, the more connected the node is to other nodes which themselves have high
scores [40]. Closeness centrality is the third centrality metric used, measuring the average
length of the shortest path between the node in question and all other nodes within a
graph [76]. The fourth centrality metric is betweenness centrality, which determines the
number of times that a node acts as a bridge along the shortest path between two other
nodes in the network [40]. Load centrality, the fifth centrality metric used, is similar to the
betweenness centrality, and determines the fraction of all shortest paths that pass through
each respective node [15]. The sixth and final centrality metric used, harmonic centrality,
is considered to be a practical representation of an average shortest path [74]. Centrality
metrics all measure the connectedness of nodes within a network in different ways, and
higher centrality metrics all tend to indicate a higher likelihood of anomalous behaviour
in an anomaly detection context.

In addition to the choice of centrality metrics, various other network metric approaches
were also considered. Hamilton [40] found that the clustering coefficient metric was an
important metric for measuring importance within graphs, while Yin et al. [107] motivated
that clustering metrics can be used as powerful outlier detection signals. Link analysis
metrics like PageRank were effectively used by Fakhraei et al. [35], with the clique metric



Anomaly detection using autoencoders with network analysis features 21

Figure 7: Largest cluster in the overall social network.
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also showing promise as an effective method for determining groups within graphs [74].
Finally, assortativity metrics were found to be strong indicators of anomalies, according
to Piraveenan et al. [83].

Within the clustering group of metrics, both the clustering coefficient and square clus-
tering coefficient metrics were used. Negro [75] suggests that the clustering coefficient
metric is vital in fraud detection, where nodes with a lower coefficient compared to the
global average indicate that the nodes are connected to nodes that belong to independent
groups. Being linked to an independent group can be suspicious in some contexts, as it
suggests that users might be involved in a coordinated fraudulent syndicate. Similarly,
the square clustering coefficient determines the probability that two neighbours of a node
share another common neighbour [60].

The clique family of network metrics were also considered, as the grouping of nodes has
shown to be an essential method for determining the likeness of network participants
[80]. A node clique number finds the largest clique containing a node, where a clique is
a complete graph where all of the nodes are connected to each other. The number of
cliques that a node belongs to is also determined. This metric determines the number of
unique cliques that contain each node, which is complementary to the node clique number
metric, which only captures the largest clique containing the node [76]. The larger the
number of cliques or node clique number per node, the more connected the user is within
the network, and ultimately more likely to act suspiciously.

In total, the overall network contains 27,361 nodes and 34,957 edges. Considering the
large volume of nodes, the computed features for only the first five nodes in the network
are displayed in Table 1. In addition to the network metrics described previously, there
is an opportunity to compute custom network metrics using the labelled data. The first
two network features listed in Table 1 are reliant on the industry organisation’s internal
labelling of the users in the data set as being fraudulent or having an account that is in
a locked state. A user that is marked as fraudulent would always have a locked account,
but a user with a locked account does not always imply that the user is indeed fraudulent.
There are a number of operational reasons why a user might be locked, most of which are
an indication of a previous negative event linked to the user. The assumptions with these
features are that being closely linked to other users with a history of negative behaviour
could potentially indicate fraud for the user in question. The proximity of all nodes to
known fraudulent or locked nodes is determined by applying Dijkstra’s algorithm [45] to
determine the shortest path to any anomalous node.

The balance of the features in Table 1 are standard network modelling metrics related to
the users’ influence within the network of linked users. The network can be defined as the
subset of the original industry data set where the underlying users have a connection to
another user. Therefore, there is no guarantee that if a user exists in the original industry
data that they will appear in the network.

