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Abstract
In the automotive industry, a Body-in-White (BIW) refers to the first step, the basic structure,
in the production of a vehicle. Once a BIW production line has been built, the (maximum)
capacity is fixed and throughput is therefore limited by the equipment specified during the
design phase. The main metric used to inform the production line design is the Net Ideal
Cycle Time (NICT). Unfortunately the state of practice to estimate the NICT is a basic
heuristic that does not account for production variation. In this paper we challenge the
current estimation approach by proposing an alternative that assumes actual production to
follow a Weibull distribution. The proposed model is derived and estimated from empirical
data. The results suggest that BIW production lines have traditionally been designed with
too low a capacity, resulting in planned throughput rarely being achieved. On the other
hand, increasing the design capacity implies higher initial investment. In this paper it is
demonstrated that the higher investment required is offset by reduced losses, resulting in
more reliable planning and returns.

Key words: Automotive industry, design of production systems, capacity planning, investment

appraisal, cycle time estimation, body-in-white.

1 Introduction

The BIW production line in the automotive manufacturing industry is responsible for
creating the basic structure of a vehicle. Figure 1 illustrates, through an explosion diagram,
the basic structure of the BIW.

The assembly stations along the production line are typically heavily equipped with robotic
welders and automated material handling technology. In this paper the term ‘BIW’ will
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Figure 1: Body-in-White (BIW) structure of 2012 BMW 3 series

mainly refer to the production line and not to the vehicle structure, unless explicitly stated
otherwise.

Designing the BIW line is generally a complex and challenging task. The equipment
selection is subject to the required throughput and, once installed, essentially becomes the
ceiling for production. Production line designers use the NICT as the reference to specify
equipment capacity, which, in turn, is informed by two important design parameters. The
first is Takt Time (TT), the average time between the start of production of one unit and
the start of production for the next, subsequent unit and, secondly, the Overall Equipment
Efficiency (OEE).

If the NICT is short, as is the case in a fast production line, then more robots or people
are required to complete a process step. When the NICT is longer, fewer robots or people
are required and, consequently, results in lower financial investment. It is for this reason
that the NICT of a (BIW) production line must be reliable. Too high an estimate results
in inefficient use of capital, while too low an estimate means actual production cannot
meet the set targets.

In the current literature we distinguish between two streams of cycle time research. Cycle
time estimation is the focus of this project and deals with the design or pre-production
stages of the line’s lifecycle [3]. Cycle time optimisation, on the other hand, deals with
analyses of and methods to improve the cycle time of a system that is already in a
series-production stage.

Although much research has been done in the semiconductor industry with regards to
cycle time estimation, the state of practice in the majority of industries rely on fairly
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basic heuristics. Production variation is not accounted for other than through a scalar,
average safety factor like OEE.

This paper contributes to the body of knowledge by proposing a new NICT estimate, one
that takes production variation into account. The proposed model is derived from studying
empirical production data over a multi-year period in the automotive BIW environment.
The analyses suggest that actual production follows a Weibull distribution, where the
shape parameter can be estimated from historical data, and the scale parameter is used
to estimate the NICT.

We show that the NICT, when estimated using traditional approaches, leads to a
production line that consistently suffers from under-performance. Consequently, expensive
production losses are incurred. The proposed estimate requires lines to be designed with a
slightly higher capacity. Although this implies higher initial investment, we demonstrate in
this paper that the increased investment is offset by reduced losses. A direct consequence is
that production planning is more realistic, and performance of the lines are more reliable.

The remainder of this paper is arranged as follows. In the next section we review current
literature in cycle time estimation and optimisation. In Section 3 we explore the current
state-of-practice NICT estimation method, and demonstrate it’s limitation for design
engineers. In Section 4 we study the throughput distribution of a real BIW production line.
We fit an appropriate throughput distribution from empirical data over the 2012–2015
period, and lay the foundation for the proposed NICT estimation. The Weibull-based
estimation approach is proposed in Section 5, and in Section 6 a comparative benchmark
is done to evaluate the feasibility of the proposed method in terms of costs. The paper is
concluded in Section 7 along with a brief research agenda.

2 Cycle time estimation and optimisation

Cycle time estimation is important in various industries. There has been a significant
amount of research completed within the semi-conductor industry, with popular estimation
techniques being statistical modelling [10, 13], heuristics [1, 18], aggregation [14] and
historic correlation approaches [2, 5, 7]. The goal of these research contributions are
to develop models that could estimate the cycle time of series-production systems. The
estimation aims to get a handle on predictable production output, and then compare the
system performance against customer demand.

