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Abstract

Every day national power system networks provide thousands of MW of electric
power from generating units to consumers, requiring different operations and plan-
ning to ensure secure systems. Where demand exceeds supply, load shedding — a
controlled, enforced reduction in supply — is necessary to prevent system collapse.
Should load shedding need to be implemented, a planned schedule is necessary to
allocate geographic areas on the required period of shedding. The problem of how to
construct a schedule that fairly allocates load shedding responsibilities over geographic
areas with minimum economic impacts is addressed in this paper. Two programming
models are proposed. The first model consists of a linear integer programming model
in which the objective is to minimise the economic cost subject to different fairness
allocation constraints, while the second model involves formulation of the problem
as a goal programming model in which different conflicting goals are simultaneously
optimised. Several case studies are conducted in the context of a realistic, but hypo-
thetical, scenario to explore the possible solutions that the proposed models provide.
Results show that a fair schedule requires a high cost whereas lower cost can only be
achieved with some sacrifices to the fairness of the schedule.

Key words: Goal programming, Integer programming, Scheduling problem

1 Introduction

Electricity infrastructure consists of complex systems of power generation, transmission
and distribution [6, 8, 15]. Sufficient quantities of electricity have to be generated from
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generation plants and transmitted through transmission components to meet demand at
all times. This system requires a complex mix of management, operations and planning
in order to deliver power to consumers. Part of this requirement is the so-called power
system operations scheduling [15], which encompasses a set of daily/weekly processes to
generate electricity. A diagram illustrating the basic components of these operations is
provided in Figure 1.

Maintenance
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Unit
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Load
Shedding

Transmission Demand

Figure 1: A diagram illustrating the basic operation scheduling in a power system.

Maintenance scheduling entails finding a schedule according to which planned maintenance
can be performed on the generating units in a power system. The unit commitment
problem, on the other hand, refers to determining which available generating units, those
not scheduled for maintenance, should be connected to the power generation system, so
as to contribute actively to power generation. Finally, the economic dispatch operation
seeks to determine the optimal output from available generating units so as to meet the
expected demand at the lowest possible cost [4, 16].

Despite these daily maintenances and schedules, shortfalls in forecasted demand or un-
foreseen failures in generating units may lead to the risk of system collapse. Reserve
generation capacity is usually maintained to accommodate such unexpected failures. In
the case where this reserve margin is insufficient, load shedding — a planned and controlled
reduction in power supply is implemented to compensate the shortage in supply so as to
decrease the risk of total system breakdown to acceptable (near-zero) levels.

South Africa has experienced energy shortages since the mid 2000’s that have at times
been severe, leading to prolonged periods of widespread load shedding. Several causes have
been identified. The most important being a rapid increase in electricity demand following
the end of the apartheid era in 1994, the lifting of economic sanctions and the provision
of a free basic electricity policy in 2001. Construction of power stations and maintenance
operations have also at times been delayed, increasing the risk of unit failures and reducing
the effectiveness of an already reduced reserve margin [12].

This paper addresses the problem of how to construct a schedule that fairly allocates
load shedding responsibilities over geographic areas. Should load shedding need to be
implemented, a planned schedule is necessary to allocate areas on the required period of
shedding. The ultimate goals of the load shedding scheduling are to fairly allocate areas on
the scheduling horizon and also to minimize possible economic impacts. Defining fairness is
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not straightforward and thus various possibilities are considered. The main objective is to
emphasize the trade-off between fairness and economic cost. Single and multiple objective
integer and goal programming models are proposed to construct optimal schedules. The
use of these models are illustrated in the context of a hypothetical, but realistic, test case
of determining load shedding schedules for the City of Cape Town.

The remainder of the paper is organised as follows. In §2, a brief background on the
problem, as well as existing literature study concerning the same, are presented. This is
followed by a description of the proposed models in §3. Details of the hypothetical data
employed and the experimental studies conducted are presented in §4. The computational
results are reported and discussed in §5. Some final remarks follow in §6.