In Appendix A, the network features are transformed to a N(0, 1) distribution via the same
process, and joined to the original industry data set to form the expanded industry data set,
including network metric features. The features in Appendix A represent an abstraction
of the data following the standardisation process, and is taken from the industry data
set including the network metrics. The network metrics set that was joined onto the
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Table 1: Raw network metrics for the first five nodes

Feature Node 1 Node 2 Node 3 Node 4 Node 5

Distance closest fraud user 0 3 3 1 0
Distance closest locked user 0 1 1 1 0
Degree centrality 0.000073 0.000183 0.000146 0.000256 0.000146
Eigenvector centrality 1.235e-25 6.032e-07 6.019e-07 2.927e-06 2.59e-19
Closeness centrality 0.0000 0.007691 0.007690 0.009173 0.000073
Betweenness centrality 0.0000 0.000004 0.000000 0.000103 0.000000
Load centrality 0.0000 0.000004 0.000000 0.000103 0.000000
Harmonic centrality 0.0000 251.35148 250.85148 298.61873 2.000000
Average neighbour degree 1.0000 5.400000 6.000000 9.571429 3.000000
Clustering coefficient 0.0000 0.333333 1.000000 0.600000 1.000000
Node clique number 1 3 3 4 3
Number of cliques 1 2 1 2 1
Square clustering coefficient 0.0000 0.636364 6.000000 0.074488 0.666667
PageRank 0.000037 0.000041 0.000026 0.000027 0.000037

transactional feature set end up being sparsely populated. This sparsity is due to the
relatively smaller number of users in the network data set when compared with the full
set of users in the transactional feature set. There are fewer users in the network data
set because not all users have a connection to another user. Being connected to another
user is somewhat suspicious in itself, and therefore it is expected that a small proportion
of the users in the transactional features are represented as nodes in the network metric
features data.

The final set of features is now available, including both the transactional features and
the network metric features determined in Sections 4.1 and 4.2 respectively.

4.3 Practical experiment

In this section, the combined transactional and network metrics features constructed in
Sections 4.1 and 4.2 are used to train an autoencoder model to detect anomalies in the
data. The model training process involves applying the unified approach proposed by
Ball et al. [8] and is detailed in Section 3.2. The unified approach starts by simulating
100 candidate autoencoder architectures via a neural architecture search (NAS), where
the optimal architecture is selected based on a balanced score comprised of the mean of
the average precision (AP), area under the ROC curve (AUC), and normalised Matthews
correlation coefficient (MCC) scores.

The NAS process, as denoted by Algorithm 1, found that models trained on the combined
transactional and network metrics feature set yielded an optimal architecture balanced
score of 94.07%. The results of the NAS process are displayed in Table 2. The optimal
architecture had nine hidden layers, with a bottleneck of three neurons. The architecture
column indicates the number of neurons in each hidden layer of the autoencoder, ranging
from the bottleneck through to the final hidden layer prior to the output layer, essentially
representing the decoder component. Symmetric autoencoder architectures are assumed,
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therefore the encoder component can be considered to be the mirror image of the decoder.
The “Param” column notes the number of trainable parameters that were generated,
while the “Thres” column lists the optimal threshold for the architecture discovered while
optimising for a maximal balanced score.

Table 2: Details of top 20 architectures using the combined transactional and network features

