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Abstract

In this paper, different univariate GARCH option pricing models are applied to
the FTSE/JSE Top 40 index to determine the best performing model when modelling
the implied South African Volatility Index (SAVI). Three different GARCH models
(one symmetric and two asymmetric) are considered and three different log-likelihood
functions are used in the model parameter estimation. Furthermore, the accuracy of
each model is tested by comparing the GARCH implied SAVI to the historical SAVI.
In addition, the pricing performance of each model is tested by comparing the GARCH
implied price to market option prices. The empirical results indicate that the models
incorporating asymmetric effects outperform competing models in terms of pricing
performance.
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1 Introduction

In modern finance, asset volatility is synonymous with an asset’s risk. Financial mod-
elling researchers and practitioners therefore face the issue of finding a reliable estimate
of volatility. Soczo (2003) explains that historical data can be used to estimate current
and future levels of volatility. However, this assumes that the future will be like the past,
which is not necessarily a reasonable assumption.

Financial researchers (see, e.g., McNeil et al., 2015) have demonstrated that volatility is
not constant, i.e., it changes substantially over time. Furthermore, financial time series
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exhibit periods of high or low volatility; this phenomenon is known as clustering. There
also appears to be mean reversion in volatility, i.e., periods of unusually high or low
volatility tend to be followed by reversion to more normal behaviour (see, e.g., Cont,
2001). In equity markets, volatility typically increases when stock prices decrease; this is
often referred to as the leverage effect.

When it comes to the topic of time-varying volatility in discrete time, most financial
modelling researchers will agree that the GARCH (generalised autoregressive conditional
heteroskedasticity) model is the most widely used. A wide range of different GARCH
processes have been introduced in the literature (see, e.g., Francq & Zakoian, 2019).
An important factor to consider when modelling conditional volatility is the effect of
asymmetry. According to Asteriou and Hall (2012), symmetric volatility models assume
that positive and negative shocks have the same effect on volatility, which is also not
necessarily a reasonable assumption. Therefore, the performance of both symmetric and
asymmetric GARCH models is tested when modelling the conditional variance.

GARCH model parameters are usually estimated using historical returns of an asset price,
by making use of the maximum likelihood method. The fitted GARCH model can then
be used to obtain a forward looking estimate of volatility. A different approach is to
make use of a volatility index. In this study, the so-called South African Volatility Index
(SAVI) is used. As explained by Kotzé et al. (2009), the SAVI was introduced in 2007
for the purpose of measuring the expected three-month volatility based on the FTSE/JSE
Top 40 (Top40) index. During times of higher uncertainty (e.g., financial crises), the
SAVI index increases substantially (in direct analogy with the Chicago Board Options
Exchange VIX, which measures investors’ expectations of volatility of the S&P500 index).
Equity volatility indices serve as important financial indicators, measuring the level of risk
in markets, while also exhibiting predictive power for index returns (see, e.g., Huskaj &
Larsson, 2016).

In this paper, three different univariate GARCH processes are used to model the implied
SAVI index. By making use of an approach similar to Hao and Zhang (2013), three different
log-likelihood functions are considered for the estimation of the GARCH option pricing
model parameters to determine the best performing GARCH model when compared to the
historical SAVI. Furthermore, the accuracy of estimated GARCH option pricing models is
tested by comparing the model option prices to market prices (consistent with Hunzinger,
Labuschagne, and Von Boetticher, 2014). The rest of this paper is structured as follows:
Section 2 focuses on the methodology, thereafter the empirical results are presented in
Section 3, and finally the concluding remarks are discussed in Section 4.

2 Methodology

This section is divided into four subsections. The first focuses on GARCH models in
finance. The second subsection considers the application of GARCH models to option
pricing. Thereafter, the theoretical framework of the GARCH implied SAVI is considered.
Finally, the data and estimation methods used in this study are discussed.
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2.1 GARCH models in finance

A large proportion of models used in finance assume constant volatility. A good example of
this is the classical Black-Scholes (see e.g., Wilmott, 2007) model used for option pricing.
When it comes to the topic of modelling volatility in discrete time, most financial modelling
researchers and practitioners will agree that the GARCH model is the most widely used.
According to Alexander et al. (2015), GARCH models capture two important stylised
facts of financial time series, namely leptokurtosis and volatility clustering.

