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Abstract

With the increasing need to solve problems faster and with fewer resources, great empha-
sis is placed on optimisation. Many real-world problems require addressing more than one
objective that are in conflict, as well as taking into consideration a number of practical restric-
tions or constraints. The multi-objective optimisation using the cross-entropy method (MOO
CEM) algorithm is one of many algorithms that addresses the need to solve multi-objective
problems effectively, but it has a number of limitations. This paper explores methods of
enhancing the MOO CEM algorithm in order to improve the efficiency and increase the func-
tionality of the algorithm, allowing for it to be applied to additional classes of problems.
Three possible methods of enhancement were identified: using the beta distribution to im-
prove sampling, adding functionality to solve constrained problems and, lastly, implementing
a non-dominated sorting algorithm to solve problems with more than two objectives. The
new algorithms incorporating these enhancements were developed and tested on benchmark
problems. Subsequently, the results were analysed using standard performance indicators
and compared to results produced by the original MOO CEM algorithm. The findings of this
study indicate that using the beta distribution improves sampling and therefore algorithm
efficiency. Methods of handling constraints and solving problems with an increased num-
ber of objectives were implemented successfully. Based on these results, a final algorithm
implementing the enhancements is presented.

Key words: Cross-entropy method, multi-objective optimisation

1 Introduction

In recent times, increasing emphasis is being placed on optimisation. Due to time restric-
tions and financial demands, problems must be solved and decisions made as quickly as
possible with as few resources as possible. Banks are reliant on real-time predictive models

†Department of Industrial Engineering, University of Stellenbosch, South Africa, email:
veetrankle@gmail.com

†Corresponding author: Department of Industrial Engineering, University of Stellenbosch, South Africa,
email: jb2@sun.ac.za

http://dx.doi.org/10.5784/38-2-765

177



when clients apply for loans, credit card fraud must be identified as it occurs, self-driving
cars must identify objects and react to them without delay and pacemakers must monitor
heartbeat and respond immediately in order to prevent tragedy. These problems can be
considered optimisation problems.

When solving optimisation problems, a number of goals (or objectives) and restrictions
must be taken into account. When a single best solution does not exist, a solution must
be selected from a number of good solutions. Given time and monetary restrictions, not
all solutions to a problem can be considered. Problems such as these, which require taking
into account more than one requirement, are termed multi-objective optimisation problems
(MOPs). Conversely, problems which only consider one single objective and aim to find
the single best solution, are known as single objective optimisation problems (SOPs).

To solve MOPs, a variety of types of multi-objective optimisation (MOO) algorithms have
been developed over the years, many falling within the genetic algorithm (GA) category.
Some of the best-known GAs include the Vector Evaluated Genetic Algorithm (VEGA),
developed by David Schaffer in the 1980s, the Non-dominated Sorting Genetic Algorithm
(NSGA) developed by Srinivas and Deb, NSGA-II and NSGA-III, Niched-Pareto Genetic
Algorithm (NPGA), Multi-Objective Genetic Algorithm (MOGA), Strength Pareto Evo-
lutionary Algorithm (SPEA) and SPEA2 and Pareto Archived Evolution Strategy (PAES)
[4].

Some MOO algorithms were developed through the extension of single objective optimi-
sation (SOO) algorithms to MOO problems. One such algorithm is the multi-objective
optimisation using the cross-entropy method (MOO CEM) algorithm developed in [1].
Through the application of the principles of the cross-entropy method (CEM) to MOPs,
[1] created an algorithm with the ability to solve multi-objective deterministic, continuous
and dynamic, stochastic MOPs. The MOO CEM algorithm was found to be compara-
ble with the likes of OptQuest® on the problems evaluated and outperformed Matlab®’s
MOO GA on the same evaluation set. The algorithm, however, has limitations: it has only
been applied to MOO problems with exactly two objectives, and its constraint-handling
was absent.

This paper reports on improvements of the MOO CEM algorithm to handle tri-objective
problems while making its sampling more efficient by using alternative distributions, and
adding constraint-handling capabilities. To begin with, a brief literature study of multi-
objective optimisation, the cross-entropy method (CEM) and the MOO CEM algorithm
are presented, whereby deficiencies in the algorithm are identified. Based on these, three
methods of enhancements are suggested and three algorithms are presented to address
each enhancement. Thereafter, the newly developed algorithms were tested on a set of
standard benchmark problems and results are discussed. In light of the results, a final
algorithm incorporating the successful methods of enhancement is proposed, and the paper
is concluded with some final remarks and suggestions for future research.
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2 MOO, the MOO CEM algorithm and areas of enhance-
ment

MOO algorithms differ from SOO algorithms in that, while the goal of SOO algorithms is
to find the single best solution to a problem, MOO algorithms require taking into account
more than one objective of which some are in conflict, and making trade-offs between
conflicting objectives.

2.1 MOO problem formulation

A MOO problem (MOP) can be mathematically formulated as [6]:

Minimise or Maximise

f(x) = fi(x1, x2, . . . , xn), i = 1, . . . ,K, (1)

subject to
gj(x) ≥ 0, j = 1, . . . , q, (2)

and
hl(x) = 0, l = 1, . . . , p, (3)

with

x ∈ Rn,

where fi represents the K objective functions to be minimised or maximised, gj(x) ≥ 0
are the q inequality constraints and hl(x) = 0 are the p equality constraints.

For many MOPs, no single optimal solution exists, but rather a set of good solutions
belonging to the Pareto-optimal solution set. By considering the solutions in the Pareto-
optimal solution set, an informed decision can be made when selecting the ‘best’ solution
[13].

Consider purchasing a vehicle as an example of a bi-objective optimisation problem: a
vehicle must be selected based on cost and safety rating. The first objective, cost, should
be minimised, while the second objective, safety rating, should be maximised. Generally,
safer vehicles tend to be more expensive. Therefore, by considering all solutions in the
Pareto-optimal solution set, the best vehicle can be selected by considering both objec-
tives simultaneously. The Pareto-optimal solution set is based on the principle of Pareto
Dominance. Pareto Dominance is defined as

a ≻ b (a dominates b) iff f(a) > f(b),

a ⪰ b (a weakly dominates b) iff f(a) ≥ f(b),

a ∼ b (a is indifferent to b) iff f(a) ≱ f(b) ∧ f(b) ≱ f(a),

where a and b are two objective vectors [17].