AP AUC MCC Balanced Architecture Param Thres
score

0.885 0.997 0.938 0.940 [3, 23, 34, 41, 42] 13402 4.242
0.883 0.996 0.937 0.939 [18, 19, 22, 26, 28, 38, 43, 46] 19607 3.636
0.858 0.995 0.923 0.925 [12, 21, 24, 25, 38, 41] 13101 3.737
0.853 0.996 0.920 0.923 [5, 7, 12, 17, 19, 26, 39] 9372 4.242
0.850 0.995 0.919 0.921 [4, 16, 23, 30, 34, 41, 45] 16695 4.242
0.844 0.994 0.915 0.918 [3, 4, 27, 31, 35, 40, 43] 15994 4.343
0.835 0.996 0.910 0.914 [13, 16, 17, 22, 27, 35] 9898 3.131
0.819 0.995 0.901 0.905 [8, 10, 14, 19, 22, 27, 35] 9479 4.343
0.814 0.995 0.898 0.902 [3, 7, 11, 20, 33, 38, 46] 13946 4.444
0.812 0.995 0.897 0.902 [4, 12, 15, 22, 25, 26, 34] 9765 4.242
0.805 0.994 0.893 0.897 [4, 14, 19, 24, 29] 6723 3.939
0.791 0.995 0.885 0.890 [8, 13, 15, 17, 20, 29, 35] 9575 3.939
0.790 0.995 0.884 0.889 [3, 24, 29, 30, 43] 11418 3.737
0.786 0.993 0.882 0.887 [3, 8, 18, 23, 26, 29, 32, 42] 13956 4.343
0.782 0.994 0.879 0.885 [4, 12, 16, 18, 20, 22, 26, 32] 9725 4.040
0.774 0.994 0.875 0.881 [3, 8, 18, 22, 25, 29, 31, 39, 45] 17392 4.242
0.775 0.989 0.876 0.880 [6, 22, 33, 42] 9873 2.424
0.766 0.994 0.870 0.877 [6, 9, 15, 20, 30, 35, 36] 11547 3.535
0.765 0.994 0.870 0.876 [4, 5, 27, 32, 35, 38, 46] 16477 4.040
0.766 0.993 0.870 0.876 [5, 7, 10, 11, 12, 19, 22, 38] 8598 4.444

Once the optimal architecture has been established, the next step in the unified approach
is to determine the optimal classification threshold for the autoencoder. The threshold is
required in order to split the reconstruction errors produced by the trained model into the
non-anomalous and anomalous groups. In the case of fraud detection, reconstruction errors
above the threshold would indicate fraudulent transactions, while reconstruction errors
below the threshold are deemed to be non-anomalous. Araya et al. [4] refer to a threshold
as being typically defined by the mean square error (MSE). The optimal threshold for the
autoencoder is determined by applying the threshold optimisation algorithm presented as
Algorithm 2, where the optimal threshold for the autoencoder model was determined to
be a MSE of 5.353.

The optimal threshold for the model is depicted in Fig. 8, where the figure indicates that
the peak balanced score of just over 94% on the y-axis corresponds to a MSE threshold
of 4.545 on the x-axis. Fig. 9 is a graphical representation of the reconstruction errors,
where the bold line in the figure is the threshold that attempts to split the non-anomalous
and fraudulent transactions.
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Figure 8: Optimising combined model threshold selection using the balanced score.

Figure 9: Reconstruction scores (MSE) using the combined validation data.
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Following the establishment of the optimal thresholds, the third phase of the unified ap-
proach, Gaussian scaling, is applied to the raw anomalies scores, as described by Algorithm
3. This helps with scaling the raw scores into an interpretable [0; 1] range, which can be
used and easily understood in an operational context. The Gaussian scaled anomaly scores
for the model is illustrated by Fig. 10. The darker bars indicate the non-anomalous trans-
actions, which are expected to be scored lower in relation to the lighter bars indicating the
fraudulent transactions. Fig. 10 groups the fraudulent transactions in the 95%+ bucket,
whereas the non-anomalous transactions are grouped into various buckets, although the
vast majority are in the desired lowest bucket.

Figure 10: Anomaly scores with Gaussian scaling.

4.4 Experimental results

Table 3 captures the performance of the optimal autoencoder architecture on the feature
hold-out test set. This test set contains 12,038 records, of which 44 are confirmed fraud
cases. The optimal model correctly classified all 44 instances of fraud while misclassifying
125 non-anomalous transactions as fraudulent.

There are many performance measures that are traditionally used in the evaluation of a
model. The most popular measures include average accuracy, average error rate, precision
or sensitivity, recall and F1-score. In this research, it was decided to use the precision
and recall measures as the primary performance indicators. Precision is defined as the
fraction of relevant instances among the retrieved instances and, for a binary classification
problem, it is mathematically expressed as

Precision =
tp

tp+ fp
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where tp indicates the number of true positives, or the number of confirmed anomalous
instances correctly classified as such, and fp indicates the number of false positives, or the
number of confirmed non-anomalous instances that were incorrectly classified as anoma-
lous. The relevant instances in the precision formula are those predicted as anomalous;
therefore, precision is the number of correctly classified anomalous instances over the total
number of predicted anomalous instances.