2 The problem in context

Eskom, the parastatal producer and distributor of electricity in South Africa, is responsible
for 95% of South Africa’s power generation, and is also responsible for the implementation
of load shedding. Load shedding protocols dictate that the power system be balanced
at 50Hz, and that when the national electricity grid is under pressure the load on the
grid be reduced to restore this balance. Load reduction consists of a two-phase process.
First, large industrial customers can be instructed, by prior agreement, to reduce their
consumption by up to 20%, a process known as load curtailment. If demand still exceeds
supply after load curtailment, or there is insufficient time to implement curtailment, a
second phase — load shedding — is implemented [3].

Eskom implements load shedding by first determining the necessary reduction in load,
depending on the generation capacity shortfall at a particular time. These are implemented
as three discrete “stages”, with stage 1 reflecting a generation shortfall of up to 1 000 MW,
stage 2 a shortfall of up to 2 000 MW, and stage 3 a shortfall of up to 4 000 MW. Depending
on the load shedding stage, parts of the network are switched off according to a planned,
rotational schedule that varies by day and time of day. These schedules are published in
advance and are publicly available. An example of a daily schedule for the City of Cape
Town is shown in Table 1.

00:00 02:00 04:00 06:00 08:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00
to to to to to to to to to to to to

02:30 04:30 06:30 08:30 10:30 12:30 14:30 16:30 18:30 20:30 22:30 00:30

Stage
5 6 7 8 9 10 11 12 13 14 15 16

1
Stage

2
13, 5 14, 6 15, 7 16, 8 1, 9 2, 10 3, 11 4, 12 5, 13 6, 14 7, 15 8, 16

Stage 5, 13, 6, 14, 7, 15, 8, 16,
9, 1, 5

10, 2, 11, 3, 12, 4, 13, 5, 14, 6, 15, 7, 16, 8,
3A* 1 2 3 4 6 7 8 9 10 11 12

Stage 1, 9, 2, 10, 3, 11, 4, 12, 5,13, 6, 14, 7, 15, 8, 16, 9, 1, 10, 2, 11, 3, 12, 4,
3B* 13, 5 14, 6 15, 7 16, 8 1, 9 2, 10 3, 11 4, 12 5, 13 6, 14 7, 15 8, 16

Table 1: An example of a daily load shedding schedule for the City of Cape Town. Entries in

the table indicate areas in the City.
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Load shedding is often, but not always, predicted in advance, allowing consumers a mea-
sure of control over how they organise their days/weeks to minimize economic costs and
general inconvenience. Nevertheless, it has been reported that load shedding has had a
serious and negative impacts on economic and social life of the South Africa population
since its start [5].

Tackling the symptoms of pervasive, systematic load shedding as seen in South Africa is
fundamentally different to how load shedding is often treated elsewhere — as an engineer-
ing problem involving an automated correction of short-term instability in the system.
In the literature, load shedding is incorporated in the form of reliability constraints in
the unit commitment problem, referred to as the reliability-constrained unit commitment
problem [11, 13]. The objective of reliability constraints is to ensure that sufficient reserve
is maintained so that the probability of having power deficiency in the schedule is lower
than a pre-specified threshold, i.e. the maximum probability of loss of load [17].

While technical constraints remain critical, other objectives must also play a role in strate-
gic decisions around load shedding. Broadly speaking, the current paper aims to construct
such tools for supporting strategic decision making around load shedding. The focus is
specifically to develop programming models which may be employed to generate feasible
and fair schedules should load shedding need to be implemented.

3 Model formulations and approaches

Several studies related to scheduling problems may be found in the literature [2, 9, 10, 14].
Among the most studied problems is the job scheduling problem, which consists of finding
an optimal schedule that specifies when and on which machine certain jobs are to be
executed in order to minimise the average completion time as well as its makespan [10].
Another well-studied scheduling problem is the staff scheduling problem, which consists
of assigning employees to working shifts over a given period of time such that personnel
policies or individual preferences are satisfied while minimising the total cost [14].

In the load shedding context, the scheduling process consists of allocating a set of shedable
areas over time and day slots according to the given amount of load to shed and subject
to several constraints. The objectives are to minimise the economic cost and also to max-
imise the allocation fairness. This section contains a detailed description of the problem
formulation, as well as the two proposed models.