More general production systems have seen fewer research contributions. Xu et al. [15]
focus their research on cycle time estimation for unreliable production lines. The research
does not state for which industry this specific estimation is valid, but specifies that the
type of production lines under investigation are multiple product production lines. The
study is related to BIW production lines in terms of the unreliability of the production
lines. In their research they use chance constraint and fuzzy linear programming to predict
production cycle time so that they can calculate production line efficiency. The main model
utilised for this is the one from Johri [8]. Presented in 1987, this linear programming model
is used to calculate the capacity of deterministic production lines of various products.
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In Yang et al. [16] the focus of research falls on the relationship between cycle time and
production throughput. Again there is no reference to the specific industry. They suggest
that the cycle time-throughput percentile of the production system could be used for
strategic planning purposes. The main assumption for their research is the use of the
generalised gamma distribution to represent actual cycle time. Simulation is then used as
an evaluation method to support their theory.

Chen & Zhou [3] propose quantile regression as an alternative method for cycle time
estimation. They start by defining the relationship between cycle time quantiles and
system throughput. One nice approach in their method is the comparison to actual data
from a case study to show the correlation between real data and estimation data. There
are two major assumptions used in their work: the assumption of stationary process
convergence, and process mixing, which are based on the theory of queuing system analysis.
Process mixing is not relevant for BIW production lines as the series-production setup
focuses on a single product, albeit with some minor variations between models.

In their research, Müller et al. [9] assist engineers with a tool to predict robot performance
in the packaging industry. Since BIW lines also rely heavily on robots, this research
is considered relevant. The method used for robot cycle time estimation is regression
analysis. The result is a new software tool, however, it is limited to ABB robot applications
only. The motivation for this study originated from a use case, and the main aim is to
assist sales engineers with a tool that can give accurate production information about
packing robots to potential clients specific to their industry.

There is a lack of research surrounding BIW production lines, and particularly around
design topics such as NICT estimation.

3 State of practice

The current method to estimate NICT for a BIW production line starts by calculating the
Takt Time (TT), expressed in seconds;

TT =
NAT

MTT
, (1)

where Mean Throughput Target (MTT) is expressed in units per hour (uph), and Net
Available Time (NAT). The NAT is typically assumed to be 3600 seconds per hour.

NICT, in turn, is calculated from talk time and the Overall Equipment Efficiency (OEE)
[12];

NICT =
OEE ×NAT

MTT
= TT ×OEE. (2)

Consider for example a BIW line that is planned to achieve, on average, a throughput of
MTT = 15 uph. We use 15 uph as it is aligned with the planned capacity of the line we will
use for empirical data later. In the automotive industry an OEE = 0.85 is considered best
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Figure 2: The throughput distribution of a BIW production line fitted into a normal distribution
using the three-sigma rule as a starting point.

practice and used in the calculation. The result, when substituting these values into (1)
and (2), is an ideal cycle time of

NICT =
3600× 0.85

15
= 204 s,

or expressed otherwise, a mean throughput of 17.65 uph. This cycle time value is then
used as an input into specifying equipment and designing the line capacity.

At the same time line designers account for production variation by subscribing, possibly
unconsciously, to the idea that the actual throughput of the production line will follow
a normal distribution. More specifically, that under normal production conditions for a
line that is under control the average throughput will be within three standard deviations
above and below the mean.

P{µ− 3σ < X < µ+ 3σ} = 0.9973. (3)

This is graphically represented in Figure 2. For this to be true, using the example of
a 15 uph line, the standard deviation for actual throughput should be a very ambitious
0.95 uph.

Since the NICT is used to inform equipment decisions, it essentially becomes the
throughput ceiling, and we refer to the throughput associated with the NICT as the Upper
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Figure 3: Relationship comparison between throughput and cycle time for a BIW production line
with a MTT of 15 units per hour (uph) and a OEE of 0.85.

Specification Limit (USL). This was calculated earlier as USL = 3600/204 = 17.65 uph.
Similarly, we refer to the throughput that is three standard deviations below the mean,
MTT = 15, as the Lower Specification Limit (LSL). The cycle time associated with this
lower limit is referred to as the Virtual Cycle Time Restriction (VCTR).

The problem with the current NICT estimation can therefore be summarised in Figure 3.
Given the equipment limitations, a BIW production line cannot produce more units than
the USL as this is the speed for which the line was designed. It also implies that the
BIW production line should not produce below the LSL as this will skew the distribution
and cause the mean throughput to decrease. In reality, however, breakdowns and labour
unrest can easily result in actual throughput being much lower than the LSL.