Recall pertains to the fraction of total relevant instances that were retrieved and for a
binary classification problem is formally defined as

Recall =
tp

tp+ fn

where fn is the number of false negatives, or the number of confirmed anomalous instances
that are incorrectly classified as non-anomalous. Recall can therefore be considered the
number of correctly classified anomalous instances over the total number of confirmed
anomalous instances.

The final results obtained was a precision score of 26% and a recall score of 100%. Due
to the highly imbalanced nature of the data, it is expected that the model will realise low
precision scores. Al-Shabi [1] confirmed that the balance between precision and recall is a
trade-off that needs to be evaluated by the organisation in question, as there are unique
costs associated with both types of misclassifications. The trade-off between precision and
recall can be quantified by applying a cost-based approach to capture the financial impact
of fraud. This could be achieved by attaching a predetermined cost to each quadrant of the
confusion matrix (see Table 3) to compute the total cost impact at differing precision-recall
thresholds [6].

The F1-score (the harmonic mean between precision and recall) is also widely acknowl-
edged as a valuable metric in many studies [99]. However, it has faced some criticism and
Hand and Christen [41], for example, criticised F1-scores for placing equal importance on
precision and recall. This becomes problematic in practice, where different misclassifi-
cations carry different cost implications. The argument is important in fraud detection,
where it is often more expensive to misclassify a positive instance of fraud as negative than
a non-anomalous instance as positive [94]. The accuracy measure was also not used as a
performance measure as it is often not considered an effective performance metric due to
the imbalance between the classes. This is known as the accuracy paradox [102].

Table 3: Confusion matrix of optimal architecture with combined features
Predicted class

Fraud Not fraud Total
Fraud 44 0 44

True class Not fraud 125 11869 11994
Total 169 11869 12038

Another important factor in assessing the effectiveness of a trained model is model inter-
pretability. To evaluate the model obtained, it was decided to apply a SHAP analysis to
the results. SHAP is a technique for assigning feature importance for model predictions
[65], where the contribution of each feature to specific predictions are explained [72]. The
technique has also been adapted to the anomaly detection domain, where Antwarg et al.
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[3] showed success in applying SHAP on the output scores generated by autoencoder mod-
els. Applying SHAP on an autoencoder model output entails explicitly determining the
connection between the features that have a high reconstruction error and those features
that are most important in affecting the reconstruction error of the model.

The results of applying SHAP to the model outputs are shown in Fig. 11. The transac-
tional features are depicted by the darker bars, while the lighter bars highlight the contri-
butions of the network features in descending order of influence. Features v1 through v47
indicate the transactional features, whereas features v48 through v61 indicate the network
metrics features. It is clear that the most important transactional and network features
each have an equal share of the top ten features displayed in Fig. 11.

Figure 11: Shapley values for autoencoder with combined features.

As can be seen from Fig 11, the top ten features are comprised of five from the transactional
data and five from the newly suggested network metrics. The most important transactional
features (indicated by the transparent bars in Fig 11) in the final model include the
following:

• Users linked to device (v10): This feature is the most important of all and indicates
whether other users are using the same registered mobile device. In the context
of fraud detection, it is important to know whether users share a registered device
because it is assumed that non-anomalous users only use their own devices and do
not allow others to transact via their devices.

• Total queue time to verify (v6): The second most important transactional feature
is v6 which is also ranked fourth among the top ten features. It shows whether a
user progressed through the sign-up process swiftly, which may indicate that the
user has signed up with multiple fictitious accounts previously. This signifies that
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the user has gained a substantial amount of experience in completing the sign-up
process, which is not considered non-anomalous, where a non-anomalous user should
only need to sign-up once. The feature may also detect an automated approach to
completing the sign-up process, such as copying and pasting data from a template,
which too is considered suspicious behaviour.