3.1 Model variables

Suppose there are r areas to be shed in the city, indexed by the set R = {1, . . . , r}, t
decision time slots over the day, indexed by the set J = {1, . . . , t}, and p decision day
slots over the scheduling horizon, indexed by the set K = {1, . . . , p}. Define the binary
decision variable xijk to take the value one if area i ∈ R is assigned to be shed on day
k ∈ K at a specific time j ∈ J , or zero otherwise. Let cijk be the estimated cost associated
with an area i ∈ R if it is shed during a time period jk with j ∈ J and k ∈ K.
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3.2 Models objectives

The first model objective adopted in this paper is to minimise the total economic cost,
sum of cijkxijk, associated with each shed area i ∈ R over time periods j ∈ J and k ∈ K,
that is

minimise
∑
i∈R

∑
j∈J

∑
k∈K

cijkxijk.

The second model objective consists of maximising the fairness allocation. Two types
of fairness allocations are considered in the models: Rotational fairness and Cumulative
fairness. The objective in the rotational fairness is to avoid successive times shed of a
given area during the scheduling horizon, while the cumulative fairness ensures that the
average number of times each area is shed during the scheduling horizon is balanced. An
example of a schedule which satisfies both rotational and cumulative fairness objectives
is provided in Table 2. In this example, all areas have been shed with the same amount
of times (6 times), and no repetition in the shedding time or day slot of each area is
perceived.

Period Monday Tuesday Wednesday Thursday Friday Saturday

07:00 - 09:00 Area 1 Area 2 Area 3 Area 4 Area 5 Area 6

09:00 - 11:00 Area 2 Area 3 Area 4 Area 5 Area 6 Area 1

11:00 - 13:00 Area 3 Area 4 Area 5 Area 6 Area 1 Area 2

13:00 - 15:00 Area 4 Area 5 Area 6 Area 1 Area 2 Area 3

15:00 - 17:00 Area 5 Area 6 Area 1 Area 2 Area 3 Area 4

17:00 - 19:00 Area 6 Area 1 Area 2 Area 3 Area 4 Area 5

Table 2: An example of a schedule which satisfies both rotational and cumulative fairness

objectives.

The use of these objectives, and how they are measured quantitatively, was validated
during an informal workshop with eight energy experts working at the Energy Research
Center at the University of Cape Town. The workshop took the form of a structured
discussion of the load shedding scheduling problem. It began with a brief presentation of
the load shedding scheduling problem, including some preliminary models that illustrates
how the economic costs and fairness allocations objectives are implemented. A worked
example was shown to the group to demonstrate the working of the models. The group was
asked to evaluate and discuss what objectives are important in the scheduling problem.
The group agreed that economic cost and fairness were important. Some members have
suggested that predictability is also an important objective that could be included in the
model. A schedule is predictable if for a given period of shedding time, areas that should
be shed in these slots are known in advance. The focus in this study is, however, to
develop models that are able to spontaneously generate schedule should load shedding
need to be implemented. Potential areas to be shed are not known in advance, therefore
this objective was not included in the model.
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The group was also asked whether the notion of rotational fairness (per day and per time
slot), and cumulative fairness adequately captured the main aspects of fairness. The group
agreed that these were suitable attributes, and did not add any further suggestions on this
topic.

3.3 The first model: Single objective allocation approach

The first scheduling model proposed in this paper is primarily an integer programming
based approach whose decision variables are the planned scheduling period of the different
areas. The first objective, economic cost, described in §3.2 is the only objective to be
minimised in this case, while the fairness allocation objectives are formulated as constraints
of the problem.

Let dijk be the load demand forecast of an area i ∈ R on day k ∈ K at a specific time
j ∈ J , and ljk be the required amount of load to be shed with respect to a specific time
period jk, with j ∈ J and k ∈ K. Let λ be an integer, which can take on values that
lie in the set {1, . . . ,

⌊ stp
r

⌋
}1, where s represents the load shedding stage or the minimum

required number of areas to be shed during each time period2, and α and β two parameters
which can take on values ranging in {1, . . . , p} and {1, . . . , t}, respectively.

