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Abstract

The exponential distribution plays a key role in the practical application of reli-
ability theory, survival analysis, engineering and queuing theory. These applications
often rely on the underlying assumption that the observed data originate from an
exponential distribution. In this paper, two new tests for exponentiality are proposed,
which are based on a conditional second moment characterisation. The proposed tests
are compared to various established tests for exponentiality by means of a simulation
study where it is found that the new tests perform favourably relative to the existing
tests. The tests are also applied to real-world data sets with independent and identi-
cally distributed data as well as to simulated data from a Cox proportional hazards
model, to determine whether the residuals obtained from the fitted model follow a
standard exponential distribution.

Key words: Characterisation, Cox’s proportional hazards model, exponential distribution, goodness-

of-fit test.

1 Introduction

The exponential distribution is an important and commonly used statistical model for a
multitude of real-life phenomena, such as lifetimes, time to default of loans, and many
other time-to-event scenarios. As a result, this distribution plays a vital role in the prac-
tical application of reliability theory, survival analysis, engineering, and queuing theory
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(to name only a few), as the underlying theory governing these applications often as-
sumes an exponential distribution for the data. Therefore, to effectively implement these
applications, it is necessary to perform goodness-of-fit tests to determine whether these
fundamental distributional assumptions are satisfied or not. Examples where the assump-
tion of exponentiality is necessary (and hence the need to test for this assumption) range
from the analysis of queuing networks [26], to cancer clinical trials [15], and the time-to-
failure of systems of machines and operators [12]; for further examples of data sets see the
papers by Shanker, Fesshaye, and Selvaraj [23, 24].

Suppose that a random variableX follows an exponential distribution with scale parameter
λ (written X ∼ Exp(λ)). This random variable has a number of unique distributional
properties which include the forms of its cumulative distribution function (CDF), survival
function, probability density function, and characteristic function (CF), which are given
by

F (x) = P(X < x) = 1− e−λx,
S(x) = P(X > x) = 1− F (x) = e−λx,

f(x) = λe−λx,

and

φ(x) =
λ

λ− ix
, i =

√
−1,

respectively, with x > 0 and where λ > 0 is the scale parameter, with E(X) = 1/λ.
In addition, the exponential distribution also exhibits many other unique distributional
properties, called characterisations. These characterisations help in the development of
tests for exponentiality since, if one can verify that the data has these properties, then
one can conclude that the data were obtained from an exponential distribution. One
such property is the so-called ‘memoryless’ property which states that, if X follows an
exponential distribution, then we can write

P(X > s+ t |X > s) = P(X > t), (1)

for s, t > 0. This property implies that, if X represents the lifetime of a certain component,
then the remaining lifetime of that component is independent of its current age. For
components that suffer from wear-and-tear (i.e., where the lifetime is dependent on its
current age), the exponential distribution would not be an appropriate model. A second
property states that the exponential distribution uniquely has the feature that the hazard
rate is a constant, that is,

h(x) =
f(x)

1− F (x)
= λ.

This feature is directly tied to the memoryless property since the failure rate is constant
throughout the lifetime of the component.

Suppose now that X1, X2, . . . , Xn are realisations from some random variable X with
unknown distribution function F , then the process of testing whether or not this data
are realisations from an exponential distribution with parameter λ involves the use of
statistical inference via goodness-of-fit tests. The inferential question can be framed in
the form of the following composite hypothesis statement:

H0 : The distribution of X is exp(λ), (2)
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for some λ > 0, against the alternative hypothesis that the distribution of X is something
other than exponential. Note that the tests that will be discussed in this paper all make
use of a scaled version of the original data, defined as Yj = Xj λ̂, j = 1, 2, . . . , n, where λ̂
denotes the maximum likelihood estimator (MLE) of the parameter λ and is given by

λ̂ = 1/X̄n with X̄n = 1
n

∑n
j=1Xj . The motivation for the use of this scaling factor

primarily comes from the fact that the distribution of exponential random variables is
invariant to simple scale transformations, that is, X is exponentially distributed if, and
only if, cX is also exponentially distributed for every constant c > 0. Therefore, conclu-
sions drawn regarding exponentiality based on the sample Y1, Y2, . . . , Yn can reasonably be
extended to the exponentiality of X (from which X1, X2, . . . , Xn was obtained). Further-
more, many statistics discussed will also employ the order statistics of Xj and Yj , defined
as X(1)<X(2)<. . .<X(n) and Y(1)<Y(2)<. . .<Y(n), respectively.

