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Abstract

The fast changing nature of the educational environment and the subsequent in-
crease in the volumes of generated learner data, have found existing data analysis
techniques lacking in certain fields. These techniques form part of the analysis and
reporting phases of learning analytics and need to adapt to accommodate the changing
face of education. In this paper, a set of interrelated algorithmic solutions that utilise
mathematical programming models to generate and provide learning feedback in the
form of academic performance status reports, is presented. Three existing mathemat-
ical models, more specifically the benchMark program, an outputs–only data envelop-
ment analysis and a traditional analytic hierarchy process were evaluated for providing
the information required to assist students in improving their academic achievement.
The requirements include providing students with their current academic performance
status, setting interim improvement goals and calculating improvement targets to-
wards reaching those goals. The evaluated models did not address the requirements
satisfactorily. The solution proposed in this paper consists of an algorithm that imple-
ments a linear programming model to generate performance status reports based on
the current assessment scores of a group of students in a module. The output is used
in a second algorithm that utilises the remaining improvement opportunities available
to generate a participation future time perspective. The resulting schedule together
with each individual student’s current assessment scores, is used to calculate discrete
improvement goals for each student as well as targets towards reaching those goals.
A third algorithm provides a lecturer with some insight into the mastering of module
content.
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1 Introduction

The pace at which technology is advancing necessitates role players in education to adapt
their teaching and assessment techniques [24]. Most of the activities relevant to education
can now be performed by means of a computer. This makes online learning, where students
do not need to be at a campus to interact with a lecturer, possible. The subsequent
increase in student numbers results in an increase in the learner data being generated which
includes the use of resources, academic performance, and even effectiveness of teaching
tools. Analytical methods used to process student data consequently need to adapt as well.
Many tools implemented as educational aids already perform some analytical functions on
institutional, regional, national, and international level [39].

Predictive analytics incorporates statistics, machine learning and data mining to discover
meaningful patterns in data [25]. The focus of learning analytics is, however, on the
learning process rather than on an institutional level [39]. It presents the potential to
predict and improve student success and resulting retention by incorporating the mea-
surement, collection, analysis and reporting of learner data [8]. Although many methods
exist with which these actions can be performed, measurement and collection of learner
data are mostly context dependent. Various methods for analysing and reporting such
data are commonly implemented in academic environments by means of learning man-
agement systems (LMSs), which consider learning activities, course administration, and
tracking [40]. Examples like PACE (Progress and Course Engagement), GPS (Grade Per-
formance System) [31], and E2Coach (Expert Electronic Coach) [27] are only some LMSs
that determine and provide alerts regarding academic issues. Other systems that can fur-
thermore present interventions include the Student Advice Recommender Agent (SARA)
[17] and the MiGen teacher assistance tool, which is a system that was developed with
some visualization and notification capabilities [26]. However, Stantchev et al. [40] argue
that LMSs are not yet optimally contributing towards the improvement of learning be-
cause they mostly address institutional needs rather than those of the students. Students
need specific information relating to their progress in a course to enable change [13].

Learning analytics can change the value of higher education by assisting in the identifica-
tion of students who are at risk of failing and to provide them with interactive solutions
on how to improve during the semester (term). Barker and Garvin–Doxas [4] proposed
the use of a hierarchical structure for the purpose of progress feedback to create a com-
municative environment between a lecturer and the students. Studies show that ranking
is an important determinant of student behaviour [14, 42]. Therefore, a solution in the
form of a student ranking incorporated into the analysis and reporting phases of learning
analytics, is proposed.

Ranking models have been applied in the ranking of NBA basketball players [28], college
sport coaches [19], alternatives in sports tournaments, products, political candidates [6],
and others such as the PageRank algorithm introduced by Google [21]. The main aim
of this study is to evaluate existing ranking models that may be used for student feed-
back and to develop an improved ranking feedback model by implementing mathematical
programming techniques in three interrelated algorithms. Three models were chosen for
evaluation in this specific research project. They include benchMark [11], an outputs–only
based data envelopment analysis (DEA) model [22], and the traditional analytic hierarchy
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process (AHP) [2]. The benchMark program was selected because it is an empirical student
ranking model that ranks students according to their academic progress in a module. It
was successfully implemented in a software application and was evaluated in an academic
environment with positive results. Furthermore, the benchMark program is directly related
to this study. The outputs–only based DEA was chosen because in general, no measurable
inputs (e.g. numbers of hours studied) are available on students. It allows the calculation
of outcome improvement targets and it is an established ranking method. The AHP is
another technique that ranks items influenced by several factors, or in this study, to rank
students according to their formative assessment outcomes like class test scores, practical
assignments, etc. Appropriate adjustments and pairwise comparisons were made in this
study to eliminate traditional inconsistency– and normalisation problems. This process
also allows for the allocation of weights (as predetermined by a lecturer) to the factors.
The AHP was applied in this context to operate as an additional means of appraising the
rankings obtained in other methods.

The motivation for the study is founded in the repeated observation that student atten-
dance in some courses at tertiary institutions, seems to wane after the initial contact
session. Students think that because the semester had just started their absence cannot
yet affect their academic progress and when they do return to class, they do not know
what to do to improve their performance [11]. There is a demand for an academic perfor-
mance feedback system that will continuously provide students with information on their
current academic status in a module as well as how to improve from an early stage in the
semester [18].

The remainder of this paper is organised as follows: Section 2 provides some background
on a typical teaching–learning environment and a short discussion on the requirements for
effective feedback. Subsequently, the three chosen ranking models are discussed in Section
3. Finally, an improved mathematical ranking model that provides effective feedback
to students is proposed in Section 4. This is followed by a discussion in Section 5 and
conclusions in Section 6.

2 The teaching–learning environment

In a typical classroom environment, the role of a lecturer ranges from teaching and facili-
tation to assessment and grading. Students are expected to prepare for and attend contact
sessions where lecturers will discuss previously completed work, explain how it relates to
new concepts, and introduce and discuss new material. Often during contact sessions
students are expected to complete class assignments and may also be given homework re-
lated to topics discussed during class. Regular formative assessments in the form of class
tests, practical assignments or informal tuition tests among others, can be taken without
prior notice. This form of assessment provides lecturers with valuable information on the
success of the teaching techniques employed when introducing new material to students.

Lecturers grade formative assessments and use them to compile an overall semester mark
for each student. This mark, called a participation mark (p–mark), is the measurement
by which students are granted admission to the final examination. Some lecturers also
reward students for class attendance by letting it contribute a small quantity towards the
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p–mark. In the calculation of the p–mark a lecturer has the responsibility to decide which
factors he/she wants to consider, and how the averages in each of these factors are to be
calculated. The p–marks can then be calculated as the weighted sum of the average marks
obtained for each factor according to

p = y1w1 + y2w2 + · · ·+ ynwn, (1)

where p is the participation mark, y1, · · · , yn are the respective average marks calculated,
w1, · · · , wn are the respective weights, and n is the number of factors. A lecturer normally
decides on applicable weights for each of the respective factors. In some environments,
if the p–mark is larger than a certain minimum threshold the student is allowed to write
the final examination. The final module mark is then calculated as the average of the p–
mark and the examination mark. This means that students have the opportunity to start
building half of their module mark from as early as the first scheduled contact session.
Students are, however, not always aware of how they are progressing towards their p–
marks. Regular and interactive feedback is needed to keep students informed on how their
p–marks are growing.

Ranking is considered a feedback format that will effectively inform students on their po-
sitions in a hierarchy based on their outputs. The proposed solution will provide feedback
in the form of performance status reports (PSRs) throughout the semester. For a PSR to
be effective it must address three key issues [18]. Firstly, students must know what the
goal is that they are working towards. This requirement is referred to as feed–up. At the
start of a semester in an academic environment such a goal can be to pass a module or
get a distinction. However, as the semester advances and students start to progress or
regress, interim goals based on their performance can help them reach their ultimate goals.
Secondly, they must know what progress they are making towards reaching the goals, or
feed–back. Lastly, students must be informed as to which activities they have to perform
in order to enhance their progress, or feed–forward. Furthermore, Wiggins [45] provided
some attributes to which the information in a PSR must conform to. Apart from having
to provide feed–back, feed–forward and feed–up, the reports generated by the solution in
this paper will also be evaluated for referring to a goal, being actionable, user–friendly,
timely, ongoing and for being provided consistently. In the next section, different methods
for presenting student progress in the form of academic rankings, are evaluated.