The objective in the first load shedding scheduling model is to

minimise
∑
i∈R

∑
j∈J

∑
k∈K

cijkxijk (1)

subject to
∑
i∈R

dijkxijk ≥ ljk, j ∈ J , k ∈ K, (2)∑
j∈J

∑
k∈K

xijk ≥ λ, i ∈ R, (3)

∑
k∈K

xijk ≤ α
⌈sp
r

⌉
, i ∈ R, j ∈ J , (4)

∑
j∈J

xijk ≤ β
⌈
st

r

⌉
, i ∈ R, k ∈ K, (5)

xijk ∈ {0, 1}, i ∈ R, j ∈ J , k ∈ K. (6)

The objective function in (1) represents the total economic cost. Constraint set (2) ensures
that the required amount of load to be shed during each time slice is satisfied. The
cumulative fairness is ensured by constraint (3). The parameter λ in this constraint
determines the level of fairness with respect to the total number of times each area is
shed. That is, it ensures that all areas are shed with the same number of time periods on
average. A value of λ equal to one, for example, indicates that all areas should at least be
shed once during the schedule horizon.

1bxc is the floor integer part of the number x, while dxe denotes its ceiling integer part.
2According to the implemented schedule for the City of Cape Town, see Figure 2 for example, the values

of s range from {1, . . . , 4}.
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The rotational fairness involves both daily and hourly rotation allocations, respectively,
represented by constraints (4) and (5). The daily rotation allocation constraint ensures
that no area should be scheduled for shedding on the same time slot over the scheduling
horizon until all other areas have been shed in that particular slot. Analogously, the
hourly allocation constraint ensures that no repetition should be allowed with respect to
the period of a day an area has been allocated to, that is an area should not be scheduled
for shedding on the same day until the remaining areas have been shed on that day. The
level of fairness with respect to these two constraints is adjusted with the two parameters
α and β. A value of α (resp.β) equal to three, for example, indicates that an area can be
shed three times at the same period slot over the scheduling horizon (resp. an area can be
shed three times at different time slot on the same day).

3.4 The second model: Multiple objective allocation approach

The second scheduling model consists of a multi-objective programming model in which
the two objectives stated in 3.2 are simultaneously optimised. More precisely, the objec-
tive function (1) together with the set of constraints (3)–(5) in the first model of §3.3 are
converted into a set of goals that need to be achieved simultaneously. Each goal is associ-
ated with a target value and the objective in this case consists of minimising the weighted
sum of deviations of all goals to their corresponding targets. This approach provides a
more flexible way to model the problem, as decisions makers can customize the targets’
values according to their preferences.

The first goal consists of minimising the total economic cost

∑
i∈R

∑
j∈J

∑
k∈K

cijkxijk;

its target is denoted by E. The second goal is the cumulative fairness determined by the
set

{
∑
j∈J

∑
k∈K

xijk, i ∈ R},

whose target is denoted by

{F overall
i , i ∈ R}.

The last two goals are related to the daily and hourly rotational allocations,

{
∑

k∈K xijk, i ∈ R, j ∈ J }

and

{
∑

j∈J xijk, i ∈ R, k ∈ K},
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whose respective targets are represented by

{F (day)
ij , i ∈ R, j ∈ J }

and

{F (time)
ik , i ∈ R, k ∈ K}.

It is assumed that goals which belong to the same set have similar target values. Define
the binary variable z to take value of one if there are more time slots available than areas,
that is if tp > r, or zero otherwise.

The objective in the second model is then to

minimise ωd+
∑
i∈R

ω
(overall)
i d

(overall)
i +

∑
i∈R

∑
k∈K

ω
(time)
ik d

(time)
ik +

∑
i∈R

∑
j∈J

ω
(day)
ij d

(day)
ij (7)

subject to
∑
i∈R

di,j,kxijk ≥ ljk, j ∈ J , k ∈ K, (8)∑
j∈J

∑
k∈K

xijk ≥ z, i ∈ R, (9)

∑
i∈R

∑
j∈J

∑
k∈K

cijkxijk − d ≤ E, (10)

∑
j∈J

∑
k∈K

xijk − d
(overall)
i ≤ F (overall)

i , i ∈ R, (11)