To test the hypothesis in (2), formal test statistics are used, some of which are general
statistics that can be applied to test for almost any distribution, whereas others exploit the
various unique characteristics of exponentially distributed data, such as the memoryless
or constant hazard properties. Examples of general tests employed to test exponentiality
include the Kolmogorov-Smirnov test and the Cramér-von Mises test, both of which are
based on the same basic principle of measuring the discrepancies between the theoretical
CDF of the exponential distribution and its empirical equivalent (see, e.g., Chapter 4 of
D’Agostino and Stephens, 1986 [11]). Another class of general tests involves a similar ap-
proach, but replaces the CDF with the CF; examples of these include the test by Epps and
Pulley [13], and the one by Meintanis, Swanepoel and Allison [21]. In addition, there are
many goodness-of-fit tests based on the unique properties of the exponential distribution,
which are occasionally desirable as they tend to focus on much more specific aspects of the
distribution and are potentially more robust than the more general tests. For example,
since the memoryless property uniquely characterises the exponential distribution, this
implies that the exponentially distributed random variable X will have this property and
conversely, if X exhibits this property it must be exponentially distributed. Therefore,
a test based on this property will involve first determining sample estimates of the two
probabilities appearing on either side of the expression of (1), and the test can then be
designed to measure the equality of these two estimates. For examples of tests based on
this characterisation, see [2], [5], and [6].

There are many more such unique characterisations of the exponential distribution and
the literature on goodness-of-fit contains numerous test statistics based on these charac-
terisations. For example, for tests based on the mean residual life, see [8], [25], [17], and
[9]. For a test based on the Arnold-Villasenor characterisation, see [18], and for a test
based on the Rossberg characterisation see [27]. For a comprehensive review of tests for
exponentiality, the interested reader is referred to the review papers by Ascher [7], Henze
and Meintanis [16], and Allison, Santana, Smit and Visagie [4].

The remainder of the paper is organised as follows: In Section 2 we propose new tests
for exponentiality which are based on a conditional second moment characterisation of
the exponential distribution and, in Section 3, the results of a brief Monte Carlo simu-
lation are presented to compare the power performance of the newly proposed tests to
some commonly used existing tests for exponentiality. The paper concludes in Section
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4 where the tests are applied to some real-world data sets with independent and iden-
tically distributed random values, as well as to data simulated from a Cox proportional
hazards model, to determine whether the residuals obtained from the fitted model follow
a standard exponential distribution.

2 New tests for exponentiality based on a characterisation

Consider the following characterisation of the exponential distribution by Afify, Nofal and
Ahmed [1]:

Characterisation. Let X be a non-negative random variable with continuous distribution
function F and density f . If E(X2) < ∞, then X has an exponential distribution with
parameter λ (that is, F (x) = 1− e−λx) if, and only if, for all t > 0

E
[
X2|X > t

]
=

2

λ2
+ h(t)

(
t2

λ
+

2t

λ2

)
,

where h(t) = f(t)
S(t) is the hazard rate.

From this characterisation we can deduce the following corollary.

Corollary 1 Let X be a non-negative random variable with continuous distribution func-
tion F . If E(X2) < ∞, then X has an exponential distribution with parameter λ if, and
only if, for all t > 0

E
[
X2 I(X > t)

]
= S(t)rλ(t),

where rλ(t) := 2
λ2 + h(t)

(
t2

λ + 2t
λ2

)
and I(· ) denotes the indicator function.

Proof: Straightforward calculations yield that, for all t > 0,

E
[
X2|X > t

]
=

1

P (X > t)
E
[
X2 I(X > t)

]
=

1

S(t)
E
[
X2 I(X > t)

]
.

From the Characterisation, it follows that X has an exponential distribution with param-
eter λ if, and only if, for all t > 0,

1

S(t)
E
[
X2 I(X > t)

]
= rλ(t),

or equivalently if, and only if, for all t > 0,

E
[
X2 I(X > t)

]
= S(t)rλ(t).

�

Now, note that if X ∼ Exp(λ) then

Y = λX ∼ exp(1).
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Based on Y , the characterisation in Corollary 1 can be restated as follows: Y is exponen-
tially distributed if, and only if,

E
[
Y 2 I(Y > t)

]
= S(t)r1(t),

where S(t) = P (Y > t) and r1(t) = 2 + h(t)
(
t2 + 2t

)
, with h(t) the hazard rate of Y .