3 Ranking as feedback in learning

Ranking as a hierarchical structure is used in the academic environment for many purposes,
among others for evaluating quality in higher education [9, 16], for determining the success
of different departments within a university [5], for student selection [15] and for ranking
specific student attributes to determine the probability of success [35, 37]. In this section,
the three selected models will be discussed and applied to the same data set. This set
contains marks for 26 students in four factors that were achieved in a fourth–year module
presented at a tertiary institution. The factors (denoted F1 to F4 respectively) are a
semester test, class tests, theoretical assignments and attendance. The data set is provided
in Appendix A.
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3.1 The benchMark model

A software application called benchMark was developed by Du Toit [11] for the purpose of
timeously calculating p–marks and rankings for a group of students. The program creates
a participation profile for each student which is continuously provided to them as PSRs
throughout the semester.

The model utilised in this program is a standardised form of equation (1). After completion
of each assessment the new set of marks is used to calculate a new average for each factor.
Each student’s current factor averages are then used to create a p–mark according to

pα =

n∑
j=1

yαjwj , (2)

where wj is the weight assigned to factor j, yαj is the calculated average for factor j of
student α, and n is the number of factors. A unique attribute of benchMark is that instead
of requiring a specific known weight for each factor beforehand, it empirically calculates
a set of possible p–marks for each student using a range of permissible weights per factor.
Permissible weights have minimum and maximum values, with their sum constrained to
be 1. A drawback to this approach is the exponential increase in the number of possible
p–marks that need to be calculated as the number of factors increase. Initially it was found
that the calculation of all possible combinations of weights would result in an intractable
problem [11]. To cater for this, a priority sequence constraint was implemented on the
weights and they were constrained to be in multiples of a predetermined number k. The
priority sequence constraint requires the lecturer to predetermine the order of importance
for each of the factors. It was empirically determined that by enforcing these constraints
the search space was reduced considerably, resulting in a tractable problem.

The program also calculates the average of all the possible p–marks for every student, in-
cluding the minimum and maximum. After each execution of the program the maximum,
minimum and average p–mark, and a student ranking according to the average p–marks,
are available. Statistics relating to the current pass/fail rate, the number of distinctions
and the number of students without admission to the examination, are also available.
During the semester students are frequently given feedback on their latest factor averages,
their minimum p–marks, and ranking. Instead of informing the students what the respec-
tive weights for the factors are going to be at the start of a semester, the option exists to
provide them with the order of the priority of the factors. This affords some freedom in
selecting a specific factor weight distribution closer to the examination and students have
a discrete measuring tool with which they can gauge their progress and/or improvement in
the module. The program therefore guarantees that the final weight distribution selected
at the close of a semester, will not cause any student’s final p–mark to drop lower than
the minimum mark provided to them after having processed all relevant assessments.

The model was implemented and tested with k = 0.05. The priority sequence applied in
the evaluations was w1 ≥ w2 ≥ w3 ≥ w4 with the weights applying to F1 to F4 respec-
tively. Based on these constraints the program calculated a set of 23 possible p–marks for
each student from which each respective student’s average p–mark was calculated. For
illustration purposes the participation profiles of the top seven students are presented in
Table 1 (the profiles of all the participants are provided in Table 9 in Appendix B).
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Student F1 F2 F3 F4 Max Min Avg Rank

2 100.00 95.24 97.92 100.00 98.29 97.58 97.85 1
9 93.33 91.51 87.75 100.00 93.15 91.35 92.33 2
3 96.67 82.62 75.05 100.00 89.22 85.43 87.44 3
13 76.67 87.13 65.83 89.00 83.35 78.25 81.05 4
10 93.33 68.15 74.07 100.00 84.89 78.78 81.04 5
24 90.00 64.76 76.67 100.00 82.86 77.07 79.37 6
23 85.00 72.14 61.85 100.00 79.75 74.31 77.35 7

Table 1: Participation profiles created by benchMark for the top seven students. F1 – F4

are the factor averages arranged according to weight priority. The columns Max, Min and
Avg, are the maximum, the minimum and the average participation marks, respectively.
The column Rank is the student ranking according to average participation marks. All
marks are indicated in percentages.

Apart from providing student p–marks and ranking status, other advantages of the bench-
Mark program include the following:

• Performance status can be provided to students as frequently as assessments are
graded; and

• Additional throughput– and performance information is available to the lecturer.

Although benchMark has been successfully implemented, it uses all weight combinations
allowed within the model constraints to empirically calculate the p–marks and ranking.

The disadvantages that were identified are listed below.

• Although some students (especially those at the top of the ranking) prefer to know
their ranking, others exhibit a rather indifferent attitude towards their progress
and feel that they need discrete information on how to improve to higher ranking
positions. The benchMark program does not provide improvement targets that will
assist in improving students’ ranking.

• The program uses empirical calculations in a sequential algorithm to create a set of
p–marks for each student and to set up statistical information. It was found that
for less than 80 students the execution time is reasonable and the program can be
executed a few minutes prior to a contact session [11]. However, for large student
numbers program execution time does not scale linearly and it may be more practical
to perform the calculations only once a week.

• The benchMark program initially has a steep learning curve, both for students and
lecturers.

• Execution of the benchMark program needs continuous human involvement making
importing of marks and calculating new p–marks rather labour intensive.

• Without the priority sequence– and the multiples–of–k constraint sets the search
space is so large that the problem is intractable.

To address some of the disadvantages identified in evaluating benchMark (the human
factor, the iterative and sequential nature of the program, and its intractability), the
model was formalised in the non–linear mathematical model [43] that follows.
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Maximise/minimise pα =
n∑
j=1

yαjwj , (3)

subject to the constraints

n∑
j=1

wj = 1, (4)

wj mod k = 0, j = 1, . . . , n, (5)

l ≤ wj ≤ u, j = 1, . . . , n, (6)

wj ≥ wj−1, j = 1, . . . , n, (7)

wj ≥ ε, j = 1, . . . , n, (8)

with k ∈ R+, l ∈ R+, u ∈ R+ and ε a small positive number.

The objective function is similar to the formulation in (2). The constraint set in (5) ensures
that each wj is a multiple of k while (7) represents the sequence ordering requirement of
benchMark. Weights are constrained to be between an upper and lower limit in (6).

The model is non–linear (due to constraint set (5)) and may be solved using any non–
linear mathematical programming software. For the purpose of this study it was decided
to obtain a heuristic solution using the Evolutionary Solver in Excel. Evolutionary solvers
are designed to mimic the process of biological evolution in certain ways. A full discussion
of heuristic solutions and the optimisation of non–smooth models is beyond the scope of
this paper and detailed explanations can be found in Baker [3]. The choice of a solver
was based on the fact that the solution generated in this manner does not rely on the
mathematical structure of the model but rather on solutions generated by combining
previous solutions along with some randomness [33]. It should be noted that there is no
guarantee of a global optimum and human judgement is required when solving a model
using an evolutionary approach. The implementation of a heuristic solution using an
evolutionary solver is simple and allows for easy use of mathematical functions such as the
modulus function in constraint set (5).

The same data set used to illustrate benchMark, was used to evaluate the non–linear
model in (3)–(8). The model was solved again with k = 0.05, and the same priority
sequence applied to the factors as in benchMark. The maximum and minimum p–marks
were calculated accordingly, and the average p–mark was determined from these two values
only. The students were again ranked according to the average p–marks as produced by
the model in (3)–(8).

Table 2 shows the calculated p–marks, the top seven of the subsequent rankings, and the
associated weights generated by this heuristic solution.

The ranking for all 26 students (all student rankings can be found in Appendix B, Table 10)
differs marginally from that produced by benchMark. Student 10, for example, is ranked 4
th whereas this student was ranked 5 th by benchMark. The reason for this difference is the
fact that benchMark calculated the average p–mark for each respective student from all 23
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p–marks (%) Weights for minimum p–mark Weights for maximum p–mark

Student Max Min Average Rank w1 w2 w3 w4 w1 w2 w3 w4

2 98.63 97.78 98.21 1 0.40 0.40 0.15 0.05 0.40 0.20 0.20 0.20
9 93.15 91.44 92.30 2 0.35 0.30 0.30 0.05 0.25 0.25 0.25 0.25
3 90.20 86.13 88.17 3 0.35 0.30 0.30 0.05 0.40 0.20 0.20 0.20
10 84.52 80.04 82.28 4 0.35 0.35 0.25 0.05 0.35 0.25 0.20 0.20
24 84.27 78.33 81.31 5 0.35 0.35 0.25 0.05 0.40 0.20 0.20 0.20
13 80.54 77.17 78.29 6 0.35 0.30 0.30 0.05 0.35 0.35 0.15 0.15
23 80.80 74.95 76.90 7 0.35 0.30 0.30 0.05 0.40 0.20 0.20 0.20

Table 2: Results of the top seven students, obtained by the non–linear model.

of the empirically calculated possible p–marks as opposed to the non–linear model which
used only the calculated maximum and minimum values. To produce a more structured
comparison between the two rankings, a Spearman’s rank correlation coefficient [7] was
calculated. Spearman’s rank correlation coefficient (ρ) is a nonparametric assessment of
the statistical relationship between two different rankings which expresses the relationship
between them in terms of a monotonic function. It is expressed as

ρ = 1−
6
∑m

i=1 d
2
i

m3 −m
, 0 ≤ ρ ≤ 1, (9)

where di is the difference between the two ranks at the ith position, and m is the number of
ranking positions. The rank correlation coefficient between the two rankings was calculated
as 0.99, proving a very strong positive association between them. This is to be expected
considering the similar constraints applied in both methods.