This intuitive asymmetry around the mean throughput then leads one to question the
inherent normality assumption. In the next section we investigate this further using
empirical throughput data.

4 Throughput performance in reality

We were privy to unrestricted access to all BIW production line information and actual
production data for a specific automotive Original Equipment Manufacturer (OEM) on
one of their production lines. In this section we describe the methodology to calculate
and analyse the mean daily throughput. Data processing and analysis was done with the
statistical computing software R [11].
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4.1 Methodology

We extracted data for the period 2012–2015. Every unit that is produced triggers an
incremental counter, in real time, in the central database. At the end of each day the
date, the number of shifts for that day, the total number of units produced, and the day’s
volume target is recorded.

From this we calculate the Mean Throughput (MT);

MT =
TDV

DHW
,

where MT is expressed in uph, Total Daily Volume (TDV) is the total daily number of
units (volume) that was produced and Daily Hours Worked (DHW) is the total number
of hours worked per specific day. With standard 8-hour shifts this would typically just be
eight times the number of shifts for the day.

Practical experience and management input suggested that the daily throughput is
dependent on the day of the week. There is typically higher absenteeism of employees
on Mondays, Fridays and Saturdays, while labour productivity is also lower on these days.
Production on Sundays deviates as well, but this is due to operational changes being tested
on the production line on Sundays. These daily variations were confirmed in the empirical
data and is illustrated in Figure 4.

Figure 4: The distribution of daily Mean Throughput (MT) for the years 2012–2015 as a function
of the day of the week.

Such variations is, at least partially, under management’s control. Since we want to use
the throughput data to estimate and inform future design calculations in the NICT, we
removed Mondays, Fridays, Saturdays and Sundays.
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The resulting data for the remaining three days were combined. The mean throughput for
each production year was plotted in the histograms of Figure 5. The normal distribution

(a) 2012 (b) 2013

(c) 2014 (d) 2015

Figure 5: The empirical Mean Throughput (MT) distribution, expressed in uph, for the period
2012–2015.

in each histogram represents a comparative reference to the planned throughput for a line
of the same capacity, 15 uph. The assumption of the comparative reference is in line with
our earlier discussion of the state of practice: a) actual output would be within three
standard deviations of the MTT of 15 uph; and b) the standard deviation for the line is
σ = 0.95 uph.

Three observations are worth making at this point. Firstly, we see that the empirical data
was never distributed within the limits of the LSL and USL. Secondly, the throughput
distribution does not appear to be normally distributed, and is consistently left-skewed.
This is in line with the earlier argument that the USL acts as a production ceiling, while
lower-than-limit production is indeed possible. Thirdly, there is a noticable difference
between 2012 and the other years in terms of the long left tail. This performance
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difference is a result of 2012 being the launch year of a new product. In the launch
year performance is gradually increased from a very low throughput base. It usually takes
the BIW production line about six months from start of production to mature before the
line reaches its maximum performance.

4.2 Empirical throughput performance

To identify an appropriate distribution we start by giving some summary statistics about
each year’s throughput data in Table 1.

Year
Statistic 2012 2013 2014 2015 Mean SD

Min 2.00 8.17 8.42 7.21 6.45 2.61
Median 10.33 12.27 12.83 13.29 12.18 1.13
Mean 9.64 12.19 12.40 13.08 11.83 1.31
Max 13.75 15.38 14.63 15.79 14.89 0.78
Standard deviation 2.517 1.267 1.503 1.502 1.697 0.483
Skewness −1.034 −0.650 −0.740 −1.109 −0.883 0.193
Kurtosis 3.829 3.759 2.799 4.586 3.743 0.634

Table 1: Summary statistics for the empirical throughput: 2012–2015.

The actual standard deviation, for each year, is much higher that the required σ = 0.95
for the values to fall within three standard deviations around the mean.

The sample skewness is a measure of the data’s asymmetry about its mean. Negative
values is indicative of a skewed distribution. In all cases the value is significantly different
from zero, confirming that the data is not symmetric around the mean. The kurtosis metric
is a measure of the heavy-tailedness of the distribution of the data. Higher kurtosis means
more of the variance is the result of infrequent extreme observations, as opposed to more
frequent but modestly sized deviations. A kurtosis value of less than 3 (2014) suggests
that the distribution is platykurtic, meaning there are fewer and less extreme outliers than
what one might find in a normal distribution with the same mean and standard deviation.
In a quality assurance sense, this could be indicative of a production line that is ‘under
control’. For the other three years the kurtosis values exceed 3 suggesting the distributions
are leptokurtic and contain more outliers than one would find in a corresponding normal
distribution.