Based on this, a random variable Y has a standard exponential distribution if, and only
if,

E
[
Y 2 I(Y > t)

]
− S(t)r1(t) = 0,

or equivalently if, and only if,

ψ(t) := E
[
Y 2 I(Y > t)

]
− 2S(t)− f(t)

{
t2 + 2t

}
= 0,

where f(t) is the density function of Y .

Naturally, ψ(t) is unknown and hence must be estimated from the data Y1, Y2, . . . , Yn,
where Yj = Xj λ̂ = Xj/X̄n, j = 1, 2, . . . , n. Define two possible estimators for ψ(t) by

ψ̂(1)
n (t) =

1

n

n∑
i=1

Y 2
i I (Yi > t)− 2

n

n∑
i=1

I (Yi > t)− e−t
(
t2 + 2t

)
and

ψ̂(2)
n (t) =

1

n

n∑
i=1

Y 2
i I (Yi > t)− 2

n

n∑
i=1

I (Yi > t)− f̂(t)
(
t2 + 2t

)
.

Here, f̂(t) denotes the kernel density estimate of f(t), which is defined as

f̂(t) =
1

nh

n∑
i=1

φ

(
t− Yi
h

)
,

where φ(· ) is the standard normal density function and h is a suitably chosen bandwidth
(for an in-depth discussion on kernel density estimators, the interested reader is referred
to the monograph by Wand and Jones [28]). The only difference between the estimators

ψ̂
(1)
n and ψ̂

(2)
n is that in ψ̂

(1)
n we choose f(t) = e−t, the density function specified under the

null hypothesis, whilst in ψ̂
(2)
n we estimate f by f̂ .

Now, if the observed data originated from an exponential distribution, then both ψ̂
(1)
n and

ψ̂
(2)
n should be close to zero. This leads to the following two Cramér-von Mises type test

statistics

Sn = n

∞∫
0

[
ψ̂(1)
n (t)

]2
w(t)dFn(t)

and

Tn = n

∞∫
0

[
ψ̂(2)
n (t)

]2
w(t)dFn(t),
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where Fn(t) = 1
n

∑n
i=1 I(Yi ≤ t) is the empirical distribution function of Y1, Y2, . . . , Yn

and w(t) is a suitable, positive weight function satisfying some standard integrability
conditions. For implementation of the proposed test statistics, we will use w(t) = e−at,
where a > 0 is a user-defined tuning parameter.

With this choice of w(t) the following easily calculable form of the proposed test statistics
Sn and Tn is obtained.

Sn,a =
n∑
j=1

[
1

n

n∑
i=1

Y 2
i I (Yi > Yj)−

2

n

n∑
i=1

I (Yi > Yj)− e−Yj
(
Y 2
j + 2Yj

)]2
e−aYj

and

Tn,a =
n∑
j=1

[
1

n

n∑
i=1

Y 2
i I (Yi > Yj)−

2

n

n∑
i=1

I (Yi > Yj)− f̂(Yj)
(
Y 2
j + 2Yj

)]2
e−aYj .

Both tests reject the null hypothesis in (2) for large values of the test statistics. The
critical values for the test statistics can easily be calculated using the following Monte
Carlo procedure.

1. Draw a random sample X1, X2, . . . , Xn from an exponential distribution with pa-
rameter 1.

2. Obtain the scaled observations Yi = Xi/X̄n, i = 1, 2, . . . , n.

3. Calculate the test statistic, say S = Sn(Y1, Y2, . . . , Yn).

4. Repeat steps 1–3 a large number of times, say MC times, to obtain MC copies of
S denoted S1, S2, . . . , SMC .

5. Obtain the order statistics S(1) ≤ S(2) ≤ · · · ≤ S(MC).

6. The critical value at a α% significance level is then given by

Ĉn(α) = S(bMC(1−α)c),

where bxc denotes the largest integer less than or equal to x.

3 Simulation study and results

In this section Monte Carlo simulations are used to compare the finite-sample performance
of the newly proposed tests Tn,a and Sn,a to the following existing tests for exponentiality.