∑
k∈K

xijk − d
(day)
ij ≤ F (day)

ij , i ∈ R, j ∈ J , (12)∑
j∈J

xijk − d
(time)
ik ≤ F (time)

ik , i ∈ R, k ∈ K, (13)

xijk binary, i ∈ R, j ∈ J , k ∈ K, (14)

d, d
(overall)
i , d

(day)
ij , d

(time)
ik ≥ 0. (15)

The objective function in (7) represents the weighted sum deviations of all goals to their
corresponding targets, where ω is the weight associated with the economic cost goal,

ω
(overall)
i (i ∈ R)

is the weight associated with the cumulative fairness goal, and

ω
(day)
ij (i ∈ R, j ∈ J )
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and

ω
(time)
ik (i ∈ R, k ∈ K)

are the weights associated with the daily and hourly rotational allocations goals, respec-
tively. The variable d represents the deviation of the economic cost goal from its target
value as illustrated in (10). Analogously, the deviation variable

d
(overall)
i (i ∈ R)

denotes the difference between the cumulative fairness goal to its target

F
(overall)
i (i ∈ R)

(as shown in constraint (11)), and

d
(day)
ij (i ∈ R, j ∈ J ), d

(time)
ik (i ∈ R, k ∈ K)

express the deviations of the daily and hourly rotational allocations goals from their target
values

F
(day)
ij (i ∈ R, j ∈ J ), F

(time)
ik (i ∈ R, k ∈ K),

respectively (as presented in constraints (12)–(13)). Constraint set (8) ensures that the
required amount of load to be shed during each time window is satisfied. Finally, constraint
set (9) ensures that each area is at least assigned once for shedding over the scheduling
horizon in case there are more time slots available than areas.

4 Hypothetical data and experimental study

In order to illustrate the working of the single- and multi-objective allocation models de-
scribed in §3.3 and §3.4, a hypothetical data set was generated. The data entail electricity
consumption and estimated economic costs associated with load shedding for all areas in
the City of Cape Town. The two models are solved in the context of this hypothetical data.
A limited experimental study based on sensitivity analysis with respect to the underlying
parameters of the models is also performed in order to assess their performances. Details
of the hypothetical data, as well as the computational studies conducted, are provided in
this section. It is noteworthy that the data considered in this study are hypothetical data
and for a real implementation one would definitely want to assess the real values.
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4.1 Hypothetical data

Planners for the City of Cape Town divide the City into r = 16 areas, and use a daily or
monthly scheduling horizon [7]. For simplicity purposes, the scheduling horizon is defined
by t = 12 hours and p = 7 days in this study. Data on the proportion of mixed use,
industrial and commercial sectors for each area was provided by the City of Cape Town.
Moreover, data about the population and number of households in each area is obtained
from [1]. Data with respect to the economic costs caused by load shedding for all areas
are not available; estimated costs were thus employed in the current study. These costs
were calculated such that the economic costs associated with the different sectors within
an area are taken into consideration. More specifically, for each area, an estimated cost is
given to each of the economic sectors within the area and the sum of these costs represents
the total economic cost associated to that specific area.

For each area, denote by cM (jk) the cost of load shedding associated with its corresponding
mixed use sector in Rand per km2, cI(jk) the economic cost for its industrial sector in
Rand per km2, cC(jk) the economic cost for its commercial sector in Rand per km2, and
cH(jk) the economic cost associated with its households in Rand per household, all at
specific time period jk, j ∈ {1, . . . , 12} and k ∈ {1, . . . , 7}. It is assumed that all these
costs are the same for all areas and their values are presented in Table 3. These values
were selected in such a way that possible significant impact and peak hours were taken
into account.

Time period
Mixed use

cM (R/km2)
Industrial

cI (R/km2)
Commercial
cC (R/km2)

Households
cH (R/household)

00:00 - 02:00 600 550 550 5
02:00 - 04:00 600 550 550 5
04:00 - 06:00 600 580 550 5
06:00 - 08:00 620 600 560 1
08:00 - 10:00 750 700 650 1
10:00 - 12:00 800 750 700 1
12:00 - 14:00 790 750 700 1
14:00 - 16:00 810 760 700 1
16:00 - 18:00 740 700 700 5
18:00 - 20:00 700 660 650 5
20:00 - 22:00 650 620 620 5
22:00 - 00:00 610 600 580 5

Table 3: Estimated economic costs caused by load shedding associated with all sectors and

households in all areas.