We used the fitdistrplus package in R [4] and prepared a Cullen and Frey graph to
identify other possible distributions that could potentially fit the empirical data better. For
a number of common distributions, the graph indicates the range of skewness and kurtosis
values associated with that distribution. However, because skewness and kurtosis are not
robust statistics, we take the uncertainty of the estimated values of kurtosis and skewness
into account. A non-parametric bootstrap procedure, based on Efron & Tibshirani [6], is
performed. Values of skewness and kurtosis are computed on bootstrap samples: drawing
random samples with replacement from the original data set. The resulting estimates for
the 2015 data set is given in Figure 6.

The Cullen and Frey reference graph consists out of points, lines and surfaces. According
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Figure 6: The 2015 throughput data of the reference BIW plotted as a Cullen and Frey graph.
Produced using [4, 11].

to Delignette-Muller & Dutang [4], distributions like the normal, uniform, logistic and
exponential can have only one skewness and kurtosis value, and are therefore represented
by a single point. For distributions like the log-normal and gamma, more values are
possible and these distributions can fall anywhere on the given line. For distributions like
the beta distribution there is an entire surface of values within which the distribution can
lie.

Our empirical dataset for 2015 is represented by both the single estimate, as well as the
bootstrap samples. These values coincide with that of a beta, log-normal, gamma and/or
Weibull distribution. The data for years 2012–2014 yield similar results.

We calculated several measures of fit for the various distributions – gamma, normal,
Weibull, log-normal, exponential and logistic – to see which one matches with our data
best. All distribution results were compared with one another in terms of Log likelihood
(LL), Akaike’s Information Criterion (AIC) and Bayesian Information Criterion (BIC),
and are displayed in Table 2. Low values imply a better fit. The Weibull distribution
consistently performed best in these comparisons. A visual confirmation of the fit is seen
in a number of statistical plots illustrated in Figure 7.

Consider the Quantile-Quantile (Q-Q) plot of Figure 7b. The fitted Weibull distribution
describes the scale and shape of the dataset well. Although the tail behaviour is similar,
the fitted Weibull slightly over-predicts the lower throughput values. This may actually
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2012 2013 2014 2015
LL AIC BIC LL AIC BIC LL AIC BIC LL AIC BIC

Weibull −313 630 636 −206 416 421 −224 451 457 −233 469 475
Logistic −314 631 637 −207 417 423 −233 470 476 −241 486 492
Normal −320 644 650 −210 424 430 −233 469 475 −248 501 507
Gamma −362 727 733 −216 435 441 −238 481 486 −261 525 531
Log-normal −402 808 814 −219 443 448 −242 488 494 −268 541 547
Exponential −446 895 898 −448 897 900 −453 908 911 −485 973 976

Table 2: Distribution fit results for all data (2012–2015) using various test distributions.

(a) Histogram and theoretical densities (b) Q-Q plot

(c) Empirical and theoretical CDFs (d) P-P plot

Figure 7: The 2015 throughput data of the reference BIW compared to a theoretical throughput
of a Weibull distribution.

be to our benefit as it means we will provide a conservative estimate for the NICT. The
over-prediction of low-throughput instances is confirmed in the higher probabilities in the
Probability-Probability (P-P) plot of Figure 7d.

The current NICT estimation method does not make an explicit assumption that the MT
of a BIW production line is normally distributed, but it assumes that the performance
characteristics of all production lines are similar. As a result, the current estimator ignores
any possible past performance of a production line, or industry experience. Instead, we
can now propose an estimator that uses our knowledge of past performance.
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5 Estimating NICT using a Weibull distribution

A Weibull distribution is described using two parameters: shape (k) and scale (λ). The
empirical data gives us a good idea of what the shape parameter must be. The scale,
however, can be left as an input parameter for the designer to determine the NICT so that
the actual MTT can be achieved.

The shape of the distribution can be estimated by taking the mean shape for all the
empirical years, excluding 2012. The data from 2012 was omitted since the launch-year is
a valid assignable cause. By omitting 2012’s shape parameter, the mean shape is increased
from k̄ ≈ 9.58 to k̄ ≈ 11.17, and at the same time the standard deviation of these estimates
is reduced from kσ ≈ 2.77 to kσ ≈ 0.37.