Formalisation of the benchMark model in a non–linear mathematical model yielded im-
provements on some of the disadvantages identified earlier:

• The need for continuous human intervention is reduced as the model parameters are
specified at the onset of execution and the calculations are repeated for each student
by means of an algorithm.

• The evolutionary solver is easy to implement and converges to acceptable solutions
for the entire data set, faster than benchMark did. This model can therefore be used
more frequently and for large student numbers.

• Although a heuristic solution does not always guarantee to be optimal, the model
does find acceptable solutions. This was proven by the high Spearman’s rank corre-
lation coefficient calculated for the respective rankings resulting from the benchMark
program and the non–linear mathematical model.

The multiples–of–k constraint set (5) was enforced in the non–linear model so that the
resulting ranking could be compared with that obtained in benchMark. However, this
constraint creates a non–linear relationship between the decision variables and some pre-
determined constant.

Enforcing this constraint set was justified in benchMark, but its exclusion will result in a
linear mathematical model which, under certain conditions, can be solved in polynomial
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time [30]. The model was therefore modified and solved as a linear model, which is
discussed in more detail in Section 4.1.

Another drawback to the benchMark and non–linear modelling approaches is that no dis-
crete improvement targets are calculated with which students can attempt to improve
their rankings. This means that although these methods address the feed–back require-
ment for effective PSRs, no feed–forward or feed–up is provided. In a pilot study done by
Du Toit [11] it was noted that although students at the top of the ranking felt motivated
to improve, those in the middle and lower parts of the ranking indicated that they wanted
more information on exactly how to improve. One of the attributes PSRs must have, is
that they must be actionable. In other words, students have to be provided with some
form of incentive or target that shows them what they can do to improve their rankings or
more specifically, feed–forward. This problem was partly addressed by implementing an
outputs–only based data envelopment analysis (DEA) on the student mark data set [44],
and is discussed next.

3.2 Class–ranking by means of an outputs–only based DEA

DEA is a mathematical programming method commonly employed to compare service
units called decision making units (DMUs) in a specified environment, based on a cal-
culated ratio between their inputs and outputs [29]. However, student input data such
as study environment, hours of study or lifestyle aspects are considered either unavail-
able or unreliable. Therefore, a model that utilises inputs was not included in this study.
Outputs–only based DEA effectively categorises DMUs considered equally efficient into
groups or classes. Examples of such analyses include the class–ranking of management
colleges [22], and of secondary schools [23]. To be able to compare the student rankings,
an outputs–only DEA was performed on the marks (factor averages) obtained in certain
outputs (factors) [44]. The students were treated as DMUs and the factor averages were
considered the outputs. This method effectively searches for the most favourable weights
and calculates an efficiency score for each student [22] by solving the model in (10)–(12).

Minimise Eα =
n∑
j=1

yαjwj , (10)

subject to the constraints

n∑
j=1

yijwj ≤ 1, i = 1, . . . ,m, (11)

wj ≥ ε > 0, j = 1, . . . , n, (12)

where Eα is the composite index for student α, yij is the output measure of student i
in factor j, wj is the weight for factor j, n is the number of factors, m is the number
of students to be evaluated, and ε is a small positive number ensuring all factors are
considered.
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This model was used to create a class–ranking that effectively sorted the students into
groups of similar efficiency. The principle of Pareto optimality applies wherein the effi-
ciency score (Eα) represents the ratio of the current student’s performance to that of all
the other students in that specific factor. If Eα = 1, then student α is considered Pareto
optimal which means that no output can increase without decreasing another [41]. Such a
student would then be categorised into the highest available class, lie on the Pareto fron-
tier, and is said to dominate those in lower classes. If Eα < 1, then student α is Pareto
non–optimal and is said to be dominated by those in higher classes. Detailed discussions
of Pareto optimality and the dominance principle can be found in Kao and Lin [22], and
Seiford and Zhu [38].

The outputs–only DEA was also performed on the same data set containing marks for 26
students, in which the four factors as described in the previous sections, are considered
as outputs. This resulted in a class–ranking that categorised the students in the data set
into 8 different classes of efficiency (Figure 1).

Figure 1: Class–ranking of the 26 students.

Figure 1 shows the class–ranking: one student was classified into class 1, followed by two
students in class 2 and so forth. The student class–ranking cannot directly be compared
to the rankings obtained in Section 3.1, for a few reasons. The outputs–only based DEA
method calculates the efficiency scores by determining the weights that will benefit each
student most, with no predetermined factor priority sequence included. Also, the basis
for calculating Eα is determined by the outputs of the students on the Pareto frontier
and is therefore not necessarily the same for each dominated student [16]. Although the
class–ranking produced by this model cannot be compared to the rankings resulting from
the methods in Section 3.1, the students classified into the first three classes, correspond
with the top seven from Section 3.1.

One of the disadvantages identified in Section 3.1, was that neither the benchMark program
nor the non–linear model offered students any actionable targets with which they could
attempt to improve their rankings. A major advantage presented by the outputs–only
DEA model formulated in (10)–(12), is that by implementing its dual formulation, discrete
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improvement targets per student per factor could be calculated. The dual formulation [22]
is expressed in (13)–(15).

Minimise Eα =

m∑
i=1

λi − ε
n∑
j=1

sj , (13)

subject to the constraints

m∑
i=1

yijλi − sj = yαj , j = 1, . . . , n, (14)

λi, sj ≥ 0, i = 1, . . . ,m; j = 1, . . . , n. (15)

The variable definitions are the same as for the model in (10)–(12). Furthermore, let
θ =

∑m
i=0 λi, then the target for factor j can be calculated as (yαj+sj)/θ and j = 1, . . . , n.

For each student not in class 1 (c 6= 1), this model would calculate n(c− 1) improvement
targets, one per factor for every class higher than the current. Consider, for instance,
Table 3 that shows Student 1 who was categorised into class 4.

Factor(%)

c F1 F2 F3 F4

4 45.00 55.00 50.00 75.00 (current)

Targets for improvement (%)

3 49.00 58.00 53.00 80.00

2 64.00 71.00 77.00 98.00

1 65.00 94.00 84.00 100.00

Table 3: Improvement targets for Student 1.

If Student 1 wanted to progress to class 3, the semester test (F1) must improve from 45%
to 49%, class tests (F2) from 55% to 58% and so forth. Likewise, for each student not
categorised into the highest class, targets were calculated in each factor for improvement
into the next higher class. Unfortunately the model does not cater for factors that have
been completed. A semester test for example, is written once in the middle of the term
and the mark cannot change after that. Also, any changes in student marks will have a
ripple effect on the entire class–ranking as follows:

• the model would need to be solved again and new optimal weight sets will be deter-
mined for each student;

• new weights per student could mean that the Pareto frontier for each class could
change; and

• the outputs of all students are used in calculating the improvement targets. This
means that even if a student reaches a target, the class–ranking might not change if
other students improved in the same factor.
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Another drawback to the outputs–only based DEA is that because the output of a student
is compared to that of every other student, the size of the problem increases considerably
when performing this analysis for modules with large student numbers. A solution to
this problem is proposed through the construction of an algorithmic approach which is
discussed in detail in Section 4.2.

The outputs–only DEA model can be used to calculate individual improvement targets for
each student, but it has certain disadvantages. Another student ranking was generated in
this context by means of the AHP for comparative purposes, and is discussed in the next
section.

3.3 An AHP model for ranking students

The analytic hierarchy process (AHP) is a mathematical method used to make decisions
when multiple objectives or criteria need to be considered [34]. The method is used to find
the best contender among a certain number of alternatives (students), based on a number
of criteria (factors).