The application of GARCH models to solve financial problems is well documented in the
literature. According to Duncan & Liu (2009), the mean model of a typical GARCH(1,1)
model takes the following form:

ln

(
St
St−1

)
= µ+ εt, (1)

where St is the price of the underlying asset at time t, µ remains constant over time, and
the error term, εt, is assumed to be normally distributed with mean zero and conditional
variance σ2t . Where σ2t is some GARCH process. The conditional variance when modelled
using a GARCH(1,1) process is given by,

σ2t = α0 + α1ε
2
t−1 + β1σ

2
t−1, (2)

α0 > 0, α1, β1 ≥ 0, α1 + β1 ≤ 1,

where the parameters α0, α1, and β1 are estimated using the maximum likelihood method
(to be discussed in Section 2.4).

When the variance equation is modelled using the symmetric GARCH(1,1) process, the
assumption is that volatility will have the same reaction to positive and negative shocks.
However, this is not necessarily a reasonable assumption. Glosten et al. (1993) therefore
include an indicator function to capture the asymmetric nature of positive and negative
shocks. The GJR-GARCH(1,1) model takes the following form:

σ2t = α0 + α1ε
2
t−1 + β1σ

2
t−1 + γ1{εt−1<0}ε

2
t−1, (3)

α0, α1 > 0, β1 ≥ 0, α1 + γ ≥ 0, γ < 2(1− α1 − β1),

where the indicator function, 1{εt−1<0} takes a value of one when shocks are negative, and
zero otherwise.

The third model considered in this study is the asymmetric GARCH (AGARCH) model
that has the following form (see Alexander, 2008):

σ2t = α0 + α1(εt−1 − γ)2 + β1σ
2
t−1, (4)

α0 > 0, α1, β1 ≥ 0, (1 + γ2)α1 + β1 ≤ 1,

where the parameter γ captures asymmetric effects. If γ > 0, then (εt−1 − γ)2 will result
in larger negative shocks. Furthermore, when modelling volatility on equity returns, γ is
usually positive, while γ is usually negative for commodities.
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An important factor to consider when modelling volatility using different GARCH type
models, is the goodness of fit. Ahmad & Ping (2014) explained that the goodness of
fit of symmetric and asymmetric GARCH models can be compared using the Akiake
Information Criterion (AIC) and Schwarz Information Criterion (SIC). The AIC and SIC
are given by,

AIC = −2 lnL+ 2k

SIC = −2 lnL+ k lnN,

where L is the maximised value of the likelihood function, k is the number of estimated
parameters, and N is the sample size. Oberholzer & Venter (2015) applied symmetric
and asymmetric GARCH models to a range of different JSE indices to determine the
most reliable model. Their empirical results based on the AIC and SIC indicated that the
GJR-GARCH(1,1) model is the most reliable model when modelling Top40 volatility.

Conventional wisdom amongst finance researchers and practitioners is that there is a
positive relationship between risk and return. However, the mean model specified in
Equation 1 does not reflect this. Asteriou & Hall (2015) explain that this can be captured
by making use of the GARCH-in-mean model, where the conditional mean is a function
of the conditional variance (or standard deviation). An example of a GARCH-in-mean
specification is given by,

ln

(
St
St−1

)
= µ+ λσ2t + εt,

where σ2t is some GARCH process.

Hansen & Lunde (2005) compared the predictive ability of 330 GARCH type models,
with the GARCH(1,1) model as the benchmark model. Their findings indicated that the
GARCH(1,1) is highly robust, and that it is difficult to find an alternative model that
shows consistent outperformance. Hence, the GARCH(1,1) model is used as a benchmark
model in this paper. Furthermore, Oberholzer & Venter (2015) showed that the GJR-
GARCH(1,1) model is superior when modelling Top40 returns, which is consistent with
the results found in Flint et al. (2013). However, this was based on historical data only.
Therefore the performance of the GJR-GARCH(1,1) applied to Top40 option pricing is
considered in this study. Finally, according to Hseih & Ritchken (2005), the application
of the AGARCH(1,1) model to option pricing is superior at removing pricing biases from
pricing residuals and should be considered by traders and risk managers. Therefore the
AGARCH(1,1) model is included in this study. GARCH models applied to financial option
pricing is considered in the next subsection.