• Verification level (v5): The third most important transactional feature, verification
level, indicates the level of transactional restrictions placed on an account. A higher
verification level denotes a lower level of restriction, as more is known about the
customer from a KYC (Know Your Customer) perspective. Both non-anomalous
and fraudulent users would benefit from having a high verification level so that they
are able to transact with relatively large financial amounts.

• Users linked via a session token (v11): The fourth most substantial transactional
feature, users linked via a session token, measures the number of different users who
transacted via a uniquely generated web token. As with users linked to device, the
assumption is that non-anomalous users would not transact via the same web token
assigned to another user. Web tokens are generated by the organisation, whereas
devices are registered using their physical MAC (media access control) address, of
which the first is seen to be more accurate in detecting user devices.

• Failed card attempts (v13): The fifth and final important transactional feature, failed
card attempts, indicates the number of times that a user attempted to load a card
that was declined by the issuing bank. A high number of failed card attempts is
suspicious behaviour, as it might suggest that a user is testing a number of stolen
cards, an activity known as card testing.

The most important network metrics (indicated by the dark bars in Fig 11) that were iden-
tified by the SHAP analysis and which are proposed to augment the standard transactional
variables are as follows:

• PageRank (v61): The most important network metrics feature is the PageRank
metric, which determines the importance of nodes in a graph based on the structure
of the incoming edges. This results in a measure that captures the influence of a
node within a graph, where influence is determined as the number of high-quality
connections that a given node has to other nodes. High-quality connections are links
to nodes which themselves are highly connected, which can be considered suspicious
behaviour within a financial services ecosystem.

• Degree centrality (v50): The second most important network metric feature is degree
centrality. This feature computes how many connections nodes have compared to all
other nodes within a network. Therefore, nodes connected to more users than other
nodes are more likely to be anomalous. Conversely, it is assumed that non-anomalous
users would not be strongly connected to other users in a financial ecosystem such
as this.

• Number of cliques (v59): Cliques or subgraphs are also strong contributing features,
acting as another measure for how connected a node is to large clusters within the
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graph. The number of cliques determines the number of possible subgraphs that
each node is connected to, and is the third most important network metrics feature
for detecting anomalies in the data. The higher the number of cliques, the more
connected a user is within the network, which is deemed to be suspicious.

• Node clique number (v58): The fourth most important network metrics feature is
the node clique number. A larger node clique number indicates that the user is
strongly connected to other users and helps to surface anomalous behaviour within
the network. The node clique number represents the largest clique containing each
given node.

• Average neighbour degree (v56): The fifth and final strongly contributing network
metrics feature is the average neighbour degree and is simply the average of the
degree (number of connections to other nodes) of the neighbours that surround each
node. A node that is closely associated with other densely connected nodes would
generate a high average neighbour degree, an indication of potentially suspicious
behaviour.

The above results indicate that the network metrics features are important contributors to
detecting anomalies when using autoencoders. The two most important network metrics
features, namely PageRank and degree centrality, make logical sense as both relate to the
number of important links to the node within a network, which is important in anomaly
detection.

5 Discussion and reflection

In line with the paper’s objective, a methodology that combines an anomaly detection
autoencoder model with additional network metrics was described in the preceding sec-
tions. The results are promising, and the combined feature model showed that adding
the proposed network metrics features contributes substantially to detecting anomalies.
The method followed in the study is based on a unified approach that is designed to de-
termine a best autoencoder model architecture. The model is then extended by using a
combination of transactional data and network metrics, typically found in SNA, to detect
anomalous transactions in a real-world financial dataset. The discussion and reflection in
this section will be presented in three parts, i.e., the unified approach to select a “best”
model architecture, the selection and inclusion of network metrics to augment the model
and general recommendations.

Construction of an anomaly detection autoencoder model using a unified ap-
proach

The unified approach used to build a suitable model was described in Section 3.2 and ap-
plied in Section 4.3. The methodology consists of 3 main phases, i.e., a neural architecture
search, a threshold optimisation and a Gaussian scaling phase.