Each one of the students is compared to the others in terms of each of the factors. This is
followed by a comparison of the importance of the factors resulting in an average rating
for every student.

Typically, the following steps are performed [29]:

1. Develop a ranking for each student for each factor:

• develop a pairwise comparison matrix for the students in each factor;

• normalise the resulting matrices;

• find the normalised principal eigenvector, or priority vector; and

• check the consistency of the pairwise comparisons.

2. Develop the weights for the factors:

• develop a pairwise comparison matrix for the factors;

• normalise the resulting matrix;

• find the priority vector; and

• check the consistency of the pairwise comparisons.

3. Calculate the weighted average rating for each student. Rank them according to
their average ratings.

Pairwise comparisons are based on a preference scale which usually ranges from 1 to 9
[1]. The ratings show how much one alternative is preferred above another, and vice
versa. In this application pairwise comparisons were made with student factor averages
and the rating scale was modified as follows: At tertiary level an admission point score
(APS) is used to determine whether a learner who completed the South African National
Senior Certificate, may study at a South African university [12]. An adaptation of the
APS system was therefore used for generating the pairwise comparison ratings of student
averages where the difference between the mark for factor j of student α and student β is
calculated as

yαj − yβj , α, β ∈ {1, . . . ,m} and α 6= β, (16)
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with m representing the number of students. These calculations are then associated with
the normal AHP preference scale of 1–9. Table 4 shows this association for yαj ≥ yβj . For
cases where yαj < yβj , the inverse of the rating is used. If for example yαj < yβj for the
interval 20%–29% then the corresponding rating would be 1/4.

if yαj ≥ yβj Rating

0% 1

1-9% 2

10-19% 3

20-29% 4

30-39% 5

40-49% 6

50-59% 7

60-79% 8

≥ 80% 9

Table 4: Preference rating for pairwise comparison of academic marks.

The non–linear model discussed in Section 3.1 yielded a set of weights used for calculating
the minimum and maximum p–marks of each student (Table 2). To enable comparison
between the AHP ranking and those obtained in previous sections, the weights were pre–set
to averages calculated as

w̄j = (w̄j(max) + w̄j(min))/2, (17)

where w̄j is the average weight for factor j, w̄j(max) is the average of all the weights
calculated for factor j for the maximum p–marks and w̄j(min) is the average of all the
weights calculated for factor j for the minimum p–marks. The weights used in the AHP
are 0.35, 0.30, 0.20 and 0.15 for w̄1 to w̄4, respectively. The weights can be varied at the
lecturer’s discretion but lecturers do not always know what the expected class throughput
resulting from specific weight combinations might be. This problem was addressed by
formulation of a non–linear weight selection model and is discussed in more detail in
Section 4.3.

Consistency checks on pairwise comparisons are usually required because with a large
number of decision alternatives inconsistent comparisons occur frequently. A consistency
ratio is calculated [10] using the formula

CR = CI/RI, (18)

where

CI = (λmax −m)/(m− 1) (19)

is the consistency index with λmax the principal eigenvalue, m the number of students, and
RI is a random consistency index [36]. Generally, the degree of consistency is acceptable
if CR < 0.10. The scale used for pairwise comparison of student marks in this study is
considered consistent because it compares each pair of marks by means of a mathematical
equation (Table 4). Therefore, it was not necessary to perform consistency checks for these
pairwise comparison matrices.
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The number of comparisons (sm) to be made for m students and n factors, is expressed
as

sm = mn(
m− 1

2
). (20)

Accordingly for the mark set of 26 students and four factors, a total of 1300 pairwise
comparisons were made.

The process was implemented on the same mark set used previously. The marks of the
students were rated according to Table 4 by calculating the difference between each pair
of marks and setting up the pairwise comparison matrix based on the given preference
scale. The matrix was completed and normalised for all of the 26 students in the set after
which the averages were calculated to determine each factor priority vector. This step was
performed for all four of the factors. Using the preference weights as discussed previously,
a composite rating rαj , was calculated for each student by finding

rα =
n∑
j=1

γαjwj , α = 1, . . . ,m, (21)

for student α, with γαj the average priority rating of student α in factor j, wj the pre–set
weight for factor j, m the number of students, and n the number of factors.

The students were then ranked according to the calculated composite ratings. Table 5
shows the top seven rankings determined by the AHP (the complete set is available in
Table 11, Appendix B).

Priority Vector Composite
Rating

Pairwise
Ranking

Student F1 F2 F3 F4 rαj

2 0.1019027 0.1226755 0.145867 0.0612267 11.0826 1

9 0.0793605 0.1101616 0.1166742 0.0612267 9.334351 2

3 0.0872195 0.0810881 0.0704773 0.0612267 7.813273 3

10 0.0793605 0.0506373 0.0643211 0.0612267 6.501559 4

24 0.0614319 0.0370232 0.0824396 0.0612267 5.828006 5

23 0.0491764 0.0670063 0.0387908 0.0612267 5.425578 6

13 0.0326883 0.0977652 0.0460599 0.0283514 5.423514 7

Table 5: Top seven of the student ranking resulting from the AHP.

The use of the AHP on student marks in different factors, is an unconventional approach to
student ranking. It creates a ranking without the calculation of p–marks and can be used
to provide an alternative form of feedback. The Spearman’s rank correlation coefficient,
ρ (Section 3.1) was calculated to compare the AHP ranking to those obtained previously.
The AHP ranking correlated with the benchMark ranking by ρ = 0.97, and with that of
the non–linear model, by ρ = 0.98.

One of the problems with using the AHP is that although the resulting ranking highly
correlated with those from other methods, a different normalisation order can lead to
different rankings [32]. Another disadvantage is that the AHP is difficult to use with large
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volumes of data because the number of pairwise comparisons that need to be made is
directly related to the number of alternatives to consider [20]. This method also did not
address the feed–up or feed–forward requirements. Despite these difficulties, the results
showed the AHP to be another technique which can be used for ranking students. For this
study, the AHP also acted as an efficient control measure, by which the rankings obtained
in the other methods could be evaluated according to the Spearman’s rank correlation
coefficient.

The existing mathematical models discussed in Section 3 were implemented on the same
data set to generate different student rankings. The rankings were evaluated according to
specific criteria essential to a PSR, as identified in literature and practice. Although some
of the criteria were addressed, other issues remain unattended. To this end, a solution
consisting of three different but related algorithms, is proposed and is discussed in Section
4.

4 Proposed mathematical model for effective PSRs

The requirements for effective PSRs in an academic environment were identified in Section
2 and used as evaluation guidelines for the three methods evaluated in Section 3. An
effective PSR needs to address these important aspects: it must feed–up or provide a
goal to work towards, feed–back or present current performance, and feed–forward or offer
actions to perform towards reaching the goal. The evaluated methods were implemented
as mathematical models which were chosen for specific reasons and applied on the same
data set for comparative purposes. Although each one of those methods offered a ranking
solution and addressed some of the requirements, none of them satisfied all of the criteria
for PSRs. The benchMark program, non–linear model and the AHP model provided feed–
back but neither feed–forward nor feed–up. The outputs–only based DEA model addressed
the feed–forward criteria by providing factor improvement targets and partially addressed
the feed–back criteria in the form of a class–ranking. However, numerous disadvantages
were identified that makes this method unsuitable for the use in PSRs. Evaluation of these
methods is illustrated in Figure 2.

Figure 2: Evaluation of selected methods for PSRs.

As Figure 2 illustrates, none of the methods comprehensively addressed the feed–up re-
quirement which demands that students be continuously presented with new goals aimed
at progression. The requirements for an effective PSR has therefore not been addressed
completely. Evaluation of the methods in Section 3 presented some valuable insights that
led to the proposal and development of an algorithmic solution that is illustrated in Figure
3 and discussed in subsequent sections.
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Figure 3: Proposed solution to address PSR criteria.

An important issue to consider when generating the information required for PSRs, is
the fact that as time passes by, so does a student’s opportunity for improvement. At
the start of a semester when only a few assessments have been completed, the factor
averages are calculated from the only scores available. Each assessment therefore has a
greater influence on the calculated p–mark at an early stage. As a semester elapses and
the number of assessments remaining in each factor decreases, the contribution of each
individual assessment towards the p–mark diminishes and the opportunities to improve
decreases. Figure 3 illustrates how the requirements for PSRs relate to one another in
the proposed solution. A linear model for p–mark calculation and its associated algorithm
are discussed in Section 4.1. This is followed by the algorithmic approach to calculate
improvement scenarios in Section 4.2. The algorithms in Sections 4.1 and 4.2 provide the
information required for a student PSR. Section 4 will conclude with a weight selection
model that provides feed–back to a lecturer, which is discussed in Section 4.3.