2.2 GARCH models applied to option pricing

Traditionally, financial options are priced using the classical Black-Scholes model. As
mentioned previously, this model assumes that volatility is constant. Wilmott (2007)
explains that the price of an option is equal to the expectation of the discounted payoff
under the risk-neutral measure. In order to incorporate a GARCH process for volatility
in an option pricing framework, Duan (1995) makes the following assumption regarding
the logarithmic returns of the underlying asset (the Top40 in this case) under the physical
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measure P:

ln

(
St
St−1

)
= r + λσt −

1

2
σ2t + εt, (5)

where r is the constant risk-free rate, λ is the unit risk premium, σt is the conditional
standard deviation, and the error term, εt, is normally distributed with mean zero and
variance σ2t . It is important to note that the conditional variance is incorporated in the
mean model (Equation 5), this is done to capture the positive relationship between risk
and return (as mentioned previously, the GARCH-in-mean model).

The dynamics of the GARCH(1,1), GJR-GARCH(1,1) and AGARCH(1,1) under the phys-
ical measure are given by Equations 2, 3, and 4 respectively. Although the GARCH models
are calibrated under the physical measure, the dynamics of the underlying asset under the
risk-neutral measure are required. Duan (1995) proposed the following dynamics under
the risk-neutral valuation measure P̃:

ln

(
St
St−1

)
= r − 1

2
σ2t + ξt, (6)

where ξt ∼ N (0, σ2t ). The GARCH(1,1), GJR-GARCH(1,1), and AGARCH(1,1) processes
under the risk neutral measure P̃ are given by:

σ2t = α0 + α1 (ξt−1 − λσt−1)2 + β1σ
2
t−1,

σ2t = α0 + α1(ξt−1 − λσt−1)2
[
α1 + γ1{ξt−1<0}

]
+ β1σ

2
t−1 and

σ2t = α0 + α1 (ξt−1 − λσt−1 − γσt)2 + β1σ
2
t−1,

respectively. Furthermore, the stationarity constraints of the GARCH(1,1), GJR-
GARCH(1,1), and AGARCH(1,1) processes are given by,

α1(1 + λ2) + β1 < 1,

α1(1 + λ2) + β1 + γ

[
λ√
2π

exp

{
−λ

2

2

}
+ (1 + λ2)Φ(λ)

]
< 1,

α1[1 + (λ+ γ)2] + β1 < 1

respectively, where Φ(·) denotes the cumulative normal distribution function.

In this study, Monte Carlo simulation is used to price European options. Given the
estimated parameters (α0, α1, β1, and λ), the current value of the underlying asset (S0),
and the unique risk-free rate (r), options can be priced using the GARCH(1,1) model by
using the following algorithm at the current time t = 0 (the initial risk neutral variance
σ0 and the initial value of ξ0 are assumed to be the unconditional variance and zero
respectively):

For a European call option that expires after T days, with strike K, the Monte Carlo price
is given by

V0 = exp

{
− rT

365

}
1

M

M∑
j=1

max {Sj,T −K, 0} .
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Algorithm 1: GARCH(1,1) Monte Carlo option pricing.

1 Generate (Z1,1, ..., ZM,T ) ∼ N (0, 1) where M is the number of simulations and T
is the number of days in the simulation period.

2 Compute σ2j,t = α0 + α1(ξj,t−1 − λσj,t−1)2 + βσ2j,t, where ξj,t = σj,t × Zj,t for
t = 1, ..., T.

3 Compute Sj,t = Sj,t−1 exp
{
r − 1

2σ
2
t + ξt

}
, for t = 1, ..., T.

4 Repeat steps 2 and 3 M times.
5 The option price is equal to the discounted payoff function (f) applied to the

underlying:

V0 = exp

{
− rT

365

}
1

M

M∑
j=1

f(Sj,t).

The conditional variance process in the algorithm changes when using the GJR-
GARCH(1,1) or AGARCH(1,1) model. The GARCH implied SAVI is considered in the
next subsection.

2.3 GARCH implied SAVI

As mentioned, the SAVI reflects investors’ expectations of volatility of the Top40 in the
following three calendar months, which is given by,(

SAV It
100

)2

= EP̃
t

[
1

τ0

∫ t+τ0

t
σ̃2sds

]
,

where τ0 is equal to three calendar months (assumed to be 63 trading days), σ̃2s is the

instantaneous annualised variance of the Top40 returns, and EP̃
t [·] denotes the conditional

expectation at time t, under the risk-neutral measure. In this paper, the SAVI is calculated
as the expected average of the variance in the n subperiods of the following three calendar
months, (

SAV It
100

)2

=
1

n

n∑
k=1

EP̃
t

[
σ̃2
t+

k×τ0
n

]
.