If solution vector a is found to dominate solution vector b, a is a non-dominated solution
vector. This implies that a is optimal and cannot be improved in one objective without
worsening the solution in at least one other objective. These solutions are referred to as
Pareto-optimal [17].
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2.2 Cross-entropy method

The cross-entropy method (CEM) was developed by Rubinstein and Kroese [12] based on
the Kullback-Leibler or cross-entropy (CE) distance. This adaptive importance sampling
algorithm was first used to estimate the probability of rare events. It was then extended to
combinatorial optimisation problems by utilising the cross-entropy divergence as a measure
of closeness between two distributions. In essence, a very small probability (rare-event)
exists of finding an optimal solution through naive, random sampling. By using the cross-
entropy method, the distributions from which the points are sampled can be adjusted,
so that the probability of the rare event occurring is increased. Over time, the sampling
distribution converges to a distribution concentrated around optimal (or near-optimal)
solutions [12].

The cross-entropy method is iterative, each iteration consisting of two distinct parts [12]:

1. Generate a random data sample according to a specified mechanism.

2. Update the parameters of the random mechanism based on the data to produce a
better sample in the next generation.

Based on these two iterative steps, Algorithm 1 shows the main cross-entropy algorithm
for continuous optimisation.

Algorithm 1 Cross-entropy Algorithm for continuous optimisation

1: Choose some v̂0 for the density h(·;v). Set t = 1
2: Generate a sample X1, . . . ,XN from the density h(·; v̂t−1) and compute the (1 − ϱ)-

quantile γ̂t of the performances according to (4) below
3: Use the sample X1, . . . ,XN and solve the stochastic program in (5) below. This

solution is vt below
4: Smooth the vector vt using the expression in (6)
5: If, for some t ≥ δ, say δ = 5, γ̂t = γ̂t−1 = · · · = γ̂δ then stop, otherwise set t ← t + 1

and return to Step 2

v represents a reference parameter vector and γ is the cross-entropy optimisation rare-
event threshold value. X is the decision vector (X1, . . . , Xn) (initially random) and γt is
updated adaptively according to

γ̂t = f([(1−ϱ)N ]), (4)

where ϱ is the user-specified rare-event threshold value and is typically chosen to be 10−2.

vt is calculated by solving the stochastic program

max
v

D̂(v) = max
v

1

N

N∑
i=1

I{f(X≥γ̂t)} lnh(Xi;v). (5)

The parameter vector v is smoothed using the smoothing function

v̂t = ωṽt + (1− ω)v̂t−1 (6)
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where ω is a smoothing constant in the range 0 − 1 (typically chosen to be between 0.6
and 0.9).

2.3 The MOO CEM algorithm

Based on the principles of the CEM developed by Rubinstein and Kroese [12], Bekker [1]
created the MOO CEM algorithm. Bekker [1] first applied the CEM to SOO benchmark
problems, and then extended the algorithm to MOPs to create Algorithm 2 below.

Algorithm 2 MOO CEM Algorithm

1: Set Elite = ∅, t← 1, k ← 1
2: Initialise variable vectors Xi = ∅, 1 ≤ i ≤ D, and compute initial objective values
3: For each decision variable xi, 1 ≤ i ≤ D initialise a histogram class vec-

tor Ci = {ci1, ci2, . . . , ci(r+2), ci(r+2)+1} and histogram frequency vector Ri =
{τi1, τi2, . . . , τi(r+1), τi(r+2)}

4: Set i = 1
5: Set κ = 0
6: Increment κ
7: for each frequency element τiκ in Ri

8: Generate a class-based ṽ′ in the range [ciκ ci(κ+1))
9: Generate a subsample Y according to pdf ϕi(xi ṽ’)

10: with xiϵ[ciκ, ci(κ+1)) and |Y| = τiκ, 1 ≤ κ ≤ r + 2
11: Append Y to Xi

12: end for
13: If κ < r + 2 , return to Step 6
14: Invert the histogram counts with probability ph
15: Increment i
16: If i ≤ D, return to Step 5
17: Compute the NK objective function values using Xi, 1 ≤ i ≤ D
18: Rank the objective function values using the Pareto ranking of Algorithm 3 with a

relaxed ρE = 2 to obtain an updated elite vector Elite
19: Form new histogram class vectors Ci and histogram frequency vectors Ri based on

Elite , 1 ≤ i ≤ D
20: Use the values in Elite and compute ṽ′ for all i, 1 ≤ i ≤ D
21: Smooth the vectors ṽ′ for all i, 1 ≤ i ≤ D, using (6)
22: If all σit > ϵc or less than the allowable number of evaluations have been done, incre-

ment t and reiterate from Step 4
23: Rank the elite vector Elite using the Pareto ranking of Algorithm 3 with ρE = 1.
24: k ← k + 1
25: If k is smaller than the allowable number of loops, return to Step 2
26: Rank the elite vector Elite using the Pareto ranking of Algorithm 3 with ρE = 0 to

obtain the final elite vector

The value ϵc is a common threshold (a small number) implying that if a value does not
change by an amount greater than this threshold ϵc, the algorithm has reached a steady-
state and further iterations would most likely not improve the solution. D represents
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the number of decision variables, K is the number of objectives and N is the number of
solutions.

The MOO CEM algorithm uses a dominance-based ranking algorithm [7] (see Algorithm
3) as a means of finding the set of best solutions, or Pareto-optimal solution set.

Algorithm 3 Pareto ranking algorithm (minimisation) implemented in MOO CEM

1: Input: working matrix W with N rows and D + K + 1 columns, and user-selected
threshold ρE

2: j ← D + 1
3: Sort the working matrix W with the values in column j in descending order
4: rp ← 1
5: rq ← 1
6: If W(rp, j +1) ≥W(rq +1, j +1), increment the rank value ρrp in W(rp, D+K +1)
7: rq ← rq + 1
8: If W(rp, D +K + 1) < ρE and rq < N , return to Step 6
9: rp ← rp + 1

10: If rp < N , return to Step 5
11: j ← j + 1
12: If j < D +K − 1, return to Step 3, otherwise return the rows in W with rank value

not exceeding ρE as the weakly or non-dominated vector Elite

ρE represents the number of the Pareto set with 0 being the set of optimal solutions,
and therefore, the first Pareto set. ρE = 1 represents the second Pareto set with the
second-best solutions.