4.1 Linear model for p–mark calculation

To address the feed–back requirement, p–mark calculation is performed by means of a
linear model according to the framework proposed in Figure 3. The linear model is based
directly on the non–linear model (3)–(8) discussed in Section 3.1. It was converted to a
linear model by omitting constraint set (5) which stipulated that the weights be in multi-
ples of a number k. This constraint set can be excluded because no empirical calculations
are required to find a solution. The model was implemented by means of Algorithm 1.

The linear model was solved for the data set in Appendix A. For the purpose of validating
the model the p–marks were used for compiling a student ranking. This ranking correlated
favourably with that of the benchMark program (ρ = 0.96) as well as with that of the
non–linear model (ρ = 0.97). It may therefore be accepted that the proposed linear model
produces acceptable results and may be used in the proposed framework of Figure 3 to
address the feed–back requirement. The results of this model are attached in Appendix
C and are used as input to the algorithm implemented to address the feed–forward and
feed–up requirements, which is discussed in the next section.

4.2 Improvement target calculation and potential participation plan

At the start of a semester a lecturer typically plans a certain number of assessments to be
taken by the students in each of the factors. As the semester progresses and assessments
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Algorithm 1: Linear modelling of p–mark calculation

Input : Y = {ȳ1, . . . , ȳm} is an array representing the current factor averages for a
group of m students in n factors.

Output: A set of arrays P = {p̄1, . . . , p̄m} with the minimum and maximum
p–marks, their associated weights, and the average p–marks for m students.

1 for i = 1 to m do
2 read ȳi from Y ;
3 calculate minimum p–mark and associated weights for student i;
4 calculate maximum p–mark and associated weights for student i;
5 calculate average p–mark for student i;
6 populate p̄i with the values calculated in lines 3–5;

7 end
8 output P ;

are given by the lecturer, the remaining assessments in each of the factors decrease. Feed–
forward is therefore dependent on the point in time at which it is generated and must
consider completed as well as remaining assessments in each factor. This time dependency
means that different scenarios exist according to which students can complete a semester
but with limited combinations of assessments available in each factor. An algorithmic
approach was followed to determine the available scenarios at any specific point in time.
The purpose of the algorithm is to provide a student with a future time perspective based
on assessments planned for the remainder of the semester, the student’s current factor
averages and minimum p–mark. This perspective will provide students with insight into
the effect that their continued participation or lack thereof, can have on their minimum
p–marks.

The approach takes as input the current factor averages for a student at a specific time
during the semester, the number and layout of the assessments remaining in each one of the
appropriate factors and the required percentage improvement (δ). A table, based on truth
table layout principles, is developed containing all the possible participation scenarios for
the remainder of the semester. If there are assessment opportunities remaining, there
would be a total of 2s possible participation scenarios. The assessment plan is then
used to eliminate participation scenarios that are impossible within the time constraints
stipulated. This approach effectively caters for students engaging in, or missing out on any
number of the remaining assessments. The algorithm provides output in the form of a set
of participation scenarios based on the remaining possibilities and shows corresponding
scores that a student must achieve in each scenario to affect the desired improvement
in each factor. The projected change in the minimum p–mark is also shown for each
scenario. The algorithmic approach is based on mathematical modelling principles and is
shown below.

The algorithm starts by developing the participation scenarios in lines 1–4 and continues to
calculate the scores required in upcoming assessments to produce the desired improvement
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Algorithm 2: Potential participation plan for a student

Input : ȳ = {ȳ1, . . . , ȳn} is an array representing the current factor averages for a
student in n factors, A = {ā1, . . . , ās} and array denoting the s remaining
assessment sessions and δ the required percentage factor improvement.

Output: An array x̄r, with r possible improvement scenarios.

1 declare q(2s, n); // to store all scenarios for s sessions

2 for c = 1 to 2s do
3 populate q with participation scenario c;
4 end
5 remove duplicate rows in q;
6 r ← number of rows(q);
7 declare marks(r, n); // scores required for a required improvement of δ
8 declare min f assessments(n); // minimum assessments per factor to

cause a required improvement of δ
9 for j = 1 to n do

10 determine ej from āj ; // remaining number of assessments in factor j
11 determine tj from āj ; // ‘total number of assessments in factor j
12 for u = 1 to ej do
13 read yu from ȳ;
14 calculate newV alue according to equation (22) with yu, δ, and ηu = u;
15 if q(j, u) is possible then
16 marks(j, u) = newV alue;
17 set min f assessments(j);

18 else
19 marks(j, u) = “not possible“;
20 end

21 end

22 end
23 declare x(r, n+ 1); // for r scenarios, x has a required score per

factor and minimum change in p--mark
24 row ← 1;
25 while row ≤ r do
26 for element = 1 to n do
27 if q(row, element) ≤ min f assessments(element) then
28 populate x(row, element) using marks(row, element);
29 end

30 end
31 row ← row + 1;

32 end
33 ouput x̄r;

in line 14 according to

marksj =
δtj + ejyαj

ηj
(22)
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where marksj is the score the student must achieve in the next ηj assessments of factor
j, tj is the total number of assessments in the semester for factor j, ej is the remaining
number of assessments for factor j and yαj is the current factor average in factor j for
student α. In lines 15–22, these scores are used to determine the minimum number of
assessments to be completed to achieve an improvement of δ in the factors for which it
will be possible. In lines 23–32 the possible scenarios are reduced further by comparing
the number of assessments in the remaining scenarios to the minimum required in each
factor.

For a number of s remaining assessment sessions, this approach can be illustrated according
to Figure 4.

Figure 4: Expansion diagram for potential participation.

As an illustrative example, consider the student data set in Appendix A with four factors
and 26 students and an example set of five remaining assessment sessions as shown in
Table 6.

Assessment session

1 2 3 4 5

Attendance (F4) Attendance (F4) Class test (F2) Attendance (F4) Attendance (F4)

Theoretical Theoretical

assignment (F3) assignment (F3)

Table 6: Example of a future assessment plan for the remainder of a semester.

In session 1, a student can participate in one attendance (F4). In session 2, a student
can participate in one attendance (F4) and one theoretical assignment (F3), and so forth.
In this example, assessments can be taken in more than one factor per session and it is
assumed that if a student participates in one session, all assessments given during that
session are completed. By attending class in the second session for example, a student
can obtain a mark for attendance (F4) as well as a theoretical assignment (F3). Assume
that each factor is represented by a number that increases when a student participates
in an assessment. In the example, a set of four numbers will then represent assessment
participation in F1, . . . , F4 respectively. The possible participation options available for
the assessment plan given in Table 6 were generated by means of a truth table in Algorithm
2 and is illustrated in Figure 5.

Each node represents a unique participation scenario for the semester, with self–loops indi-
cating no further participation for the remaining assessment sessions. The set {0, 1, 0, 2},
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Figure 5: Possible participation scenarios for a student with the assessment plan as laid
out in Table 6.

for example, represents a scenario in which the student will have completed only one
assessment in F2 and two assessments in F4 at the close of the semester.

The total number of possible participation scenarios for this assessment plan is 25 = 32.
The algorithm was implemented for the assessment plan in Table 6, for Student 22. Table
7 shows a potential participation plan with an improvement target of δ = 5%.

The table shows the current factor averages and minimum p–mark for Student 22, followed
by the scenarios possible for a 5% improvement in the relevant factors. Note that for
attendance (F4) a student can either get 100% for being in class or 0% for being absent.
The scores for F4 were, therefore, calculated as

marksj =
yαj(tj − ej) + 100ηj

tj
, (23)

with similar variables as in (22). The layout of the assessments in Table 6 and their time
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Improvement of a maximum of 5% on factor averages for Student 22

Current performance status report:

F1 F2 F3 F4

Current
minimum
p–mark(%)

Factor averages(%): 40.00 54.07 42.67 88.89 45.48

Number of remaining assessments
at current stage in the semester:

0 1 2 4

Total number of assessments for
the entire semester:

1 4 9 12

Improvement plan:

The scenarios for which
improvement is possible in F2, F3

and F4

Scores (%) required for
a 5% improvement:

Increase in
minimum
p–mark(%)

F1 F2 F3 F4

Scenario1 = {0, 1, 2, 2} 0.00 74.07 65.17 75.92 2.78

Scenario2 = {0, 1, 2, 3} 0.00 74.07 65.17 84.26 2.86

Scenario3 = {0, 1, 2, 4} 0.00 74.07 65.17 92.59 2.96

Table 7: Improvement plan for Student 22 with an improvement of δ = 5% on the current
factor averages.

dependency were used to establish which scenarios can lead to an improvement of 5%. As
the assessment plan included no more available assessments in F1, the improvement plan
shows all the possible scenarios to produce an improvement of 5% on F2 and F3.