Daily data is used to estimate the implied SAVI, hence n = τ0, as explained by Hao &
Zhang (2013). Furthermore, when estimating the implied SAVI using daily data, a proxy
for SAV It in terms of daily variance is required. This is given by,

ϑt =
1

n

n∑
k=1

EP̃
t [σ2t+k],

where ϑt = 1
252

(
SAV It
100

)2
.

In order to derive the GARCH implied SAVI, ξt in Equation 6 is assumed to be a square-
root stochastic autoregessive volatility (SR-SARV) process of order one. SR-SARV models
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are characterised by the autoregressive nature of the stochastic variance, hence the variance
depends on the previous values (lags) of itself. The general form of the conditional variance
(given the information set Jt, available at time t) of a SR-SARV process is given by,

Ft = Ω + ΓFt−1 + Vt,

where Ω is a constant, |Γ| < 1, and E[Vt|Jt] = 0. For more information on SR-SARV
processes, the interested reader is referred to Meddahi & Renault (2004). Hao & Zhang
(2013) showed that if ξt follows an SR-SARV process, the implied volatility index (in terms
of daily variance) implied by the GARCH(1,1), GJR-GARCH(1,1), and AGARCH(1,1)
models have an analytical formula, which takes the following form:

ϑt = ζ + ψσ2t ,

where

ζ =
Ω

1− γ
(1− ψ),

ψ =
1− Γn

n(1− Γ)
.

The estimated SAVI of the GARCH(1,1), GJR-GARCH(1,1) and AGARCH(1,1) models
are obtained using the general form above.

2.4 Data and estimation methods

In this study, daily data from 1 January 2010 to 19 April 2019 are used, the dataset
was obtained from the Thomson Reuters Datastream databank. As mentioned previously,
GARCH model parameters are usually estimated using maximum likelihood. According
to Christoffersen et al. (2012), GARCH models used for option pricing can be estimated
using the maximum likelihood method (based on historical returns), by making use of
loss functions (errors between the GARCH implied option prices and market option prices
are minimised) or models can be calibrated to both historical returns and market option
prices.

Hao & Zhang (2013) estimate GARCH models using three different likelihood functions to
estimate the GARCH models, ultimately to estimate the GARCH implied VIX. The first
likelihood function is based on historical returns only, the second is based on the historical
VIX only, and the final function is a joint likelihood function based on historical returns
and the historical VIX. Christoffersen et al. (2012) explain that estimation methods based
on both historical returns and option prices, or in this case implied volatility, are better
than methods based on option prices only, because they ensure that the model is consistent
with historical returns and the market’s expectations of the future.

In this study, by making use of a similar approach to Hao & Zhang (2013), three different
likelihood functions are used to estimate GARCH model parameters, ultimately to esti-
mate the GARCH implied SAVI. The best performing GARCH model is determined by
comparing the GARCH implied SAVI to the historical SAVI, and by comparing GARCH
implied option prices to market option prices.
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The GARCH parameters based on returns only are estimated by maximising the following
log-likelihood function (Hao & Zhang 2013),

lnLR = −N
2

ln(2π)− 1

2

N∑
t=1

(
lnσ2t +

[
ln

St
St−1

− r − λσt +
1

2
σ2t

]2
/σ2t

)
,

or equivalently, by minimising

−2 lnLR = N ln(2π)

N∑
t=1

(
lnσ2t +

[
ln

St
St−1

− r − λσt +
1

2
σ2t

]2
/σ2t

)
,

where N is the number of historical returns in the estimation period. For the log-likelihood
function based on the historical SAVI, the following is assumed regarding the relationship
between the market and GARCH implied SAVI,

SAV IMkt
t = SAV IImpt + εt, εt ∼ i.i.d. N (0, ν2).

The log-likelihood function based on the historical SAVI is given by (Hao & Zhang 2013),

lnLV = −N
2

(2πν̂2)− 1

2ν̂2

N∑
t=1

(
SAV IMkt

t − SAV IImpt

)2
,

where ν2 is estimated with sample variances ν̂2. In this case, the following function is
minimised,

−2 lnLV = N(2πν̂2) +
1

ν̂2

N∑
t=1

(
SAV IMkt

t − SAV IImpt

)2
.

Finally, the joint log-likelihood function based on returns and the SAVI is given by:

lnLRV = lnLR + lnLV .

For the non-linear constrained optimisation required to estimate the GARCH model pa-
rameters, the fmincon function in Matlab is used, this is based on the interior-point
algorithm. The empirical results are discussed in the next section.