The proposed unified approach provides several advantages that will help to ensure that
a ”best” model architecture is used. It is a substantial improvement over the simple grid
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search algorithm traditionally used as it finds an optimal set of hyperparameters for a
model in a relatively short time. The random nature of the neural architecture search
outperforms a grid search, especially in cases where the number of possible hyperparame-
ters substantially influence the model’s performance. A grid search often suffers from the
curse of dimensionality where the number of possible parameters may grow exponentially
as the number of hyperparameters increases. These challenges in a traditional grid search,
which are addressed with the proposed unified approach, are confirmed in the literature
([11]; [59]).

In fraud and anomaly detection problems, the unified approach also provides advantages.
The optimal architecture is found by validating various hyperparameter configurations
against performance metrics specifically chosen due to their suitability for datasets with
imbalanced classes. These imbalanced datasets are often found in fraud-related datasets
as the number of fraudulent transactions usually is far less than the valid ones. Three
metrics appropriate to the anomaly detection context were chosen i.e., average precision,
the area under the ROC curve and a normalised Mathews correlation coefficient. These
metrics were then combined to simplify the underlying metrics into a single balanced score.

A typical problem encountered in anomaly detection is the subjective threshold decision to
identify anomalous transactions. This is frequently determined through visual inspection
of a potential threshold. The proposed unified approach provides, through its second
phase, an advantage over other threshold determination approaches, such as using the
maximum mean square error from the training process. The method explicitly determines
a threshold that maximises a given objective, namely a balanced score. Finally, the third
component of the unified approach provides scaled, universally transferable probability
scores as the autoencoder model output. These scores, transformed via Gaussian scaling,
remove the friction typically caused by comparing raw anomaly scores from models with
different magnitudes of scores. The unified approach chains all of these different aspects of
the anomaly detection process together to form a functional pipeline that can be extended
for future academic and commercial applications.

Extending and incorporating appropriate network analysis metrics into the
model

The network analysis metrics used in the anomaly detection model were described in
Sections 3.3 and 4.2.

While the transactional features in this study capture the various transactional behaviours
that users within the system exhibit, these features do not capture the relationships be-
tween users. Variables that explain relationships are essential in the context of fraud
detection and often reveal additional information that may lead to the identification of
anomalies. SNA provides an opportunity to transform data that captures the linked na-
ture of relationships between users, effectively representing these relationships as a math-
ematical graph. The implications for this representation are twofold. Firstly, graph data
allows for visualising the relationships between users in graphical form and secondly, SNA
algorithms can be applied to the linked data to determine metrics that describe the con-
nectedness of the users within the entire graph of users. Neither of these is possible without
data that captures these relationships between users, therefore specific networked data was
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included in the unified approach to expand the set of features beyond the transactional
level of aggregation.

Including network metrics in the unified approach entails representing the transactional
data in graph form. The process of porting the linked data into graph form brings specific
challenges. The task of creating the network metric features is important from a compu-
tational perspective, where the application of the various graph algorithms on the graph
increased the feature engineering time substantially. The run-time of the model train-
ing process itself was not impacted meaningfully by the addition of the network metrics
features, with training taking slightly longer due to a more extensive training data input
space. The same goes for the complexity of the model, as model complexity is determined
by the hyperparameters chosen during the neural architecture search process. There is no
direct impact on model complexity by merely including network metric features. Another
challenge is the required knowledge necessary to implement network metrics. Calculating
the network metric features requires specific knowledge on network analysis and how to
use it to calculate the network metrics. Should the knowledge be available to perform net-
work analysis, it is recommended to calculate network metric features, specifically those
metrics associated with centrality, and include them as additional features when training
an autoencoder for anomaly detection in a transactional setting.