Consider Scenario3 in Table 7: to increase the current factor averages of F2 and F3 by
5%, the student will need to complete at least one assessment in F2 with a score of 74.07%
and at least two assessments in F3 with an average score of 65.17%. The average for F4

will increase to 92.59% if the student participates in all four assessments available. If all
of these conditions are met, the increase in minimum participation mark will be 2.96%.
Although this increase in minimum p–mark seems small, it is important to note that it
is dependent on the required improvement and the point in time at which these scenarios
are calculated. Early in the semester, the number of remaining assessments per factor
will have a greater influence on the extent to which the minimum p–mark can change
than at a later stage. Furthermore, due to the small value of δ the resulting change in
minimum p–mark is also small. The algorithm was also implemented for the same student
with δ = 10%, and resulted in the same three scenarios shown in Table 7. The maximum
possible increase in minimum p–mark for Scenario3 in this instance was 5.9%. Should a
higher improvement percentage be required, it may be possible that the targets cannot
be reached because the remaining number of assessments is not enough. In the example a
required improvement of 15% under the same conditions, will be impossible.

An advantage of using this algorithm is that by setting δ = 0% and consequently excluding



52 A van der Merwe, HA Kruger & JV du Toit

any improvement, it can be used to generate a projected report for a student who does
not plan to participate in any number of further assessments. Students can build their
factor averages up to a certain stage and then fail to participate in any further assessments
for numerous reasons, for example illness. Providing them with a projected status record
that shows how much their minimum p–marks can decrease, can provide the motivation for
their continued participation. Scenario0 = {0, 0, 0, 0} was generated for the current factor
averages of Student 22 and the assessment plan in Table 6 and showed that the student’s
minimum p–mark can decrease by 7% if there is no further participation in any further
assessments. This scenario will have more serious consequences earlier in the semester
when there are many assessments to be completed for each factor.

Algorithm 2 effectively addresses the feed–forward as well as feed–up requirements. Feed–
up is provided in the form of the predicted increase or decrease in minimum p–mark.
Feed–forward is presented in the form of target scores that a student must obtain to reach
said change in the minimum p–mark.

Although the combination of Algorithms 1 and 2 effectively and efficiently addresses all
three requirements for student PSRs, lecturers sometimes require additional information
before deciding on the weights to use for final p–mark calculation. To assist a lecturer in
deciding which weight combination to select for calculation of the final p–marks, a non–
linear model was formulated and implemented in an iterative algorithm. This algorithm
was developed to provide feed–back solely to the lecturer and is discussed next.

4.3 Non–linear programming model in a weight selection algorithm

The linear model in Section 4.1 produced not only the p–marks and subsequent student
ranking, but also the weights used to calculate the maximum and minimum p–marks per
student. A lecturer decides only at the close of a semester which factor weights to use for
the calculation of the final p–marks. Generally, lecturers have certain guideline throughput
objectives (e.g. a 70% pass rate or p–mark class average) according to which they can
measure the success of a group of students. It will, however, be useful to know throughout
the course of a module whether a certain objective is reachable with the marks available
at a certain point in time. To this end, a non–linear model was formulated to determine
the required weights that will produce a p–mark class average as close as possible to some
predetermined target. The model is expressed in (24).

Minimise z = |pt − pa|, (24)

subject to constraints (4) and (6)–(8) in Section 3.1. In this model, pt represents the
target p–mark class average, pa is the current p–mark class average calculated with fixed
weights as

pa =
1

m
[w1y11 + · · ·+ wmym1 + · · ·+ w1y1n + · · ·+ wmymn], (25)

with m the number of students and n the number of factors. Due to the non–linearity of
the model, it can be solved using a heuristic approach. As with the non–linear model in
Section 3.1, the Evolutionary Solver in Excel was used. The approach for determining the
weights by means of the model in (24) was implemented according to Algorithm 3.
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Algorithm 3: Non–linear modelling of weight selection

Input : Y = {ȳ1, . . . , ȳm} is an array representing the current factor averages for m
students in n factors, pa the actual p–mark class average and pt the target
p–mark class average.

Output: w̄ = {w1, . . . , wn} is an array with the weights required to reach pt.

1 find w̄ by solving model (24) using Y and pa;
2 if (pt was not reached with w̄) then
3 if (upper limits on w̄ is mandatory) then
4 solve model (24) until no further improvement;
5 else
6 relax upper limits on weights;
7 find w̄ by solving model (24) using Y and pa;

8 end

9 end
10 output w̄;

To evaluate the model, it was implemented on the data set in Appendix A with a target
p–mark class average of 70%. Initially the resulting set of weights that was produced by
the algorithm was such that a p–mark class average of 70% could not be reached due to the
upper limits imposed on the weights by constraint set (6) in Section 3.1. When the upper
limit constraints on the weights are relaxed, the target p–mark class average of 70% can
be obtained using the resulting weight set. In the example, the weights required to reach
a p–mark class average of 70% were 0.66, 0.12, 0.11 and 0.11 for w1 to w4 respectively.

The model produces insight which a lecturer can use to determine how close to a specific
target the entire class is. Although useful results can be obtained, they must be approached
and interpreted with caution. Issues that need to be considered include:

• The model is solved heuristically which means that optimal solutions cannot be
guaranteed. Although minor deviations may appear, empirical experiments have
shown that the results were consistently acceptable.

• When constraints like upper limits are enforced on the weights, the target p–mark
class average may not necessarily be reachable. In such an instance the model can
be solved iteratively so that a solution as close as possible to the target p–mark class
average can be reached.

• The weights resulting from an iterative approach may not conform to assurances
made to students at the onset of the semester. A lecturer can for example, indicate
at the start of a semester that no factor weight will exceed 0.4 but the algorithm may
show that to reach a target p–mark class average of 70%, w1 must be 0.66. In such
a case the lecturer will either need to discuss the possibility of allowing the weight
ranges to change with the students, or be content with a p–mark class average that
is lower than the target.

Implementation of Algorithms 1 and 2 saw the feed–back, feed–up and feed–forward re-
quirements for efficient PSRs being met. The model in Section 4.3 used the resulting
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p–marks obtained in Section 4.1 as input to determine an estimate of the weights required
to reach a class average as close as possible to a specific target.

5 Discussion

None of the existing models evaluated in Section 3 fully addressed all of the requirements
for effective PSRs. In Section 4, three algorithms were discussed that not only address the
requirements but also provide additional feed–back to a lecturer. The three algorithms
are closely related because the feed–back is used to generate the feed–forward and feed–up
which are included in a PSR. This is illustrated in Figure 6.

Figure 6: Algorithmic solution to effective PSRs.

In Figure 6, the arrows represent the passing of time and show how feed–back is required to
set interim goals, or feed–up, as well as to calculate improvement targets as feed–forward.
As time passes, the number of completed assessments grows and the number of remaining
assessments decreases. Feed–back therefore progressively gets more accurate and closer
to the final marks that will be used for examination admission. The decreasing size of
the feed–back circle is therefore an indication of the decreasing number of remaining as-
sessments. The interim goal(s) as well as the related improvement targets, are calculated
based on completed and remaining assessments and therefore get stricter as time passes
and the remaining assessments decrease. This means that closer to the end of a semester,
certain improvements may not be possible to achieve within the remaining available as-
sessments. The algorithmic solutions offer specific as well as general contributions towards
PSRs in the academic environment. These are discussed below.
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5.1 Specific remarks

The ranking produced by Algorithm 1 proves to be acceptable because of the high Spear-
man’s ranking correlation between it and those obtained from benchMark and the non–
linear model discussed in Section 3.1. The algorithm eliminates the need for iterative
empirical calculations. Furthermore, the weights calculated by Algorithm 1 are consid-
ered more accurate than those obtained by benchMark because they are not restricted to
be integer or in multiples of a predetermined number.

Algorithm 2 uses the minimum p–mark and its associated weights to develop a future time
participation perspective for a student. The scenarios according to which the required
improvement can be reached are determined and provided. The algorithm can be used to
generate a participation plan at any point in time during the semester.

Algorithm 3 provides additional progress information to a lecturer which can be used to
determine the weights required to reach a target p–mark class average. The calculated
weights may also provide a lecturer with some insight into how successful students were
in each factor. A specific factor weight which is much higher than all the others would for
example indicate that the students overall performed much better in that factor than in
all the others.