Measuring and interpreting the costs associated with households are more difficult than in
the case of industrial, commercial, or mixed use sectors. Households costs can be partly
interpreted as direct monetary costs, because load shedding means that substitutes must be
found for electricity-consuming goods and services, and these will often be more expensive
(e.g. boiling water on a gas stove). However, load shedding also causes an inconvenience
to households that is not directly measurable in monetary terms. In principle, one could
estimate a “willingness to pay” (to avoid load shedding) associated with households, either
in aggregate or individually manner. In this study, the approach is rather to set household
costs in each time period so that total household costs are roughly of the same magnitude
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as the sum of costs across other sectors (commercial, industrial, mixed). That is, the
household costs are selected so that these costs neither swamp, nor are swamped by, the
costs of the other sectors.

The surface area occupied by each sector within each area was calculated using the data
from the City of Cape Town. Denote by sM (i)(in km2), sI(i)(in km2) and sC(i)(in km2)
the corresponding surfaces with respect to mixed use, industrial and commercial sectors,
respectively. The estimated cost associated with an area i, i ∈ {1, . . . , 16} at a specific
time period jk, j ∈ {1, . . . , 12} and k ∈ {1, . . . , 7} is, therefore, determined by

cijk = sM (i)cM (jk) + sI(i)cI(jk) + sC(i)cC(jk) + households(i)cH(jk).

Regional electricity consumption data is also not available, thus a hypothetical case sce-
nario was developed. It was assumed that all areas have different electricity demand which
can be less or greater than the required amount of load to be shed with respect to each
time period, and that the difference between the maximum and minimum demand across
all areas is relatively large. That is, areas which predominantly populated by industrial
and commercial sectors were assigned with higher electricity demand than the other areas,
as they were expected to consume more electricity as compared to the remaining areas. To
do so, the 16 areas were ranked based on the total surfaces occupied by the various sectors
within the areas and each area was associated a load demand that is proportional to its
rank. The expected demand of an area i, i ∈ {1, . . . , 16} with a rank u, u ∈ {1, . . . , 16} is
therefore determined by

Di(u) =
0.9u∑
r 0.9u

.

4.2 Experimental study

A limited computational study based on experimental design was carried out accord-
ing to which suitable parameter values may be selected for the two models of §3.3 and
§3.4. The experimental design consisted of testing various parameter settings of the two
models. These parameters are the level of fairness, λ, α, and β, with respect to the cumu-
lative and rotation allocations constraints for the single-objective model, and the weights,

ω, ω
(overall)
i , ω

(time)
ik , and ω

(day)
ij , associated with all goals for the multi-objective model.

Five values, in the range {1, . . . , 5}, were considered for each of the parameters λ, α, and
β. These values were chosen for simplicity purposes, but each parameter can be varied
between their minimum and maximum values. Moreover, α and β were assumed to have
identical values for illustration purposes.

With regard to the weights associated to the various goals in the multi-objective model,
two test cases were implemented. In the first case, the weight associated to the economic
cost goal was varied, with an increasing magnitude from 1 to 7, while the other weights

were kept constant. In the second case, the weights ω
(time)
ik and ω

(day)
ij associated to the

daily and hourly rotational allocations goals were varied, with an increasing magnitude
from 1 to 7, while keeping the remaining weights constant.
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Note that the different goals considered in the multiple objective formulation are measured
on different scales. In order to adjust those scales, so as to obtain a dimensionless objective
function, the weight associated to each goal was set to be equal to the inverse of the range
of value of its corresponding goal, which may be calculated as the difference between the
maximum and minimum value of the target obtained from the single objective allocation
model. Solutions obtained during a preliminary computational run of the single objective
model suggested the following range of values, RV , for each weight:

RV (ω) = 181 356

RV (ω
(overall)
i ) = 30, i ∈ {1, . . . , 16},

RV (ω
(day)
ij ) = 5, i ∈ {1, . . . , 16}, j ∈ {1, . . . , 12},

RV (ω
(time)
ik ) = 5, i ∈ {1, . . . , 16}, k ∈ {1, . . . , 7}.