Bekker [1] achieved good results when the MOO CEM algorithm was tested on a num-
ber of benchmark as well as practical problems. These problems included deterministic
and continuous problems, as well as dynamic, stochastic problems. The practical prob-
lems included the buffer allocation problem (BAP) and variants thereof, a reconfigurable
manufacturing system, an extrusion equipment design problem and CO2 gas management
problem at a mine. The algorithm achieved good results for a limited number of iterations,
achieving proximity to the true Pareto front, while maintaining diversity. The algorithm
was then compared to two standard algorithms: Matlab® MOO GA and OptQuest®.
MOO CEM proved to be competitive when compared to OptQuest® and outperformed
Matlab® MOO GA on a number of benchmark problems.

3 Methods of enhancement and algorithm development

Considering the quality of the solutions produced by the MOO CEM algorithm, it seems
only natural to further improve the performance of the algorithm and to extend the func-
tionality of the algorithm. Currently, the algorithm is unable to accommodate problems
with side-constraints, and can only solve problems with two objectives (due to the manner
in which the ranking method is implemented). It was also hypothesised that the sam-
pling method could be improved by considering a different distribution. Three methods
of enhancement were identified:
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1. Improve the sampling method of the MOO CEM algorithm by using the beta dis-
tribution, rather than truncated normal distributions.

2. Extend the capability of the existing MOO CEM algorithm to include functionality
to solve side-constrained problems.

3. Extend the scope of the existing MOO CEM algorithm to include functionality to
solve problems with three objectives.

These three methods are subsequently discussed in separate subsections.

3.1 Proposed MOO CEM-Beta algorithm

Many probability distributions exist, some of the most widely-used include: the Gaussian
(or normal) distribution and modified versions thereof such as the truncated normal dis-
tribution, the uniform distribution, the chi-square distribution, the binomial distribution,
the Poisson distribution and the beta distribution. The MOO CEM algorithm in its orig-
inal form uses truncated normal distributions to provide values for the decision variables.
The decision variable distributions (truncated normals) converge in central tendency and
reduced variance to yield the optimal values for the decision variables. It was inferred that
more ‘flexible’ distributions might increase the performance of the MOO CEM algorithm
because the optimum shapes of the decision variable distributions can be better described.

The beta distribution is extremely versatile and can approximate many other continuous
distributions using only two parameters: α and β. These two parameters specify whether
the distribution is symmetrical and where the distribution’s mode falls within the range
of the distribution. The beta distribution is continuous and defined over the interval (0, 1)
[8]. When α and β are positive integers, calculating the beta distribution is relatively com-
putationally inexpensive. However, when α and β are non-integer, evaluating the gamma
function found in the beta distribution becomes considerably more computationally ex-
pensive.

Figure 1 shows the shape of the beta distribution for different values of α and β. When α
and β are both equal to 1, the distribution simplifies to a uniform distribution (line labelled
‘a’). When α and β are equal and α + β is large enough, the shape of the distribution
is reminiscent of that of a normal distribution (curve labelled ‘b’). When α and β are
between 0 and 1, the distribution resembles a U-shaped distribution where the outcomes
are most likely to occur at the extremes of the range (curve labled ‘c’). When α is less than
1 and β is greater than 1, the distribution resembles an exponential distribution (curve
labled ‘d’). When α is greater than β, the distribution is skewed to the right (curve labled
‘e’) and vice versa. Let X be a beta distributed random variable. The range of the beta
distribution can be extended from (0,1) to a range (a, b), a < b, by scaling a new variable
Y = a+X(b−a), therefore X = (Y −a)/(b− c). For further detail pertaining to the beta
distribution, see [9].

Based on the MOO CEM algorithm (Algorithm 2), the MOO CEM-Beta algorithm was
developed, replacing the truncated normal distributions used when sampling decision vari-
able values, with appropriately parameterised beta distributions. Algorithm 4 replaces
steps 8− 11 in the original MOO CEM algorithm.
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Figure 1: The beta density for different values of α and β

Algorithm 4 MOO CEM-Beta: Algorithm to sample from beta distribution to be im-
plemented in MOO CEM algorithm

1: Find the Elite solutions which fall into the range [ciκ ci(κ+1))
2: if one or no unique Elite solutions fall within this range
3: Set αiκ = 1
4: Set βiκ = 1
5: else
6: Calculate a class based αiκ and βiκ of the distribution of the corresponding Elite

solutions over the normalised range 0− 1
7: end if
8: Generate a subsample Y according to the pdf beta(αi,βi) with xi ϵ [ciκ ci(κ+1)) and
|Y| = τiκ, 1 ≤ κ ≤ r + 2

9: Append Y to Xi

The parameters required by the beta distribution (α and β) are calculated for each sample
set using the elite solutions which fall within the allowed decision variable ranges. Calcu-
lating α and β requires at least two points. If only one or no unique elite solutions fall
within the ranges, αi and βi are both set to 1, assuming a uniform distribution across
the range. Building the initial solution set for the first iteration of the algorithm follows
the same logic: assigning both α and β a value of 1, so a uniform distribution is assumed
across the decision variable ranges.

As the beta distribution is defined over the range 0− 1, the range of the histogram class
must be normalised when calculating the values of αi and βi. This is achieved using the
upper and lower limits of the histogram class.
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In the MOO CEM algorithm, the distribution parameter vectors are smoothed and a
stopping criterion is calculated in steps 20 − 22. This is replaced with the smoothing of
the α and β parameters in a similar fashion, using (6). The stopping criterion is calculated
using the difference between the values of the α and β for the current iteration and the
values thereof in the previous iteration. If α and β do not change significantly from one
iteration to the next, the algorithm is assumed to have reached a steady-state and there
would be no benefit in running the algorithm for further iterations. These updated steps
are contained in Algorithm 5 and intend to replace steps 20 − 22 of the MOO CEM
algorithm.

Algorithm 5 Algorithm to update α and β in the MOO CEM-Beta algorithm

1: Use the values in Elite and compute αit and βit for all i, 1 ≤ i ≤ D
2: Smooth the vectors αit and βit using (6)
3: Calculate the differences between αit and αit−1; and βit−1 and βit

4: If all changes in αi and βi exceed ϵc, or less than the allowable number of evaluations
have been done, increment t and reiterate from Step 4 of the original MOO CEM
algorithm

3.2 Proposed MOO CEM-Constraint algorithm

At a high level, two types of MOO problems exist: constrained and unconstrained prob-
lems. (2) and (3) represent the constraints which apply to an unconstrained problem
formulated by (1). Constraints add a dimension of complexity to a MOO problem, as
they limit the feasible region of the decision variables [4]. Additional challenges arise
from the interference among constraints and the relationships among decision variables,
constraints and the objective functions [15].