The network metrics selected for this study were chosen after consulting related studies
that had either used manual network metrics for fraud detection purposes or used the
network metrics as features to train a machine learning model. The autoencoder model
trained using additional network metric features produced an output with a low number
of false positives, which would lead to a low operational cost of fraud in the industry. By
analysing the Shapley values for the trained model, the PageRank and degree centrality
metrics showed the most substantial influence in detecting anomalies. These metrics high-
light the importance of determining nodes with many links within a given network (in
many cases, an indication of a possible anomalous transaction). The identified metrics
are therefore helpful for anomaly detection purposes. Applying SHAP to the autoencoder
output also proved to be useful as an approach to determine the strongest contributing
or offsetting network metric features for any anomaly that may be detected. Another ad-
vantage in following this approach is that the method removes the need for investigation
analysts to perform manual calculations to understand user relationships and interactions.
Ultimately including network metrics in the unified approach brings an additional dimen-
sion to the problem of anomaly detection, as user behaviour can be modelled from both a
transactional and network perspective. This was also supported by the encouraging model
accuracy results, leading to a low operational cost of fraud in the industry.

General recommendations

Considering the results obtained in this study and the above discussion of the methodology,
some final comments and recommendations can be summarised as follows.

• In a fraud detection scenario that is based on a transactional setting, it is rec-
ommended that an autoencoder neural network model be constructed to identify
anomalous transactions. It would be advantageous to utilise the proposed unified
approach to select a “best” model architecture.



Anomaly detection using autoencoders with network analysis features 33

• To make provision for underlying relationships and interactions of clients, which is
a vital part of fraud detection techniques, the inclusion of specific SNA metrics as
additional explanatory variables should be considered. This study has shown that
centrality metrics are particularly important in detecting anomalies.

• Model performance metrics should be selected with care. In a fraud context, stan-
dard accuracy measures such as the average accuracy or F1-scores may be misleading.
This is due to factors such as the existence of imbalanced datasets and the critical
principle of trade-offs (e.g., the cost of false negatives).

• Finally, cognisance should be taken of practical considerations when considering
the use of the proposed unified approach and the implementation of social network
features. Some of these considerations include model construction complexity (a
substantial amount of technical knowledge is required to build and implement the
models); time complexity (model selection, model training and network feature engi-
neering may take some time); model complexity (relates to the number of hyperpa-
rameters in the model); and prerequisite knowledge required (a good understanding
of neural networks – autoencoders in particular – and SNA with the associated
metrics are needed).

6 Conclusion

The objective of this paper was to extend a previously proposed unified approach by
incorporating network metrics features. These network metrics features were calculated
by applying SNA techniques on data capturing the interactions between users within a
financial system.

The unified approach was applied on a combined feature set including both transactional
and network metrics features. Performance analysis was conducted on the results of the
unified approach, in order to determine whether the incorporation of the network metric
features had a important impact on the ability of the autoencoder to detect anomalies in
a transactional context.

The performance evaluation indicated that a favourable balanced score was achieved af-
ter introducing the network metric features, which assisted in the model reporting a low
number of false positives. Applying SHAP to the model outputs showed that five of the
network features appeared in the top ten list of contributing features. The most impor-
tant of these network metric features were the PageRank, degree centrality, and number
of cliques features. It was found that the network metrics features were considerably
more complex to generate in comparison with the transactional features however, and this
complexity needs to be catered for in any real-world application of the approach.

Appendix A

The table presented as Appendix A details the first twenty rows of the network metrics
features data. A column index is used instead of a column name to conserve space in the vi-
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sualisation. While the data appears to be sparsely populated, there is enough information
in the network metrics features to help the autoencoder detect anomalous transactions.
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Table 4: First 20 samples of the network metrics features

0 1 2 3 4 5 6 7 8 9 10 11 12 13

0 0 0 0 0 0 0 0 0 0 0 0 0 0.06
0 0 0 0 0 0 0 0 0 0 0 0 0 0.07
0 0 0 0 0 0 0 0 0 0 0 0 0 0.08
0 0 0 0 0 0 0 0 0 0 0 0 0 0.09
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0.33 0.08 0.06 0 0.72 0 0 0.63 0.30 1 0.15 0 0.002 0.01
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0.06
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0.06
0.27 0.08 0.04 0 0.72 0 0 0.6 0.2 1 0.12 0 0.01 0.02
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0.06
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0.06
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0.06
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0.06
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0.6
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0.06
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
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