3 Empirical results

In this section, the performance of the GARCH(1,1), GJR-GARCH(1,1), and
AGARCH(1,1) option pricing models in a South African equity context are considered.
The goodness of fit of the different likelihood functions for each GARCH model is com-
pared based on the AIC and SIC, and the performance of the models (the GARCH implied
SAVI compared to the historical SAVI) is compared based on the the mean absolute error
(MAE), and root mean squared error (RMSE). The information criterion and performance
metrics are reported in the tables below:
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Log-likelihood GARCH(1,1) GJR-GARCH(1,1) AGARCH(1,1)
function AIC SIC AIC SIC AIC SIC

lnLR -6.4264 -6.4168 -6.4628 -6.4508 -6.4776 -6.4656
lnLV 6.5748 6.5844 7.4713 7.4833 5.4206 5.4326
lnLRV -0.8559 -0.8463 -0.9288 -0.9168 -0.6642 -0.6522

Table 1: GARCH model information criterion.

Log-likelihood GARCH(1,1) GJR-GARCH(1,1) AGARCH(1,1)
function MAE RMSE MAE RMSE MAE RMSE

lnLR 3.4729 4.4200 3.7126 4.6570 3.0943 3.9850
lnLV 3.6869 4.6287 3.2764 4.0218 1.9028 2.5157
lnLRV 2.0112 1.986 1.9860 2.6060 2.5785 3.3930

Table 2: GARCH implied SAVI performance metrics.

In Table 1, the values in bold indicate the best fitting model for the respective log-likelihood
function. The bold values in Table 2 indicate the log-likelihood function that produces
the best performing GARCH model in estimating the SAVI.

The AIC and SIC clearly show that the asymmetric models produce a better fit when
modelling Top40 returns; this is consistent with the findings of Oberholzer & Venter
(2015). The performance metrics indicate that the joint log-likelihood function (historical
returns and SAVI) produces the best performing model for the GARCH(1,1), and the GJR-
GARCH(1,1) model. The log-likelihood function based on the historical SAVI (lnLV )
produces the best performing AGARCH(1,1) model.

When the performance of the three GARCH option pricing models is considered, the
AGARCH(1,1) model is the best performing model when modelling the implied SAVI.
This implies that incorporating asymmetric effects improves performance when modelling
implied volatility in the South African equity market, which is consistent with the infor-
mation criterion. The coefficients of the best performing GARCH(1,1), GJR-GARCH(1,1)
and AGARCH(1,1) model are reported in table 3:

Coefficient GARCH(1,1) GJR-GARCH(1,1) AGARCH(1,1)

α0 3.79E-07 3.58E-07 4.08E-07
α1 0.0171 0.0029 0.015
β1 0.9825 0.9841 0.9775
γ - 0.0233 4.2273
λ 0.1539 0.0695 -3.5230

Table 3: GARCH model coefficients.

The asymmetry coefficient of the GJR-GARCH(1,1) and AGARCH(1,1) indicates that
volatility of the Top40 returns reacts differently to positive and negative shocks, this is
also consistent with previous findings in the literature. Furthermore, the γ coefficient
of the AGARCH(1,1) model is positive; this is consistent with expectations (positive for
equity returns, Alexander 2008). The coefficients in Table 3 were used to produce the
line graphs below. Figure 1 illustrates the GARCH implied SAVI (of the best performing
models) and historical SAVI over time.
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Figure 1: GARCH implied SAVI.

Figure 1 indicates that the GARCH implied SAVI is similar for each model and that the
models perform fairly well when compared to the historical SAVI.

The best performing GARCH(1,1), GJR-GARCH(1,1), and AGARCH(1,1) are used to
price European options on the Top40; the model prices are compared to the JSE prices
to test the pricing performance of each model. Monte Carlo simulation is used to obtain
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risk-neutral sample paths. Sample paths of each model are plotted in Figure 2 below:

Figure 2: Risk-Neutral sample paths.

The sample paths in Figure 2 indicate how the simulated spot price varies over time. The
green line in each subplot represents the expected value under the risk-neutral measure
(S0 exp (rτ) , where τ is the amount of time that has passed). This illustrates the concept
of risk-neutrality. To show how the distribution changes over time, a three-dimensional
histogram of 25 000 AGARCH(1,1) sample paths is plotted in Figure 3.
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Figure 3: Histogram: AGARCH(1,1) sample paths.