Moreover, for illustration purposes, the values of the various targets in the multiple ob-
jective formulation are fixed, with

E = 250 000,

F
(overall)
i =

⌊
stp

r

⌋
, i ∈ {1, . . . , 16},

F
(day)
ij =

⌈sp
r

⌉
, i ∈ {1, . . . , 16}, j ∈ {1, . . . , 12},

F
(time)
ik =

⌈
st

r

⌉
, i ∈ {1, . . . , 16}, k ∈ {1, . . . , 7}.

The values of all fairness goals targets were set to be the (near-)optimal values that could
be obtained with a fairly scheduling plan (i.e. without considering any possible economic
costs). The value of the economic cost goal target was chosen so that it is moderate,
not excessively demanding. These values can, however, be customized according to the
decision maker preferences.

5 Results and discussion

The numerical results obtained when following the experimental design described in §4.2
are presented in this section. The results returned by the single objective allocation model
are first reported, which is followed by a discussion of the results returned by the multiple
objective model. The models were run and solved in Microsoft Excel, employing the Excel
Solver package.

5.1 Results obtained by the single objective model

An area chart of the solutions returned by the single objective allocation model, when
implemented with different values of λ, α, and β, is shown in Figure 2. It illustrates the
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impact of varying the values of the aforementioned three parameters on the total economic
costs obtained from solving the model.

It is clear from the figure that a large value of λ (λ ≥ 3) results in high economic costs,
while for a small value of λ (λ < 3) the total economic costs are relatively low. This is
explained by the fact that the parameter λ adjusts the level of fairness with respect to the
total number of times each area is shed during the scheduling horizon. A small value of λ,
for example λ = 1, suggests that all areas should at least be shed at least once during the
planning horizon, hence allowing areas with low economic impact to be shed more often
compared to other areas. In contrast, a large value of λ indicates that all areas are shed
almost an equal number of times, regardless of their associated economic costs.

Figure 2: The effect of varying the values of the three parameters λ, α and β on the total

economic cost of a solution obtained by solving the single objective model.

Furthermore, a reduction on the total economic cost can be obtained with large values of
the two parameters α and β. A value of these two parameters equal to 5, for example,
suggests that an area can be shed five times a day and five times in the same time period
over the schedule horizon, thus a possible schedule solution is to repeatedly shed areas
with low economic costs on any peak time periods.

Histograms of the distribution of the number of times shed of all areas when solving
the single objective model for different values of the parameters λ, α, and β are given in
Figure 3. For λ = 5, α = β = 5, 75% of the total number of areas are shed five times in
the returned schedule. On the other hand, for λ = 1 and α = β = 5, 25% of the total
number of areas are shed more than fourteen times whilst 75% are shed only once. These
show that there is a significant difference between the number of times each area is shed,
which may well be interpreted as unfair. The causes of this result lie in the differences in
order of magnitude of all areas’ demand as well as the cost of load shedding associated to
each area. Areas which are predominantly populated by industrial and commercial sectors
were assigned with higher electricity demand than the other areas, and the cost of load
shedding associated to these areas are also high. Thus these areas are expected to be shed
less often than the others, so that the generated schedule exhibits low cost.
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Figure 3: Distributions of the total number of times shed of all areas when solving the single

objective model for different values of the parameters λ, α and β.
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A fair schedule would only be achieved with some sacrifices with respect to the total cost
returned by the generated schedule or in the case where all areas are assigned with identical
demand. In the later case, if it is assumed that all areas consume the same amount of
electricity at any time period and that this electricity demand is equal to the required
amount of load to be shed during that time period, then a fair schedule may be obtained
as shown in Figure 4. For λ = 5, α = β = 1, 87% of the total number of areas are shed 5
times, while the remaining areas are shed 7 times, in the returned schedule.

Figure 4: Distributions of the total number of times shed of all areas when solving the single

objective model for λ = 5, α = 1, and β = 1, and dijk = ljk for i ∈ {1, . . . , 16}, j ∈ {1, . . . , 12},
and k ∈ {1, . . . , 7}.