• The traditional tests of Kolmogorov-Smirnov (KSn) and Cramér-von Mises (CMn),
where the test statistics for these tests are given by

KSn = max
{
KS+

n ,KS
−
n

}
,

where

KS+
n = max

1≤j≤n

[
j

n
−
(
1− e−Y(j)

)]
,
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KS−n = max
1≤j≤n

[(
1− e−Y(j)

)
− j − 1

n

]
and

CMn =
1

12n
+

n∑
j=1

[(
1− e−Y(j)

)
− 2j − 1

2n

]2
.

Both of these tests reject the null hypothesis for large values of the test statistics

• A Kolmogorov-Smirnov type test (KSn) and a Cramér-von Mises type test (CMn)
based on the mean residual life, as developed by Baringhaus and Henze [8], with the
following test statistics

KSn =
√
n sup
t≥0

∣∣∣∣∣∣ 1n
n∑
j=1

min{Yj , t} −
1

n

n∑
j=1

I (Yj ≤ t)

∣∣∣∣∣∣ =
√
nmax

{
KS

+
n ,KS

−
n

}
,

where

KS
+
n = max

j∈{0,1,...,n−1}

[
1

n

(
Y(1) + · · ·+ Y(j)

)
+ Y(j+1)

(
1− j

n

)
− j

n

]
,

KS
−
n = max

j∈{0,1,...,n−1}

[
j

n
− 1

n

(
Y(1) + · · ·+ Y(j)

)
− Y(j)

(
1− j

n

)]
.

and

CMn = n

∫ ∞
0

[
1

n

n∑
j=1

min {Yj , t} −
1

n

n∑
j=1

I (Yj ≤ t)

]2

e−tdt

=
1

n

n∑
j=1

n∑
k=1

[
2− 3 exp (−min{Yj , Yk})− 2 min{Yj , Yk}

(
e−Yj + e−Yk

)
+ 2 exp (−max{Yj , Yk})

]
.

Both KSn and CMn reject the null hypothesis for large values.

• The Epps and Pulley test EPn [13], which is based on the characteristic function,
φ(x), and with the test statistic given by

EPn =
√

48n

 1

n

n∑
j=1

e−Yj − 1

2

 .
The null hypothesis is rejected for large values of |EPn|.

3.1 Simulation setting

A significance level of 5% was used throughout the study. Empirical critical values of
all the tests were obtained from 10 000 independent Monte Carlo replications using the
procedure given at the end of Section 2. Power estimates were calculated for sample sizes
n = 20 and n = 30 using 10 000 independent Monte Carlo replications for the various
alternative distributions given in Table 1.

The two new tests in which a tuning parameter appears were evaluated for a = 0.25 and
a = 1. All calculations and simulations were performed in R [22].
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3.2 Simulation results

Table 2 contains the percentage of the 10 000 Monte Carlo samples that resulted in the
rejection of the null hypothesis in (2) rounded to the nearest integer. For each alternative
the top row corresponds to the estimated powers obtained for n = 20 whereas the row
below corresponds to the estimated powers for n = 30.

Alternative f(x) Notation

Gamma 1
Γ(θ)

xθ−1e−x Γ(θ)

Weibull θxθ−1 exp(−xθ) W (θ)

Power 1
θ
x(1−θ)/θ, 0 < x < 1 PW (θ)

Linear failure rate (1 + θx) exp(−x− θx2/2) LFR(θ)

Exponential logarithmic (ln θ)−1(1−θ)e−x

(1−θ)e−x−1
EL(θ)

Exponential geometric (1−θ)e−x

(1−θe−x)2
EG(θ)

Table 1: Alternative distributions considered in the simulation study.

The highest power for each alternative distribution is highlighted for ease of comparison.
From Table 2 it is clear that there is no single test that dominates all of the other tests.
However, Sn,a outperforms all its competitors for the EG(θ), EL(θ) and Γ(0.7) alterna-
tives and for both sample sizes. No single test dominates for the majority of the other
alternatives with the exception of Tn,a, which performs well for the alternatives LF (4)
and PW (1). Overall, the two newly proposed tests produce estimated powers which are
competitive relative to the other tests and, hence, this limited Monte Carlo study shows
that they can be used in practice to test whether observed data are realised from an
exponential distribution.