Given the mean, µ, the Weibull distribution’s scale parameter, λ, can be calculated using
the relation

µ = λΓ(1 + 1/k), (4)

where Γ is the gamma function and k is the (estimated) shape parameter, k̄, of the Weibull
distribution, see [17]. The gamma function is an extension of the factorial function and
can be expressed as

Γ(x) =

∫ ∞
0

zx−1e−zdz,

where x is positive. The estimated standard deviation for the Weibull distribution, σ, can
be calculated using

σ2 = λ2[Γ(1 + 2/k)− Γ(1 + 1/k)2]. (5)

The calculated standard deviation can be compared to the empirical data reported in
Table 1. The USL is related to the quantile function, or the inverse cumulative distribution;

USL = λ[−ln(1− p)]
1
k .

For a given probability p the quantile function provides a value (mean throughput in this
case) such that the random variable (throughput) is less than or equal to this value with
probability p. Knowing p we can calculate the NICT;

NICT =
NAT

λ[−ln(1− p)]
1
k

,

where NAT is again 3 600 s. The value of p could be considered the required certainty with
which BIW line designers want to estimate the NICT. Consider the earlier discussion where
line designers assume the three-sigma rule, p = 0.9973. That is, 99.73% of all observations
should fall below the USL.
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6 Discussion of results

In this section we apply our proposed Weibull-based method to the example line with
a MTT of 15 uph. From the empirical data of 2013–2015 we use a shape parameter of
k̄ = 11.17. Using (4) we calculate the scale parameter as λ = 15.53, and using (5) we
calculate σ = 1.61. This is quite close the the mean empirical standard deviation of
σ = 1.69.

The final step is estimating that NICT ≈ 197.67 s and the associated USL ≈ 18.21 uph.
This is a 3.2% increase in throughput over the NICT when using the current, traditional
method. Consequently, one can expected an approximate increase of 3% in financial
investment as well, to account for higher capacity equipment requirements.

A total of 10 different BIW investment projects were analysed to determine an average
investment figure as well as an average loss per unit from the production program. This
information was again supplied by the reference OEM. In the following example we scaled
the real figures to protect the confidentiality of investment and loses figures of the specific
OEM.

Consider a new BIW production line where 3.25 Million Euros are required per unit per
hour to achieve the required MTT. For every one unit that is lost from the production
program, there is a 2,000 Euro income loss for the specific production facility. This can
quickly result in a negative business case if the daily income is surpassed by the daily fixed
and running costs. This means that for a BIW production line with a planned MTT of
15 uph, the required investment would be 48.75 Million Euro using the current method,
and 50.26 Million Euro for our proposed method. This is an increase of 1.51 Million Euro,
or approximately 3.1%.

Over the 7 year production lifecycle, and using the empirical data, we can calculate that
the expected losses would total 1 646 units due to unforeseen process variations that are
not catered for by the current NICT estimation method. The 1 646 units loss equates to
a monetary loss of 3.24 Million Euro over the production life cycle.

This means that using the proposed method instead of the current method, the total loss
can be reduced by almost 50% in monetary terms. The proposed method covers in our
case four years of real production history. Included in this history is unforeseen events
such as strikes, major power outages and various other variantions that are not consider
when defining NICT. The Weibull estimate honours the production ceiling, as well as the
left-skewed distribution observed in empirical data.

7 Conclusion

Analysing empirical data of a real BIW production line, we can conclude that the mean
daily throughput follows a Weibull distribution. We propose a new method to estimate
NICT based on this distribution.

Our proposed method has a number of advantages over the current method used for
estimating NICT. Firstly, the Weibull-based method is more representative of the real
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production characteristics and behaviour of the automotive BIW production lines. This
allows for more realistic and reliable planning. However, this approach requires historical
production data for the specific line considered or a similar line.

Secondly, knowing the Weibull distribution parameters allow a more vivid capability target
for performance measurement and control. Our new method resulted in a 3.1% increase
in estimated NICT, which will be different for every BIW production line.

In the illustrative example we noted a 3.2% increase in the estimated cycle time, which
would equate to a probable investment increase of a similar magnitude to compensate
for the faster production line. The increase in investment can be justified (or rejected)
by comparing it to the expected losses due to variation of the relevant BIW production
line, and it is proposed that a simple business case can determine if the extra financial
investment outweighs the expected production losses.

Our study focused purely on one specific BIW production line where only one variant is
produced. There are production lines where two or even three automotive product variants
are produced. These lines are more complex but should yield similar results. It is proposed
to not only investigate these multiple variant production lines, but also production lines
where higher throughputs are applicable, for example 45 uph lines. It would be engrossing
to see what shape and scale other BIW production lines exhibit, and if there are any shape
or scale correlations between these different throughput lines. Further research is proposed
with focus on other manufacturing industries where NICT is also used as a production
line design input.
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