Many different methods have been developed to solve constrained MOPs, one of the sim-
plest methods being the removal of infeasible solutions post-processing. Once all solutions
have been created, the constraints are applied and those solutions which do not fall within
the feasible region are simply discarded. This method may be simple, but could result in
the removal of too many solutions, leaving the algorithm with little direction for the next
iteration and, ultimately, a poor Pareto solution set [4].

Other popular constraint-handling methods include [3]:

• Penalty functions,

• Special representations and operators,

• Repair algorithms,

• Separation of objectives and constraints, and

• Hybrid methods.

This paper focuses specifically on the Penalty Function method, as this is a well-researched
and widely accepted constraint-handling method and an appropriate method to be applied
to the MOO CEM algorithm.
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Woldesenbet et al. [15] proposed a constraint-handling multi-objective evolutionary op-
timisation algorithm which uses the Penalty Method. The algorithm extends the single
objective constraint-handling evolutionary algorithm developed in [14] to MOO problems.
The Constrained Multi-objective Evolutionary Algorithm (CMOEA) developed in [15]
calculates the penalty according to the size of the solution’s constraint violation, defined
as

Fi(x) = di(x) + pi(x), (7)

where i is an index referring to each objective function.

The penalty has two components: a distance measure di(x) and an adaptive penalty pi(x).
Let v(x) be the constraint violation, this is made precise below. The distance measure is
calculated using Algorithm 6, based on

di(x) =

{
v(x), if rf = 0,√
f̃i(x)2 + v(x)2) otherwise, (8)

where

rf =
number of feasible solutions in the current population

population size
. (9)

rf represents the percentage of feasible solutions in the current population. If there are no
feasible solutions in the current population, the distance value is the constraint violation
v(x). However, if some feasible solutions exist, the normalised objective function and
constraint violation are used to calculate the distance. If a solution is feasible, the distance
is simply the normalised objective function.

The constraint violation v(x) is the normalised violation of each constraint and is calcu-
lated according to

v(x) =
1

m

m∑
j=1

cj(x)

c jmax

, (10)

where

cj(x) =

{
max(0, gj(x)) j = 1, . . . , q,
max(0, hl(x)− δ) l = 1, . . . , p,

and

c jmax = max
x

cj(x).
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The equality constraints (with the format (3)) are converted to inequality constraints (as
per (2)) by the addition of the tolerance value δ. If a solution violates a constraint, cj
is the value (or size) of the j-th equality (or l-th inequality) constraint violation. If the
constraint is not violated, cj is simply 0. c jmax is the maximum possible violation of the
j-th (or l-th) constraint, which allows for the normalisation according to (10). gj(x) and
hl(x) are the equality and inequality constraints as per (2) and (3) in the MOO problem
definition.

CMOEA requires each solution for each objective i to be normalised according to (11),
where f̃i(x) is the normalised objective value of i and f i

min and f i
max refer to the minimum

and maximum values of objective i, respectively. Normalisation is determined by

f̃i(x) =
fi(x)− f i

min

f i
max − f i

min

, (11)

where

f i
min = min

x
fi(x),

and

f i
max = max

x
fi(x).

The penalty value pi(x) is calculated according to Algorithm 7, based on

pi(x) = (1− rf )Xi(x) + rfYi(x), (12)

where

Xi(x) =

{
0, if rf = 0,
v(x), otherwise,

and

Yi(x) =

{
0, if x is a feasible solution,

f̃i(x), if x is an infeasible solution.

The penalty value pi(x) consists of two penalty values: Xi, which is based on the objective
value, and Yi, which is based on the constraint violation.

Woldesenbet et al. [15] compared the CMOEA algorithm to the NSGA-II and Ray-Tai-
Seow algorithms for 14 different benchmark problems, using hypervolume as the perfor-
mance indicator. Results indicated that the CMOEA algorithm performs better, providing
a well-distributed, consistent Pareto set for all test problems.
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Algorithm 6 Distance Measure of the constraint-handling multi-objective evolutionary
optimisation algorithm

1: if rf = 0 then
2: for i = 1 to M do ▷ Number of objectives
3: for k = 1 to N do ▷ Population size
4: di(xk)← v(xk)
5: end for
6: end for
7: else
8: for i = 1 to M do
9: for k = 1 to N do

10: f̃i(xk)←
fi(xk)−f i

min

f i
max−f i

min

11: di(xk)←
√

f̃i(xk)2 + v(xk)2

12: end for
13: end for
14: end if

Algorithm 7 Penalty Value of the constraint-handling multi-objective evolutionary op-
timisation algorithm

1: for i = 1 to M do ▷ Number of objectives
2: for k = 1 to N do ▷ Population size
3: if rf = 0 then
4: Xi(xk)← 0
5: else
6: Xi(xk)← v(xk)
7: end if
8: if v(xk) = 0 then
9: Yi(xk)← 0

10: else
11: Yi(xk)← f̃i(xk)
12: end if
13: pi(xk)← (1− rf )Xi(xk + rfYi(xk))
14: end for
15: end for

Both the method of discarding solutions and the Penalty Method were applied to the
MOO CEM algorithm as a method of solving constrained problems. It was found that
using the simple discarding method caused too many solutions to be ignored, resulting in
the algorithm not converging to a good solution set. Therefore, only the Penalty Method
is presented next.

Algorithm 8 describes the penalty method in [15] and should update the objective function
values to include the dynamic penalty. This was achieved by replacing steps 17 and 18 of
the MOO CEM algorithm with steps 1–6 of the proposed algorithm and replacing ranking
steps as indicated in Algorithm 8.
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Algorithm 8 Algorithm to solve constrained problems with the MOO CEM algorithm
using the dynamic penalty method

1: for each constraint q do
2: Calculate the distance measure di of each solution according to (8)
3: Calculate the penalty pi of each solution according to (12)
4: Calculate the final modified objective value of each solution using (7)
5: end for
6: Rank the final modified objective values using the Pareto ranking of Algorithm 3 with

a relaxed ρ = 2 to obtain an updated elite vector Elite
7: Continue with steps 19–22 of the MOO CEM algorithm
8: Rank the Elite vector Elite on the final modified objective values using the Pareto

ranking of Algorithm 3 with ρ = 1
9: Continue with steps 24–25 of the MOO CEM algorithm

10: Rank the elite vector Elite on the original objective values using the Pareto ranking
of Algorithm 3 with ρ = 0 to obtain the final Elite vector

It should be noted that when ρ is relaxed (steps 6 and 8), the solutions are ranked according
to the final modified objective value formulation (which includes the penalty value), not
the original objective value. This is to ensure that not only solutions which fall within
the feasible region, but also good solutions which lie close to the feasible region (solutions
with small penalties) are added to the Elite set. When the Elite solutions are ranked for
the last time to establish the final set of Elite solutions (ρ = 0 in Step 10), solutions are
ranked according to the original objective value. This ensures that no infeasible solutions
exist within the final set of Elite solutions.