The histogram indicates that as the simulation period increases (number of days), the
dispersion of the simulated spot increases. This is intuitive because there is more uncer-
tainty over a longer period of time and therefore options with longer dated expiries are
more expensive. To show the convergence of the Monte Carlo prices, the JSE price as well
as three standard deviation error bounds of each relevant model is shown, plotted across
the number of simulations in Figure 4 below. The prices are for a 72-day European call
option with strike K = 41251.27 (moneyness=0.8). Furthermore, the interest rate used to
simulate the spot price is consistent with the JSE forward curve (published by the JSE),
the expected payoff is discounted using the 91-day treasury bill rate.

To test the pricing performance of each model, the model prices of nine 72-day European
call options are compared to market prices published by the JSE (on 9 April 2019). The
moneyness levels are equally spaced between 0.6 and 1.4. The GARCH option prices were
calculated using 1 000 000 sample paths. The implied model prices and JSE prices are
plotted below:
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Figure 4: GARCH Monte Carlo option prices.

Figure 5 indicates that the GARCH option pricing models perform well when compared
to market option prices. The pricing performance metrics and computation time (to price
nine 72-day European call options) of each model are reported in the table 4.
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Figure 5: Implied call option prices.

Model RMSE MAE Computation Time (seconds)

GARCH(1,1) 191.4070 104.5114 225.4897
GJR-GARCH(1,1) 184.0239 99.6803 281.261
AGARCH(1,1) 180.2461 97.5269 275.9655

Table 4: Pricing performance metrics and computation time.

The RMSE and and MAE are calculated based on the Rand values of the option prices.
The pricing performance metrics indicate that the AGARCH(1,1) model is the most accu-
rate, followed by the GJR-GARCH(1,1) model, and finally the GARCH(1,1) model. The
results are consistent with the implied SAVI performance metrics. However, the difference
between the pricing performance of the symmetric GARCH(1,1) model and the asym-
metric models is marginal. Furthermore, the computation time indicates that the time
required to price options using the GARCH(1,1) is slightly less than the other models;
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this is due to the fact that the latter model does not include a term modelling asymmetry.

4 Conclusion

The use of volatility indices has grown in recent times. These indices are used to aid in
the prediction and measurement of financial conditions as well as stress situations in the
markets (Huskaj & Larsson 2016). In recent work, Bollerslev, Marrone, Xu, and Zhou
(2014) highlighted the use of volatility indices and the variance risk premium to predict
aggregate stock market returns. While many studies have been performed using the CBOE
VIX index, the SAVI index is considered.

In this paper, three different GARCH models were used to model the GARCH implied
SAVI. The symmetric GARCH(1,1), the asymmetric GJR-GARCH, and AGARCH(1,1)
models. Furthermore, three different log-likelihood functions were considered in the model
parameter estimation. The first based on historical returns data only, the second based on
the historical SAVI, and finally a joint likelihood function based on the historical returns
and SAVI. This is based on the work by Hao & Zhang (2013).

The goodness of fit of each model was compared based on the AIC and SIC. The infor-
mation criteria indicated that the asymmetric models provide a better fit when compared
to the symmetric GARCH(1,1) model, this is consistent with previous findings in the lit-
erature (Oberholzer & Venter, 2015; Flint et al., 2013). The accuracy of each model was
tested by comparing the GARCH implied SAVI to the historical SAVI.

Regarding the log-likelihood functions, for the GARCH(1,1) and GJR-GARCH(1,1) the
joint likelihood function based on historical returns and the historical SAVI produces the
best performing model. The log-likelihood function based on the historical SAVI produces
the best performing AGARCH(1,1) model. Finally, when the performance of all models
are considered, the empirical results showed that the asymmetric AGARCH(1,1) is the
best performing model when modelling the GARCH implied SAVI.

The pricing performance of the GARCH option pricing models was compared based on the
GARCH implied prices when compared to (72-day) market traded European option prices.
The results were consistent with the GARCH implied SAVI results; this indicates that the
use of asymmetric GARCH option pricing models improves the model performance in
the South African equity market. However, the improvement is marginal. The use of
asymmetric models is more computationally intensive.Therefore the results obtained are
in line with Hansen & Lunde (2005), the GARCH(1,1) model is highly robust and that it
is difficult to find an alternative model that shows consistent outperformance.

Areas for future research include the use of different GARCH processes and error distribu-
tions (which take skewness and kurtosis into account) when modelling the implied SAVI.
Furthermore, the GARCH option pricing performance should also be tested when applied
to single stock options in the South African market. In addition, the Greeks and hedg-
ing performance (applied to the South African market) of the different models considered
should also be compared.
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