4 Practical applications and conclusion

In this section all the tests considered in the simulation study will be applied to both
real-world and simulated data sets. The two real-world data sets considered in this study
respectively contain the failure times of air conditioning systems and the waiting times
of bank customers. For these two data sets, the tests for exponentiality will be used to
determine whether the observed values are realisations from an exponential distribution.
On the other hand, the remaining two data sets that will be considered are simulated from
a Cox proportional hazards (CPH) model and the tests for exponentiality will be used to
determine the adequacy of a specific CPH model fitted to the data.

4.1 Practical application to real-world data sets

The first data set contains 30 failure times of the air conditioning system of an airplane as
given by Linhart and Zucchini [20], whereas the second data set contains the waiting times
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Distribution Tn,0.25 Tn,1 Sn,0.25 Sn,1 KSn CMn KSn CMn EPn

EG(0.2)
5 7 7 8 6 6 5 6 6
6 7 7 8 6 6 5 6 6
10 15 17 19 11 12 9 14 15

EG(0.5)
16 20 22 23 15 16 13 19 19

EG(0.8)
37 44 47 51 34 39 32 43 45
53 61 61 65 49 55 48 60 60
14 20 22 25 16 18 12 19 20

EL(0.2)
23 29 29 33 23 26 19 28 29

EL(0.5)
6 8 9 10 7 7 6 8 8
8 10 11 12 8 8 7 9 9
5 6 6 6 5 5 5 5 6

EL(0.8)
5 5 6 6 6 5 5 6 5

Γ(0.7)
13 17 19 20 15 18 11 18 19
17 24 24 27 22 26 18 26 26
5 5 5 5 5 5 5 5 5

Γ(1)
5 5 5 5 5 5 5 5 5

Γ(1.5)
18 15 12 5 17 21 22 20 21
24 19 16 12 25 28 27 27 28
42 40 33 21 41 48 46 47 48

Γ(2)
59 56 48 42 60 69 64 69 69

LFR(2)
30 27 18 14 24 28 32 29 30
44 39 35 24 35 43 46 47 46
45 40 30 23 34 42 45 44 42

LFR(4)
63 57 53 41 51 60 61 62 63

PW (1)
84 73 65 49 54 68 74 71 68
97 89 87 76 72 86 90 90 86
13 11 8 6 12 14 16 13 14

W (1.2)
18 14 11 7 16 18 20 19 19

W (1.5)
45 40 35 29 40 48 55 49 51
66 59 55 43 58 66 65 70 72

Table 2: Estimated powers for n = 20 (top) and n = 30 (bottom).
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(in minutes) of 100 bank customers before service as obtained from Ghitany, Atieh and
Nadarajah [14]; both data sets can be found in the Appendix in Tables 7 and 8. In Table
3 and 4 a summary of the results of all the different tests for exponentiality can be found.
The summary contains the value of each test statistic and associated p-value used to test
whether the data originated from an exponential distribution. For the failure time data,
all of the tests, except the KSn test, do no reject the null hypothesis of exponentiality
using a 5% significance level. In contrast, for the waiting time data, all of the tests reject
the null hypothesis of exponentiality at the same significance level. This illustrates that
the newly proposed test at least agrees with the more traditional tests for exponentiality.

Test Test statistic value p-value

Tn,0.25 13.592 0.153

Tn,1 8.446 0.089

Sn,0.25 8.336 0.117

Sn,1 6.032 0.079

KSn 0.213 0.020

CMn 0.214 0.053

KSn 1.325 0.053

CMn 0.397 0.072

EPn 1.716 0.089

Table 3: Summary of results for failure times of air conditioning system.

Test Test statistic value p-value

Tn,0.25 57.365 0.004

Tn,1 30.407 0.005

Sn,0.25 31.810 0.010

Sn,1 19.204 0.012

KSn 0.173 <0.001

CMn 0.715 <0.001

KSn 2.176 <0.001

CMn 1.480 <0.001

EPn -3.659 0.001

Table 4: Summary of results for waiting times of bank customers.

4.2 Practical application to simulated data sets

The following two data sets, given in the Appendix in Tables 9 and 10, contain simulated
lifetimes (ti, i = 1, 2, . . . , 100) together with a single covariate (xi, i = 1, 2, . . . , 100) which
can take on the values 0, 1, 2 or 3. The first data set was obtained by simulating data
from a CPH model with a Weibull cumulative baseline hazard function, whereas the second
data set was simulated from a CPH model with a log-normal cumulative baseline hazard
function.
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Recall that the cumulative hazard function of the jth individual follows a CPH model with
a single covariate if

Λj(t) = eβxjH(t),

where H(· ) is some unspecified baseline cumulative hazard function, xj is the value of the
covariate of the jth individual and β is an unknown regression parameter.