The execution of this penalty method is more computationally expensive and time-
consuming than the first constraint method discussed (the method of discarding all infea-
sible solutions), as the maximum of each constraint violation and minimum and maximum
values of each objective must be calculated. However, the benefit of this method is that
“good” solutions which do not adhere to the constraints, but lie close to the feasible re-
gion, are added to the elite set of each iteration. These infeasible solutions help “guide”
the solution set through the iterations, but are excluded from the final elite set.

3.3 Proposed MOO CEM-ENS algorithm

The MOO CEM algorithm was improved further by adding a more efficient sorting and
selection algorithm. In the field of MOO, sorting and selection algorithms are important
for finding the best members in a population and many such algorithms have been devel-
oped. Inefficiency of a sorting and selection algorithm will be detrimental to the overall
performance of a MOO algorithm. One of the best-known sorting and selection algorithms
is the Pareto-ranking algorithm [7] which was originally implemented in the MOO CEM
algorithm. The method was implemented in such a manner that only problems with two
objective functions can be solved efficiently, according to Algorithm 3. This method has
a complexity of O(KN2).

Since the algorithm in [7] was published in 1989, a number of faster sorting algorithms

189



have been developed, including Efficient Non-Dominated Sort (ENS) [16]. ENS performs
better at lower dimensions (objectives fewer than five) than other non-dominated sorting
algorithms. Since one of the objectives of this study is to add the functionality to efficiently
solve problems with three objectives to the MOO CEM algorithm, ENS was selected as
a suitable non-dominated sorting algorithm for this case and will be discussed next; the
pseudo-code is presented in Algorithm 9.

Algorithm 9 Efficient Non-dominated Sort algorithm

1: Input: population P
2: Output: the Pareto subsets F
3: F = empty;
4: Sort P in an ascending order of the first objective value;
5: for all P [n] ∈ sorted P
6: Assign solution P [n] into F using the Sequential Search Strategy (Algorithm 10)

or the Binary Search Strategy;
7: end for
8: return F ;

ENS has been developed with two different search strategies: sequential and binary search
strategies. The results in [16] showed that the sequential search strategy had a shorter
runtime than the binary search strategy for problems with more than two objectives.
Since the focus of the ENS algorithm implementation will be to solve problems with three
objectives, only the sequential search strategy will be explored.

The Sequential Search Strategy (SS) used in the ENS algorithm is presented in Algorithm
10. For a solution pn, SS checks if a solution which dominates pn exists in the first Pareto
set. If not, solution pn is assigned to the first Pareto set. Otherwise, pn is assigned to
the second Pareto set. The same check is then applied to the second Pareto set and this
process is repeated until pn is assigned to a Pareto set (existing or new).

No changes or updates were required in the implementation of this algorithm. The ENS
was implemented according to Algorithms 9 and 10. This algorithm replaces Algorithm
3 used for non-dominated sorting in the MOO CEM algorithm and should be used for
Pareto ranking in steps 17, 22 and 25 of the MOO CEM algorithm (Algorithm 2).

4 Algorithm testing and results

In order to effectively assess the difference in performance of the adapted algorithms, a
number of tests were conducted on benchmark problems. In the case of the beta distribu-
tion enhancement (the MOO CEM-Beta algorithm), the algorithm was tested on a number
of the same benchmark problems on which the original MOO CEM algorithm was tested.
This allowed for the algorithm performance to be compared on the same basis. For the
addition of the constraint-handling and increased number of objectives techniques, the
MOO CEM-Constraint and MOO CEM-ENS algorithms were tested on some standard
benchmark problems on which the original algorithm could not be tested, as the original
MOO CEM did not have the functionality to solve these types of problems. Instead, stan-
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Algorithm 10 Sequential Search Strategy for finding the front of a solution used by the
Efficient Non-dominated Sort algorithm

1: Input: solution P [n], the set of fronts F .
2: Output: the front number of solution P [n].
3: x = size(F ); the number of fronts having been found
4: k = 1; the front now checked
5: while true do
6: Compare P [n] with the solutions in F [k] starting from the last one and ending

with the first one;
7: if F [k] contains no solution dominating P [n] then
8: return k; move P [n] to F [k]
9: break;

10: else
11: k ← k + 1
12: if k > x then
13: return x+ 1; {move P [n] to a new front}
14: break;
15: end if
16: end if
17: end while

dard indicators such as hyperarea and the epsilon indicator were used as indication of the
performance of the algorithms.

4.1 Benchmark problems and performance indicators

During development, the MOO CEM algorithm was tested on (amongst others) the stan-
dard MOP test suite: MOP1, MOP2, MOP3, MOP4 and MOP6 as developed by Coello
[3]. As such, the MOO CEM-Beta algorithm was tested on the same problem set and three
performance indicators were used to compare the performance thereof to the original MOO
CEM algorithm: hyperarea, runtime and the Pareto set size.

Hyperarea is a Pareto compliant indicator, which measures the difference in area between
a set of Pareto optimal solutions found by an algorithm compared to the hyperarea of the
true Pareto-optimal solution set. It relies on a reference point outside of the maximum of
the objective function solution space. The term Pareto compliant is formally defined as:
An indicator I: Ω → R is Pareto compliant if for all A,B ∈ Ω : A ⪯ B ⇒ I(A) ≥ I(B),
assuming that greater indicator values correspond to higher quality (otherwise A ⪯ B ⇒
I(A) ≤ I(B)) [5]. This type of indicator was selected, as Pareto-compliant performance
indicators are more reliable than Pareto non-compliant indicators with respect to algorithm
solution set comparison.

In order to draw a fair comparison between the two result sets, a one-tailed hypothesis
test with a significance level of α = 0.05 was used. This test is formulated such that the
alternative hypothesis indicates that one data set has a larger mean than the other. The
objective is to determine whether or not the enhanced algorithm performs better than the
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original MOO CEM algorithm. This is done using the following metrics: the hyperarea
(two-dimensional cases) and epsilon indicator, runtime and the size of the Pareto set. In
the case of hyperarea, the aim is to maximise it. For the runtime metric, the algorithm with
the shortest runtime is superior. The algorithm which produces the largest set of Pareto
solutions is deemed the better algorithm. These three indicators were not considered in
isolation, as a fast algorithm with a poor solution set is of little value, while implementing
an extremely slow, but accurate algorithm, might not be practical.