Although the proposed algorithmic solutions provide the information essential to PSRs,
some disadvantages were identified and are listed accordingly. Algorithm 2 was developed
to generate participation scenarios for an individual student. The algorithm can be used
iteratively to generate improvement plans for an entire class. However, depending on the
marks, the same improvement percentage will not be possible for all students. Therefore
every time the lecturer generates an improvement plan for a student, an improvement
percentage related to the student’s current performance is required. This makes execution
of the algorithm for an entire class rather labour intensive.

If the upper limit weight constraints in Algorithm 3 need to be relaxed because a target
p–mark class average cannot be reached, the resulting weights may not conform to the
guidelines set by the lecturer at the start of the semester.

5.2 General remarks

The purpose of the proposed algorithmic solutions was to address the demand for a system
that will continuously provide students with academic performance status reports in a
module, at any point in time during a semester. The discussed algorithmic solutions
address the feed–back, feed–forward and feed–up requirements and furthermore exhibit
the attributes necessary for it to be constructive and to motivate students to improve.

The proposed framework provides ongoing feed–back that is timely because it can be used
as frequently as required. The results are readily available and can be made available to
students instantly. The approach is user–friendly and consistently uses an updated set of
the students’ current marks to obtain the information needed for feed–back. Furthermore,
the suggested approach provides a student with personalised and goal–referenced feed–
up which is based on the student’s current performance. The feed–forward improvement
targets are presented in the form of actionable scores that a student needs to acquire in a
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specified number of upcoming assessments, in each factor.

The collective algorithmic approach sufficiently generates feed–back, feed–up and feed–
forward for academic PSRs based on a set of students’ current performance. Implemen-
tation of the framework could also be useful in environments where PSRs are required
for motivation to participate in specific learning opportunities or assessments or also, for
example, in sports activities or tournaments.

6 Conclusions

The purpose of this study was to evaluate existing mathematical models against the re-
quirements for effective PSRs and develop an improved algorithmic approach for that
purpose. An example data set containing the marks for 26 students in four factors (Ap-
pendix A) was used throughout the study to evaluate the methods and solutions.

Three existing models were evaluated. The benchMark program was assessed and for-
malised in a non–linear mathematical model. Although these options did address feed–
back in PSRs, other disadvantages made them impractical to use regularly and under
certain conditions. An outputs–only DEA was performed to group students into classes
of similar efficiency. Improvement targets (feed–forward) were then calculated to help
students advance to one class higher. The interim goal (feed–up) for each student was not
clear because it was not linked to the p–mark. The method was independent of weight
constraints and impractical to use for classes with many students. The analytic hierarchy
process provided a means to rank students without calculating their p–marks but did not
address the feed–up or feed–forward requirements.

To address the deficiencies, a set of related algorithmic approaches in which alternative
mathematical models are implemented, was developed. The reports generated were conse-
quently assessed in terms of the required attributes for effective PSRs. Three algorithms
were developed to attend to the requirements for PSRs. Firstly, a linear programming
model was implemented in an algorithm to address the requirements of feed–back in the
form of a student ranking. The next algorithm generated a future participation and im-
provement plan for each student and addressed the feed–up and feed–forward requirements
for PSRs. A non–linear model was implemented in a third algorithm to provide additional
feed–back to a lecturer during the course of a semester.

Some aspects that are currently receiving attention to improve the proposed algorithmic
approach include the calculation of the maximum possible improvement per individual stu-
dent in a class and automatic generation of the future perspective plans; and development
of an interactive user–friendly graphical interface that combines the different algorithmic
activities.
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Appendices

A. Data set used in the mathematical models

Table 8 presents the data set containing the factor averages of 26 students in four factors,
where the factors (denoted F1 to F4 respectively) are a semester test, class tests, theoretical
14 assignments and attendance. This set was used in the paper to evaluate the relevant
ranking methods.

Student F1(%) F2(%) F3(%) F4(%)

1 73.33 64.74 13.92 62.50

2 100.00 95.24 97.92 100.00

3 96.67 82.62 75.05 100.00

4 35.00 35.27 21.01 77.78

5 61.67 56.90 40.59 77.78

6 75.00 63.10 57.59 88.89

7 58.33 22.39 34.68 100.00

8 58.33 43.76 53.53 87.50

9 93.33 91.51 87.75 100.00

10 93.33 68.15 74.07 100.00

11 88.33 53.38 64.91 100.00

12 73.33 57.01 63.71 100.00

13 76.67 87.13 65.83 88.89

14 10.00 44.40 52.97 77.78

15 83.33 57.27 23.65 88.89

16 51.67 46.19 26.36 77.78

17 90.00 58.15 68.42 77.78

18 63.33 58.30 42.67 100.00

19 73.33 63.38 41.01 100.00

20 60.00 55.24 51.58 88.89

21 85.00 59.46 35.90 75.00

22 40.00 54.07 42.67 88.89

23 85.00 72.14 61.85 100.00

24 90.00 64.76 76.67 100.00

25 83.33 60.46 26.07 66.67

26 65.00 55.48 24.53 100.00

Table 8: Data set utilised in the mathematical models in this study.
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B. Participation profiles of the 26 participants as calculated
by benchMark

Participation profiles of the 26 participants as calculated by benchMark.

Student F1 F2 F3 F4 Max Min Avg Rank

2 100.00 95.24 97.92 100.00 98.29 97.58 97.85 1

9 93.33 91.51 87.75 100.00 93.15 91.35 92.33 2

3 96.67 82.62 75.05 100.00 89.22 85.43 87.44 3

13 76.67 87.13 65.83 89.00 83.35 78.25 81.05 4

10 93.33 68.15 74.07 100.00 84.89 78.78 81.04 5

24 90.00 64.76 76.67 100.00 82.86 77.07 79.37 6

23 85.00 72.14 61.85 100.00 79.75 74.31 77.35 7

17 90.00 58.15 68.42 77.78 76.02 71.62 73.66 8

11 88.33 53.38 64.91 100.00 76.66 69.08 72.28 9

12 73.33 57.01 63.71 100.00 73.51 65.73 68.79 10

6 75.00 63.10 57.59 88.89 70.80 66.24 68.60 11

19 73.33 63.38 41.01 100.00 69.43 61.49 66.24 12

21 85.00 59.46 35.90 75.00 68.52 60.65 63.67 13

25 83.33 60.46 26.07 66.67 67.63 57.73 61.88 14

15 83.33 57.27 23.65 88.89 67.36 56.52 61.80 15

18 63.33 58.30 42.67 100.00 66.08 57.21 61.75 16

20 60.00 55.24 51.58 88.89 63.58 57.18 59.97 17

5 61.67 56.90 40.59 77.78 61.67 54.97 58.73 18

26 65.00 55.48 24.53 100.00 61.25 51.28 57.37 19

1 73.33 64.74 13.92 62.50 63.76 52.40 57.35 20

8 58.33 43.76 53.53 87.50 60.33 52.67 55.53 21

22 40.00 54.07 42.67 88.89 56.06 47.97 51.61 22

16 51.67 46.19 26.36 77.78 49.81 43.33 47.25 23

7 58.33 22.39 34.68 100.00 47.60 38.88 42.50 24

14 10.00 44.40 52.97 77.78 45.59 33.46 39.69 25

4 35.00 35.27 21.01 77.78 41.57 32.90 37.16 26

Table 9: Participation profiles created by benchMark in Section 3.1, for the 26 students.
F1 – F4 are the factor averages arranged according to weight priority. The columns Max,
Min and Avg, are the maximum, the minimum and the average participation marks,
respectively. The column Rank is the student ranking according to average participation
marks. All marks are indicated in percentages.
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The maximum, minimum and average p–marks, student ranking, and corresponding weights
for calculating the minimum and maximum p–marks for 26 students using the non-linear
model in Section 3.1.