On the basis of the observed data (tj , xj), j = 1, 2, . . . , 100 we wish to test the null hy-
pothesis

H0 : H(t) = H0(t; a, b), (3)

where H0(t; a, b) =
(
t
b

)a
is the Weibull cumulative baseline hazard function with unknown

parameters a and b.

We can now estimate the parameters β, a and b by their maximum likelihood estimators
β̂, â and b̂. Based on these estimators we can obtain the (so-called) Cox-Snell residuals,
defined as

ε̂j = eβ̂xjH0(tj ; â, b̂).

If the null hypothesis is true (i.e., if the cumulative baseline hazard was correctly specified
as the Weibull cumulative baseline hazard) then the Cox-Snell residuals should (approx-
imately) follow a standard exponential distribution (see, e.g., Chapter 11 of Klein and
Moeschberger [19]). Hence any exponential test on the basis of ε̂j , j = 1, 2, . . . , 100 con-
stitutes in effect a goodness-of-fit test for the CPH model itself.

It is, therefore, expected that tests for exponentiality will not reject the null hypothesis for
the first simulated data set (recall that this data was generated from a CPH model with a
Weibull cumulative baseline hazard), whereas the tests should reject the null hypothesis of
exponentiality for the second simulated data set (which was generated from a CPH model
with a log-normal cumulative baseline hazard).

The results of all the different tests for exponentiality for the two simulated data sets are
summarised in Table 5 and 6, which display both the test statistics and associated p-values
used to test whether the residuals originate from a standard exponential distribution, i.e.,
whether the cumulative baseline hazard is correctly specified as Weibull. Due to the
fact that the null hypothesis in (3) involves unknown parameters — and hence must be
estimated under H0 — the p-values had to be obtained using the bootstrap algorithm
described in Cockeran, Allison and Meintanis [10]. For the first simulated data set, the
MLEs are β̂ = 0.090, â = 0.880 and b̂ = 0.763. Table 5 shows that all tests correctly do
not reject the null hypothesis, which is expected, as the data was known to be generated
using a Weibull cumulative baseline hazard.

The second simulated data set produced the following MLEs: β̂ = 0.008, â = 0.854 and
b̂ = 3.302, and the resulting p-values displayed in Table 6 indicate that the null hypothesis
was rejected by all of the tests. This is not surprising, since a good test for exponentiality
should have the ability to detect the mis-specification of the Weibull cumulative baseline
hazard when the data originated from a CPH model with a log-normal cumulative baseline
hazard.

To ultimately use the two new tests for exponentiality, one would need to make a choice
regarding the value of the tuning parameter a, however, from extensive simulation studies
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Test Test statistic value p-value

Tn,0.25 2.824 0.549

Tn,1 0.713 0.692

Sn,0.25 0.328 0.745

Sn,1 0.093 0.872

KSn 0.065 0.358

CMn 0.040 0.679

KSn 0.692 0.447

CMn 0.053 0.674

EPn 0.156 0.337

Table 5: Summary of results for the first simulated data set (Weibull cumulative baseline

hazard).

Test Test statistic value p-value

Tn,0.25 12.476 0.025

Tn,1 5.394 0.017

Sn,0.25 8.955 0.013

Sn,1 5.183 0.013

KSn 0.119 0.004

CMn 0.282 0.001

KSn 1.366 0.005

CMn 0.483 0.001

EPn 1.289 0.001

Table 6: Summary of results for the second simulated data set (log-normal cumulative baseline

hazard).
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conducted (not displayed here), it was concluded that a = 1 produces satisfactory results.
If, however, one would prefer to rather use a data dependent choice of this parameter, one
can employ the method outlined in Allison and Santana [3].
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Appendices

A. Real-world and simulated data sets

This appendix contains the data sets that were used for the practical applications in
Section 4.

23 261 87 7 120 14 62 47 225 71
246 21 42 20 5 12 120 11 3 14
71 11 14 11 16 90 1 16 52 95

Table 7: Failure times of air conditioning system of an airplane.