As the performance of the MOO CEM-Constraint and MOO CEM-ENS algorithms could
not be compared to original the MOO CEM algorithm, two Pareto compliant indicators
were selected to assess the performance of the MOO CEM-Constraint and MOO CEM-
ENS algorithms, through comparison of the generated solution set to the true solution
set: hyperarea and the epsilon indicator (ϵ). In cases where a solution had more than two
dimensions, indicating that hypervolume should be used, rather than hyperarea, and the
hypervolume could not be calculated due to complexity of the solution set shape, only
the epsilon indicator was used to compare the generated solution set to the true solution
set. Runtimes and Pareto set sizes were recorded for reference. The performance of MOO
CEM-Constraint was tested on side-constrained MOPs: MOP-C1, MOP-C2 and MOP-C4
and the MOO CEM-ENS algorithm on problems with three objectives: MOP5, MOP7
and MOP-C3 (which includes side-constraints).

500 simulations were completed for the testing of each algorithm on each test problem
and a population size of 200 was specified. The MOO CEM-Beta algorithm was allowed
to run for a maximum number of 15 000 evaluations, while for the MOO CEM-Constraint
and MOO CEM-ENS algorithms the maximum number of evaluations was increased to
30 000. This was due to increased complexity of the test problems, requiring additional
evaluations for the algorithms to converge to an acceptable solution.

4.2 MOO CEM-Beta algorithm results

The average hyperarea, execution time and Pareto set size results of each test are listed
in Table 1 for reference. The results of the one-tailed t-test are shown in Table 2, based
on 500 simulations.
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Table 1: MOO CEM and MOO CEM-Beta results on some standard benchmark problems
MOO CEM-Beta MOO CEM

Test
Problem

Reference
Hyperarea

Mean
Hyperarea

Mean
Runtime (s)

Mean
Pareto Set

Size

Mean
Hyperarea

Mean
Runtime (s)

Mean
Pareto Set

Size

MOP1 14.132 8.006 0.360 1728.874 13.771 1.216 5999.314
MOP2 0.323 0.322 0.760 896.958 0.322 0.284 888.728
MOP3 34.338 34.324 0.203 619.614 34.319 0.280 575.770
MOP4 28.918 27.935 0.508 193.748 28.136 0.196 223.888
MOP6 0.777 0.774 0.624 844.87 0.773 0.252 801.44
ZDT1 0.767 0.704 2.542 476.50 0.695 6.772 464.600
ZDT2 6.833 6.772 2.244 289.430 6.189 4.377 310.150
ZDT3 1.040 0.950 1.800 163.92 0.587 2.243 167.038

The t-tests indicate that, for problems with a smaller number of decision variables (MOPs
1-4), the MOO CEM-Beta algorithm does not outperform the MOO CEM algorithm in
terms of maximising the hyperarea. In fact, by considering the mean hyperareas alongside
the t-test results for MOP4 and MOP6, it is clear that the quality of the MOO CEM algo-
rithm solutions exceed those produced by the MOO CEM-Beta algorithm. However, for
MOPs ZDT1, ZDT2 and ZDT3, which each have 30 decision variables, MOO CEM-Beta
outperforms the MOO CEM algorithm and produces solutions with a better hyperarea.
MOO CEM-Beta also shows superior performance for MOP6 regarding the hyperarea
performance indicator.

With respect to runtime, the MOO CEM-Beta algorithm has faster average execution
times for five out of the eight problems (62.5%). The size of the MOO CEM algorithm
Pareto sets is generally larger (for 75% of problems) than the size of the Pareto sets
produced by the MOO CEM-Beta algorithm.

Considering these results, it can be concluded that the MOO CEM-Beta algorithm pro-
duces similar results to the MOO CEM algorithm, generally with a shorter runtime. Fur-
thermore, the MOO CEM-Beta algorithm delivers superior results to the MOO CEM
algorithm for problems with a large number of decision variables.

Figures 2–4 display the MOO CEM and MOO CEM-Beta approximate Pareto sets and
the true Pareto sets. Final approximate Pareto sets were recalculated after the completion
of the 500 simulations. The Pareto sets produced by the MOO CEM and MOO CEM-
Beta are almost indistinguishable for most test problems, but the superiority of the MOO
CEM-Beta algorithm can be clearly seen in test problems ZDT1–3.

4.3 MOO CEM-Constraint algorithm results

The tests conducted on the MOO CEM-Beta algorithm showed promising results. There-
fore, the MOO CEM-Beta algorithm (rather than the original MOO CEM algorithm) was
enhanced using both constraint methods (the method of discarding infeasible solutions
and the dynamic penalty method). This enhancement gives the algorithm the ability to
solve problems with side-constraints. Four standard side-constraint problems (MOP-C1,
MOP-C2 , MOP-C3 and MOP-C4) were selected to test the performance of the algorithm.
The results of MOP-C3 are discussed in the subsequent section, as this problem has three
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Table 2: One-tailed t-test results of MOO CEM compared MOO CEM-Beta results on some
standard benchmark problems

Hyperarea Runtime Pareto Set Size
Test

Problem
t∗ Outcome t∗ Outcome t∗ Outcome

MOP1 -18.647 No reject 43.578 Reject -46.980 No reject
MOP2 0.180 No reject -68.593 No reject 1.008 No reject
MOP3 0.333 No reject 23.002 Reject 6.887 Reject
MOP4 -38.637 No reject -43.746 No reject -7.054 No reject
MOP6 2.529 Reject -64.186 No reject 7.043 Reject
ZDT1 2.631 Reject 21.804 Reject 1.878 No reject
ZDT2 7.800 Reject 34.014 Reject 1.326 No reject
ZDT3 17.161 Reject 12.832 Reject 1.570 No reject
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Figure 2: MOO CEM and MOO CEM Beta Pareto sets compared to the true Pareto set for test
problems MOP1, MOP2 and MOP3
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Figure 3: MOO CEM and MOO CEM Beta Pareto sets compared to the true Pareto set for test
problems MOP4, MOP6 and ZDT1
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Figure 4: MOO CEM and MOO CEM Beta Pareto sets compared to the true Pareto set for test
problems ZDT2 and ZDT3

objective functions, which cannot be solved by the MOO CEM-Constraint algorithm, as
MOO CEM-Constraint was based on MOO CEM which was not implemented with the
functionality to solve problems with more than two objectives. MOO CEM-ENS which
gives MOO CEM the ability to solve problems with three objectives, was developed sub-
sequent to MOO CEM-Constraint, giving it the functionality to solve MOP-C3 having
three objectives and constraints.