5.2 Results obtained by the multiple objective model

The sensitivity analysis of the results returned by the goal programming model with
respect to changes in the preference parameters used as inputs to the model are shown in
Figure 5. Results obtained from the first case study, in which the weight associated to the
economic cost goal is varied, with an increasing magnitude from 1 to 7, while the other
weights are kept constant, are given in Figures 5(a), (c), and (e).

Increasing the weight associated with the economic cost goal leads to relatively small, but
significant, decrease in the overall cost of the solution (see Figure 5(a)), while it results
in a limited increase in the total deviation of the hourly rotational allocation goal from
its target (see Figure 5(e)). This demonstrates that adding more weight on the cost goal
enhances its importance, which results in a solution that achieves a low economic cost while
sacrificing fairness allocation. The average number of times shed of all areas is, however,
not significantly sensitive to the changes in the weight associated with the economic cost in
this case, as shown in Figure 5(d). The majority of the areas are on average shed equally
frequently.

Different results are obtained for the second case where the weights ω
(time)
ik (i ∈ {1, . . . , 16}, k ∈

{1, . . . , 7}) and ω
(day)
ij (i ∈ {1, . . . , 16}, j ∈ {1, . . . , 12}) associated to the daily and hourly

rotational allocations goals were varied while keeping the remaining weights constant, as
shown in Figures 5(b), (d), and (f). A 64-fold increase in the weight associated to the
daily rotational allocation goal contributes to a 15% increase in the overall cost of the
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(a) Effect of varying the weight ω on the economic
cost goal

(b) Effect of varying ω
(time)
ik and ω

(day)
ij on the

economic cost goal

(c) Effect of varying the weight ω on the total
number of times shed

(d) Effect of varying ω
(time)
ik and ω

(day)
ij on the

total number of times shed

(e) Effect of varying the weight ω on the fairness
allocations goals

(f) Effect of varying ω
(time)
ik and ω

(day)
ij on the

fairness allocations goals

Figure 5: The effect of varying the values of the various weights associated to all goals on a

solution obtained by solving the multiple objective model.
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obtained solution (see Figure 5(b)). A significant drop in the total deviation of both the
daily and hourly rotational allocation goals from their targets are also noticed in Figure
5(f). These results are expected as the rotational fairness goals are emphasized in this
case. Moreover, the schedule is notably fair, the majority of all areas are on average shed
equally frequently (see Figure 5(d)).

All these results show a clear trade-off between the various goals and objective functions.
Although the trade-off between fairness and economic costs is a fairly obvious point, it is
also important because it highlights the trade-off that decision makers must necessarily
confront when creating a schedule. The current schedule for the City of Cape Town, for
example, is likely to be relatively expensive because it is maximally fair [7].

6 Conclusion

Load shedding is inevitable when there is shortage in the power production levels and
insufficient reserve margins to satisfy demand. The problem of how to generate feasible
schedule that fairly allocates load shedding capacities over geographic areas was consid-
ered in this paper. Two programming models were proposed. The first model was a linear
programming approach involving a single objective function, while the second model con-
sisted of a goal programming approach. The objective was to emphasize the trade-off
between fairness allocations and economic costs.

The two models were solved and evaluated in the context of realistic, but hypothetical,
data. A limited experimental study based on sensitivity analysis with respect to the under-
lying parameters of the models was also conducted in order to assess their performances.
Results indicated that a fair schedule comes at the cost of negative economic impacts,
whereas low economic cost can only be achieved with some sacrifices to the fairness of
the schedule. Decision makers would need to choose the schedule that best fits with their
preferences.

Further follow-up research include implementation and assessment of the two models on
real case studies. Moreover, all parameters involved in the models were assigned deter-
ministic values in this paper. Stochastic versions of each of the models might thus be
developed. Finally, these models generate schedules which only take into account future
fairness. Past history, concerning the allocations of areas in the past schedule, was not
considered. Possible future research is, therefore, to develop stochastic models which are
able to generate schedules that are retrospectively fair, which would look back at the past
distribution of load shedding (the number of times each area was shed) then correct any
imbalances over some user-specified future time interval. The fact that some areas can
offer other areas money to keep their electricity on more often and the other’s electricity
off more often can also be included in the model for further study.
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