0.8 0.8 1.3 1.5 1.8 1.9 1.9 2.1 2.6 2.7
2.9 3.1 3.2 3.3 3.5 3.6 4 4.1 4.2 4.2
4.3 4.3 4.4 4.4 4.6 4.7 4.7 4.8 4.9 4.9
5 5.3 5.5 5.7 5.7 6.1 6.2 6.2 6.2 6.3

6.7 6.9 7.1 7.1 7.1 7.1 7.4 7.6 7.7 8
8.2 8.6 8.6 8.6 8.8 8.8 8.9 8.9 9.5 9.6
9.7 9.8 10.7 10.9 11 11 11.1 11.2 11.2 11.5
11.9 12.4 12.5 12.9 13 13.1 13.3 13.6 13.7 13.9
14.1 15.4 15.4 17.3 17.3 18.1 18.2 18.4 18.9 19
19.9 20.6 21.3 21.4 21.9 23 27 31.6 33.1 38.5

Table 8: Waiting times of bank customers (in minutes) before service.

t 0.277 0.171 0.234 0.531 0.319 1.633 0.161 0.373 0.209 0.606
x 1 0 0 1 0 0 3 1 1 2
t 0.470 2.346 0.490 0.565 2.259 0.137 0.502 0.066 0.212 0.448
x 2 0 1 2 1 0 0 3 1 2
t 0.540 1.438 1.650 0.024 0.377 2.456 0.682 0.313 0.697 0.689
x 3 2 2 2 0 0 1 1 3 1
t 0.312 0.188 0.264 0.008 1.400 0.872 1.062 0.006 0.380 0.759
x 1 3 1 3 0 1 2 2 2 2
t 0.920 0.328 0.302 1.210 0.107 1.740 0.792 0.627 0.055 0.567
x 1 1 2 3 0 1 3 3 2 1
t 0.132 0.089 0.068 0.516 2.628 1.325 1.127 0.473 0.051 0.509
x 0 0 0 0 2 1 2 3 1 0
t 0.789 0.029 0.216 2.506 0.021 0.112 0.127 0.167 1.228 0.272
x 1 3 0 0 3 1 2 3 0 2
t 0.144 0.176 0.014 0.269 0.651 0.415 1.525 1.019 0.130 1.152
x 2 1 2 2 3 3 1 3 0 3
t 4.164 0.067 1.297 1.209 0.020 1.072 0.128 1.426 2.085 0.309
x 0 3 2 3 2 3 3 2 2 3
t 0.415 0.121 0.018 1.385 1.880 0.085 0.377 0.009 3.357 0.109
x 0 3 0 1 1 3 0 2 3 0

Table 9: Simulated data set from a CPH model with a Weibull cumulative baseline hazard.
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t 0.454 0.925 0.215 2.831 20.276 0.418 2.076 0.546 1.473 6.037
x 1 3 3 1 0 0 2 2 3 3
t 0.795 0.232 1.423 3.064 5.358 0.630 2.762 2.225 0.339 2.964
x 3 3 1 3 2 0 3 0 1 2
t 9.573 0.289 12.025 1.040 8.959 2.353 8.887 2.544 1.580 0.634
x 3 2 3 3 0 1 0 2 0 3
t 0.434 0.426 0.766 12.508 1.220 1.250 0.284 0.656 1.778 0.736
x 1 1 2 2 2 1 3 1 1 2
t 1.588 13.494 3.873 3.931 0.843 2.385 2.243 1.087 1.583 3.441
x 0 0 3 0 3 0 0 3 1 2
t 1.677 2.294 1.056 1.072 5.101 1.631 1.449 9.263 3.322 0.820
x 0 0 1 2 1 3 1 1 2 0
t 2.267 7.378 10.503 1.043 0.862 0.670 2.078 5.113 2.014 5.540
x 0 1 3 0 0 2 0 1 1 0
t 0.453 2.290 1.065 1.101 0.294 12.021 0.569 0.211 0.277 0.479
x 2 2 3 3 0 1 2 1 3 0
t 2.094 11.347 3.797 27.351 11.561 3.542 0.753 0.479 0.156 5.678
x 1 3 2 2 1 2 2 0 1 0
t 0.375 19.239 1.701 1.210 7.755 4.850 1.830 1.022 11.083 0.563
x 0 2 3 1 1 3 3 2 2 2

Table 10: Simulated data set using a CPH model with a log-normal cumulative baseline hazard.