The method of discarding infeasible solutions was applied to the algorithm first, as this is
the simpler of the two techniques. Although this method could locate the Pareto solution
set for some test problems, a high number of iterations and an increased population size
were required. The result was a long runtime and an insufficient Pareto solution set.

Thereafter, the dynamic penalty method was applied to the MOO CEM-Beta algorithm
according to Algorithm 8 to develop the MOO CEM-Constraint algorithm. The hyperarea
and ϵ indicator were calculated for these two-objective problems and compared to the true
Pareto solution set. The average runtime and size of the Pareto solution set were also
recorded in Table 3. Figure 5 shows the solution sets generated by the enhanced algorithm
compared to the true Pareto solution set for problems MOP-C1, MOP-C2 and MOP-C4.

Comparing the hyperarea generated by the solution set to the reference hyperarea (hyper-
area of the true Pareto solution set), for problem MOP-C1 a mean difference in hyperarea
of less than 0.01% is observed. This indicates that the solution set produced by the algo-
rithm and the true Pareto solution set are very similar. This observation is supported by
the very small ϵ indicator (< 10−3), indicating a very small difference between the solution
set produced by the algorithm and the true Pareto solution set. The Pareto set produced
is large and the runtime is rather lengthy. This long runtime could be attributed to the
additional complexity of the dynamic penalty method.

For problem MOP-C2, a larger difference between the hyperarea of the generated solution
set and true Pareto solution set is seen (15%). Considering Figure 5, it is observed that
the generated solutions closely approximate the true Pareto set for larger values of f1, but
deviate from the true set for smaller values of f1. Nevertheless, the ϵ indicator remains
relatively small (2.885), indicating that the generated solution set is usually not far from
the true Pareto solution set. The runtime of this problem is significantly shorter than that
of MOP-C1, which could be as a result of the notably smaller Pareto set. The accuracy of
the generated solutions could possibly be improved by increasing the number of iterations
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Table 3: MOO CEM-Constraint results on some standard constrained benchmark problems

MOO CEM-Constraint
Test

Problem
Reference
Hyperarea

Mean
Hyperarea

Epsilon
Indicator

Mean
Runtime (s)

Mean Pareto
Set Size

MOP-C1 8333.333 8332.675 < 10−3 7.330 10031.262
MOP-C2 13530.128 11481.3372 2.885 1.011 140.656
MOP-C4 0.319 0.294 0.106 0.399 170.742
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Figure 5: MOO CEM-Constraint Pareto sets compared to the true Pareto set for test problems
MOP-C1, MOP-C2 and MOP-C4

for which the algorithm is run. Since the runtime of this problem is currently short, this
may be a feasible approach.

The results of MOP-C4 show a mean difference in hyperarea of the generated solution
set and the true Pareto solution set of 8%. The ϵ indicator denotes a relatively small
difference between the two solution sets (0.106), suggesting that the generated solution
set closely approximates the true Pareto set. A short runtime and relatively small Pareto
size are observed. For MOP-C4, the generated solution set could possibly be improved as
suggested above for MOP-C2.

4.4 MOO CEM-ENS algorithm results

The MOO CEM-Constraint algorithm was enhanced by including the ENS-SS ranking
algorithm. This algorithm is referred to as MOO CEM-ENS. This enhancement gives the
algorithm the ability to solve problems with more than two objective functions. In order
to evaluate the performance of this enhanced algorithm, it was tested on three benchmark
problems (MOP5, MOP7 and MOP-C3), each having three objective functions.

Due to the computational complexity associated with calculating hypervolume, the ϵ in-
dicator was used as the performance metric for evaluation. The average runtime and size
of the Pareto solution set were recorded and results can be found in Table 4. Figure 6
shows the solution sets generated by the enhanced algorithm as well as the true Pareto
solution set.
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It is observed that the runtime of these problems is significantly longer than those of prob-
lems with only two objective functions. A portion of this lengthy runtime can be attributed
to the time required by the ranking and selection algorithm (ENS). The runtimes cannot
be compared to the MOPs on which MOO CEM-Beta was tested, as these problems were
run for 15 000 iterations, while MOP5, MOP7 and MOP-C3 required double the number
of iterations to converge to a reasonable solution set.

For MOP5, when comparing the solution set of the algorithm to the true Pareto solution
set, the ϵ indicator was found to be very small (0.03). This indicates that there is very little
difference between the algorithm solution set and the true Pareto solution set. The size
of the generated Pareto set is relatively small compared to MOP7 and MOP-C3; however,
given the small ϵ indicator, the solution set closely approximates the true Pareto solution
set.

The ϵ indicator calculated for MOP7 is extremely small (0.004), implying that the algo-
rithm solution set and the true Pareto solution set are almost identical. This observation
is supported by Figure 6, showing that the two sets are almost indistinguishable. For this
problem, the algorithm produced a large Pareto solution set.

The results of MOP-C3 show a relatively small ϵ indicator (0.48). It can be deduced that
the algorithm produces a good solution set which approximates the true Pareto solution
set. From Figure 6, it is observed that the algorithm produces extremely good solutions
for smaller values of f3, where solutions are concentrated. As values of f3 increase, the
solutions become less concentrated and resemble a line. For these larger values of f3, the
solutions produced by the algorithm are further from the true Pareto set. It is theorised
that the accuracy of the solutions could be increased by increasing the number of iterations,
but this would increase the already lengthy runtime. For this problem, a very large Pareto
solution set is produced.

Table 4: MOO CEM-ENS results on some standard benchmark problems with three objectives

MOO CEM-ENS
Test

Problem
Epsilon
Indicator

Mean
Runtime (s)

Mean Pareto
Set Size

MOP5 0.030 178.977 216.24
MOP7 0.004 73.209 4333.357

MOP-C3 0.480 284.382 8131.985
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Figure 6: MOO CEM-ENS Pareto sets compared to the true Pareto set for test problems MOP5,
MOP7 and MOP-C3

5 Proposed algorithm

Taking into account the results presented in the previous sections, a final algorithm is
proposed. This algorithm uses the beta distribution for sampling (replacing the original
truncated normal distribution sampling), enhances the original MOO CEM algorithm by
giving it the ability to solve constrained problems (through the addition of a dynamic
penalty function) and problems with more than two objective functions (by replacing the
Pareto ranking algorithm with ENS-SS).