p–marks (%) Weights for minimum p–mark Weights for maximum p–mark

Student Max Min Average Rank w1 w2 w3 w4 w1 w2 w3 w4

2 98.63 97.78 98.21 1 0.40 0.40 0.15 0.05 0.40 0.20 0.20 0.20

9 93.15 91.44 92.30 2 0.35 0.30 0.30 0.05 0.25 0.25 0.25 0.25

3 90.20 86.13 88.17 3 0.35 0.30 0.30 0.05 0.40 0.20 0.20 0.20

10 84.52 80.04 82.28 4 0.35 0.35 0.25 0.05 0.35 0.25 0.20 0.20

24 84.27 78.33 81.31 5 0.35 0.35 0.25 0.05 0.40 0.20 0.20 0.20

13 80.54 77.17 78.29 6 0.35 0.30 0.30 0.05 0.35 0.35 0.15 0.15

23 80.80 74.95 76.90 7 0.35 0.30 0.30 0.05 0.40 0.20 0.20 0.20

11 78.99 70.83 73.55 8 0.35 0.35 0.25 0.05 0.40 0.20 0.20 0.20

17 76.87 72.75 74.12 9 0.30 0.30 0.30 0.10 0.40 0.20 0.20 0.20

12 73.51 66.55 68.87 10 0.35 0.35 0.25 0.05 0.25 0.25 0.25 0.25

6 71.92 66.90 68.57 11 0.35 0.30 0.30 0.05 0.40 0.20 0.20 0.20

19 70.21 61.98 64.73 12 0.35 0.30 0.30 0.05 0.40 0.20 0.20 0.20

21 68.47 61.61 63.90 13 0.30 0.30 0.30 0.10 0.40 0.30 0.15 0.15

15 67.40 59.07 61.85 14 0.35 0.30 0.30 0.05 0.40 0.30 0.15 0.15

18 66.08 57.46 60.33 15 0.35 0.30 0.30 0.05 0.25 0.25 0.25 0.25

25 63.97 59.13 60.75 16 0.30 0.30 0.30 0.10 0.40 0.30 0.15 0.15

20 63.93 57.49 59.64 17 0.35 0.30 0.30 0.05 0.25 0.25 0.25 0.25

1 62.87 51.85 55.52 18 0.30 0.30 0.30 0.10 0.40 0.35 0.15 0.10

5 59.72 54.72 56.39 19 0.35 0.30 0.30 0.05 0.40 0.20 0.20 0.20

8 60.78 53.24 55.75 20 0.35 0.35 0.25 0.05 0.25 0.25 0.25 0.25

26 62.00 51.75 55.17 21 0.35 0.30 0.35 0.05 0.4 0.20 0.20 0.20

22 56.41 47.33 50.36 22 0.40 0.30 0.25 0.05 0.25 0.25 0.25 0.25

7 54.75 41.93 46.20 23 0.35 0.35 0.25 0.05 0.25 0.25 0.25 0.25

16 50.73 43.74 46.07 24 0.35 0.30 0.30 0.05 0.40 0.2 0.20 0.20

14 46.29 33.60 37.83 25 0.40 0.35 0.20 0.05 0.25 0.25 0.25 0.25

4 42.26 33.02 36.10 26 0.40 0.30 0.25 0.05 0.25 0.25 0.25 0.25

Table 10: Resulting maximum, minimum, and average p–marks, ranking and weights
calculated by means of the non–linear model in Section 3.1.
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The student ranking of the 26 students, as determined by the AHP discussed in Section
3.3.

Priority Vector Composite
Rating

Pairwise
Ranking

Student F1 F2 F3 F4 rαj

2 0.1019027 0.1226755 0.1458670 0.0612267 11.082600 1

9 0.0793605 0.1101616 0.1166742 0.0612267 9.334351 2

3 0.0872195 0.0810881 0.0704773 0.0612267 7.813273 3

10 0.0793605 0.0506373 0.0643211 0.0612267 6.501559 4

24 0.0614319 0.0370232 0.0824396 0.0612267 5.828006 5

23 0.0491764 0.0670063 0.0387908 0.0612267 5.425578 6

13 0.0326883 0.0977652 0.0460599 0.0283514 5.423514 7

17 0.0614319 0.0280258 0.0869943 0.0148856 4.954059 8

11 0.0541918 0.0172421 0.0495889 0.0612267 4.324156 9

15 0.0568494 0.0347459 0.0065793 0.0283514 3.588964 10

12 0.0260657 0.0276756 0.0418947 0.0612267 3.498863 11

6 0.0306510 0.0374787 0.0359753 0.0283514 3.341923 12

19 0.0260657 0.0368469 0.0181735 0.0612267 3.299577 13

25 0.0568494 0.0312238 0.0097345 0.0093700 3.261681 14

21 0.0491764 0.0297609 0.0133239 0.0127000 3.070979 15

18 0.0171022 0.0287135 0.0199034 0.0612267 2.776450 16

1 0.0260657 0.0377650 0.0051790 0.0087337 2.279836 17

26 0.0190688 0.0175284 0.0075953 0.0612267 2.263566 18

20 0.0147006 0.0158600 0.0259862 0.0283514 1.935315 19

5 0.0162776 0.0262947 0.0150281 0.0148856 1.882403 20

7 0.0128273 0.0058818 0.0127885 0.0612267 1.799583 21

8 0.0128273 0.0103791 0.0252893 0.0182904 1.540473 22

22 0.0074831 0.0158520 0.0177094 0.0283514 1.516930 23

14 0.0043365 0.0113759 0.0277737 0.0148856 1.271811 24

16 0.0104266 0.0141118 0.0089887 0.0148856 1.191343 25

4 0.0064634 0.0068808 0.0068640 0.0148856 0.793206 26

Table 11: Ranking of the 26 students produced by the AHP in Section 3.3.
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C. Results of the linear model in Section 4.1

The maximum, minimum and average p–marks, student ranking, and corresponding weights
for calculating the minimum and maximum p–marks for the 26 students using the linear
model in Section 4.1.

p–marks (%) Weights for minimum p–mark Weights for maximum p–mark

Student Max Min Average Rank w1 w2 w3 w4 w1 w2 w3 w4

2 98.63 97.70 98.17 1 0.40 0.40 0.19 0.01 0.40 0.20 0.20 0.20

9 93.19 90.96 92.07 2 0.33 0.33 0.33 0.01 0.40 0.20 0.20 0.20

3 90.20 84.93 87.57 3 0.33 0.33 0.33 0.01 0.40 0.20 0.20 0.20

10 85.78 78.73 82.26 4 0.33 0.33 0.33 0.01 0.40 0.20 0.20 0.20

24 84.29 77.37 80.83 5 0.33 0.33 0.33 0.01 0.40 0.20 0.20 0.20

13 80.99 76.67 78.83 6 0.33 0.33 0.33 0.01 0.40 0.40 0.10 0.10

23 80.80 73.27 77.03 7 0.33 0.33 0.33 0.01 0.40 0.20 0.20 0.20

17 76.87 72.25 74.56 8 0.33 0.33 0.33 0.01 0.40 0.20 0.20 0.20

11 78.99 69.19 74.09 9 0.33 0.33 0.33 0.01 0.40 0.20 0.20 0.20

12 73.51 65.04 69.28 10 0.33 0.33 0.33 0.01 0.25 0.25 0.25 0.25

6 71.92 65.47 68.69 11 0.33 0.33 0.33 0.01 0.40 0.20 0.20 0.20

19 70.21 59.65 64.93 12 0.33 0.33 0.33 0.01 0.40 0.20 0.20 0.20

21 68.88 60.27 64.57 13 0.33 0.33 0.33 0.01 0.40 0.40 0.10 0.10

25 66.79 56.72 61.76 14 0.33 0.33 0.33 0.01 0.40 0.40 0.10 0.10

15 67.50 55.09 61.29 15 0.33 0.33 0.33 0.01 0.40 0.40 0.10 0.10

18 66.08 55.22 60.65 16 0.33 0.33 0.33 0.01 0.25 0.25 0.25 0.25

1 66.36 54.15 60.26 17 0.33 0.33 0.33 0.01 0.40 0.40 0.10 0.10

20 63.93 55.94 59.93 18 0.33 0.33 0.33 0.01 0.25 0.25 0.25 0.25

5 59.72 53.30 56.51 19 0.33 0.33 0.33 0.01 0.40 0.20 0.20 0.20

8 60.78 51.88 56.33 20 0.40 0.40 0.19 0.01 0.25 0.25 0.25 0.25

26 62.00 48.85 55.43 21 0.33 0.33 0.33 0.01 0.40 0.20 0.20 0.20

22 56.41 45.48 50.95 22 0.40 0.30 0.29 0.01 0.25 0.25 0.25 0.25

7 54.75 39.09 46.92 23 0.33 0.33 0.33 0.01 0.40 0.20 0.20 0.20

16 50.73 41.77 46.25 24 0.33 0.33 0.33 0.01 0.40 0.20 0.20 0.20

14 46.29 32.60 39.45 25 0.40 0.40 0.19 0.01 0.25 0.25 0.25 0.25

4 42.26 30.90 36.58 26 0.33 0.33 0.33 0.01 0.25 0.25 0.25 0.25

Table 12: Resulting maximum, minimum, and average p–marks, ranking and weights
calculated by means of the linear model in Section 4.1.