This final algorithm pseudo code is presented in Algorithm 11. The algorithm follows
the same logic as the original MOO CEM algorithm, with the addition of the proposed
enhancements.

6 Research Summary

This research explored methods of enhancing and improving the MOO CEM algorithm. A
method specific to improving the sampling method of enhancement was identified, namely
using the beta distribution instead of truncated normal distributions. Two methods of
increasing the functionality of the algorithm were also identified: adding functionality
to solve problems with constraints, and implementing a non-dominated sorting algorithm
with the ability to solve problems with three objectives. These three areas were researched
and appropriate methods of application to the MOO CEM algorithm were identified.

Three algorithms, each addressing one method of enhancement, were developed and tested
on a number of standard benchmark problems. The results indicated that replacing the
truncated normal distribution with the beta distribution, could improve sampling. When
the algorithms with additional functionality were tested on new problems on which the
original MOO CEM algorithm could not be tested, positive results were achieved.

Based on the achieved results, a final enhanced MOO CEM algorithm was presented. This
algorithm uses the beta distribution when sampling, has the ability to solve constrained
problems, and also possesses the functionality to solve problems with three objectives.
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Algorithm 11 Enhanced MOO CEM Algorithm

1: Set Elite = ∅, t = 1, k = 1.
2: Initialise variable vectors Xi = ∅, 1 ≤ i ≤ D, and compute initial objective values.
3: For each decision variable xi, 1 ≤ i ≤ D initialise a histogram class vector Ci =
{ci1, . . . , , ci(r+2)+1} and histogram frequency vector Ri = {τi1, . . . , τi(r+2)}.

4: Set i = 1.
5: Set κ = 0.
6: Increment κ.
7: for each frequency element τiκ in Ri do
8: Find the Elite solutions which fall into the range [ciκ ci(κ+1)).
9: if one or no unique Elite solutions fall within this range then

10: Set αiκ = 1.
11: Set βiκ = 1.
12: else
13: Calculate a class based αiκ and βiκ of the distribution of the corresponding

Elite solutions over the normalised range 0− 1.
14: end if
15: Generate a subsample Y according to the Beta(αi,βi) distribution.
16: with xi ϵ [ciκ ci(κ+1)) and |Y| = τiκ, 1 ≤ κ ≤ r + 2 .
17: Append Y to Xi.
18: end for
19: If κ < r + 2 , return to Step 6.
20: Invert the histogram counts with probability ph.
21: Increment i.
22: If i ≤ D, return to Step 5.
23: Compute the NK objective function values using Xi, 1 ≤ i ≤ D
24: for each constraint in q do
25: Calculate the distance measure di of each solution according to (8).
26: Calculate the penalty pi of each solution according to (12).
27: Calculate the final modified objective value of each solution using (7).
28: end for
29: If the problem is constrained, rank the final modified objective values, otherwise rank

the objective function values using the Pareto ranking of Algorithm 9 with a relaxed
ρE = 2 to obtain an updated elite vector Elite.

30: Form new histogram class vectors Ci and histogram frequency vectors Ri based on
Elite , 1 ≤ i ≤ D.

31: Use the values in Elite and compute αit and βit for all i, 1 ≤ i ≤ D.
32: Smooth the vectors αit and βit using (6).
33: Calculate the differences between αit and αit−1; and βit−1 and βit.
34: If all changes in αi and βi exceed ϵc, or less than the allowable number of evaluations

have been done, increment t and reiterate from Step 4.
35: For a constrained problem, rank Elite on the final modified objective values, otherwise

rank on the objective values, using the Pareto ranking of Algorithm 9 with ρE = 1.
36: Increment k.
37: If k is less than the allowable number of loops, return to Step 2..
38: Rank the elite vector Elite using the Pareto ranking Algorithm 9 with ρE = 0 to

obtain the final elite vector.
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7 Future research

Building on the research presented in this study, the following suggestions are made for
future research:

1. Test the proposed algorithm on more problems with large numbers of decision vari-
ables. The results of the MOO CEM-Beta tests indicated that the algorithm is
especially effective when considering problems with a large number of decision vari-
ables, but this observation should be verified through additional testing.

2. The proposed algorithm should be tested on problems with more than three objective
functions.

3. Other sorting algorithms should be investigated to decrease the runtime of problems
with a large number of objectives.

4. The performance of the algorithm should be compared to other industry leading
optimisation algorithms.

References

[1] Bekker JF, 2012, Applying the cross-entropy method in multi-objective optimisation
of dynamic stochastic systems, Ph.D. thesis, University of Stellenbosch, Stellenbosch.

[2] Burkardt J, 2014, The Truncated Normal Distribution, [Online], [Cited
August 23rd, 2020], Available from http://people.sc.fsu.edu/jburkardt/

presentations/truncatednormal.pdf.

[3] Coello Coello CA, 2002, Theoretical and Numerical Constrain-Handling Tech-
niques used with Evolutionary Algorithms: A Survey of the State of the Art, Computer
Methods in Applied Mechanics and Engineering.

[4] Coello Coello CA, 2006, Evolutionary Multi-Objective optimization: A Historical
View of the Field, IEEE Computational Intelligence Magazine.

[5] Coello Coello CA & Lamont GB & van Veldhuizen DA, 2007, Evolutionary
Algorithms for Solving Multi-Objective Problems, Springer.

[6] Fan Z & Li W & Cai X & Li H & Wei C & Zhang Q & Deb K & Goodman
E, 2019, Difficulty Adjustable and Scalable Constrained Multiobjective Test Problem
Toolkit, Evolutionary Computation.

[7] Goldberg DE, 1989, Genetic Algorithms in Search, Optimization, and Machine
Learning, Addison-Wesley Publishing Company Inc.

[8] Johnson P & Beverlin M, 2013, Beta Distributionn, [Online],
[Cited September 1st, 2020], Available from https://pj.freefaculty.

org/guides/stat/Distributions/DistributionWriteups/Beta/Beta.pdf.

[9] Johnson NL & Kotz S & Balakrishnan N, 1995, Chapter 25: Beta Distributions
in Continuous Univariate Distributions Vol. 2 (2nd ed.), Wiley.

200
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