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Abstract

Elections draw enormous interest worldwide, especially if these involve major coun-
tries, and there is much speculation in the media as to possible outcomes from these
elections. In many of these recent elections, such as the UK and USA, however, fore-
casts from market surveys, electoral polls, scientific forecasting models and even exit
polls, obtained from voters as they leave the voting stations, failed to predict the
correct outcome. Election night forecasts, which endeavour to forecast the ultimate
result before the final outcome is known using early results, were also carried out, with
some more accurate than others.

After successfully predicting most of the metropolitan region results correctly in the
South African local 2016 municipal elections, using an election night forecasting model
developed for South Africa (SA), the question of adapting the model to work outside
of SA on a different electoral system was raised. The focus of this paper is to describe
the results obtained for the 2016 USA presidential election, on election night, using an
adapted version of the SA model. This paper also addresses the applicability of the
model assumptions as well as the data issues involved in forecasting outside of South
Africa. It is shown that even with many hurdles experienced in the process the model
performed relatively well.
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1 Introduction

Elections draw enormous interest worldwide especially if these involve major countries
such as the United States of America (USA), the United Kingdom (UK), Germany and
France. Months before Election Day there is much speculation about the outcome of
an election. Predictions from market surveys and forecasts are published attempting to
indicate what the outcome would be. Election forecasts are based on speculation, non-
systematic interviews, etc. or scientifically based methods such as simulations, market
analysis, sample surveys or statistical models [31]. The 2015 general election in the UK,
Brexit, the 2016 USA presidential election, the 2017 presidential election in France as well
as the 2017 general election in Germany, are all examples of elections that attracted huge
attention. What made these different from previous elections is the fact that the forecasts
done before the elections, in almost all of these elections, were wrong. The forecasts
from market surveys, electoral polls, scientific forecasting models and even the exit polls,
obtained from voters as they left the voting stations, failed to predict the correct outcome.

Over and above these approaches there is a further type of election forecasting model,
namely one that is used to forecast the final election results, based on early results as
they are released, during election night. These are referred to as election night forecasting
models. These models have the benefit of being able to use actual released results and
are attractive to the media in terms of being able to offer alternative and updated “live”
predictions for discussion purposes.

South Africa (SA) is no exception when it comes to elections. There is huge interest
in elections and market surveys are published regularly up to a day before the election.
Exit polls, however, are banned under the 1998 Electoral Act [44]. Since 1999 an election
forecasting team from the Council for Scientific and Industrial Research (CSIR) have
consistently, during every election, used an election night forecasting model to forecast the
final election outcome using the first batch of voting district results as they are released
by the Independent Electoral Commission (IEC). This model has performed well except
when certain model assumptions were violated, as in 2014 (see [27]). After successfully
predicting most of the metro (metropolitan region) results correctly in the 2016 municipal
elections, the team felt that the model could possibly be adapted to work outside of SA
and decided to test the model on the 2016 USA presidential elections. The focus of this
paper is to describe the results obtained for the 2016 USA presidential election, on election
night, using an adapted version of a model developed for forecasting the final results for
elections in SA.

In SA there is a window of opportunity for forecasting in the time period from when the
first voting district results are declared until the final outcome is announced. For example,
the first voting district results in the country during the 2016 municipal elections came
in shortly after polls closed on the Wednesday night but the Johannesburg results were
only finalised late on the Saturday afternoon. Due to this time delay, the election night
forecasts become useful to the media as they can be discussed on radio and live TV
during the respective special election broadcasts. When considering the USA presidential
elections it was felt that there might be a similar window of opportunity (although smaller)
for doing election night forecasts in the USA due to time zone differences. The question
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was whether the model assumptions would hold outside of SA and whether appropriate
data could be obtained.

The paper is structured as follows: first, other election predictions and forecasting models
found in the literature are discussed briefly. Forecasts can be wrong and in this regard
particular emphasis is placed on the recent USA presidential election where the outcome
was totally different from most of the forecasts. It is shown that this was no exception
considering the forecasts for two of the recent UK elections. Models used both before
elections and during elections are considered. Some issues leading up to these elections
are also touched on.

Secondly, a brief overview of the SA model’s performance is presented, followed by a de-
scription of the differences between the SA and USA electoral systems. Data requirements
and the adaption of the SA model are also provided and issues involved in forecasting out-
side of South Africa are discussed, especially with regard to data. The forecasts obtained
for the USA elections during election night are then presented and the model assumptions
analysed. Some overall remarks on election forecasting methodologies and suggestions on
adapting the model to pre-election forecasts are also given and the paper is then concluded.

2 Review of forecasts for “unexpected outcome” elections

Prior to elections there are polls (surveys) that attempt to measure how the voting pop-
ulation will vote and there are forecasting models, modelling the behaviour of the voting
population, all endeavouring to forecast election outcomes. In addition, there are efforts
to predict the outcome after voting stations have closed, known as exit polls. Election
night forecasts are also carried out to try to give an indication of what the ultimate result
could be before the final outcome is known. In the case of exit polls, voters are asked how
they voted as they exit the voting stations and this data is used to make projections of
what the outcome could be. Election night forecasts on the other hand are endeavours
to incorporate early results, as they are made known, to forecast the final election result.
Both pre-election forecasts (including exit polls) and election night forecasts are discussed
in this section, with particular emphasis given to the UK and USA elections. The 2017
French and German elections are briefly mentioned.

2.1 Pre-election forecasts

A number of recent international elections led to totally unexpected election results where
the predictions beforehand turned out to be totally wrong. In the UK it prompted Prime
Minister David Cameron to comment, a day after the May 2015 election, that “pundits got
it wrong, the pollsters got it wrong, the commentators got it wrong” [45]. The outcomes of
the 2015 UK election, the Brexit referendum and the 2016 USA presidential election were
in every case against almost all expectations. The most recent 2017 presidential election
in France was also totally unexpected, but for a different reason, as the French elected a
young and relatively unknown president who ran a “courageous pro-European campaign”
[6]. In the case of the 2017 German election the rise of the Alternative für Deutschland
(AfD) party was a total surprise as well as the large decrease in support for the two



86 JP Holloway, HW Ittmann, N Dudeni-Tlhone & PMU Schmitz

main parties, the Christian Democratic Union (CDU) and the Sozialdemokratische Partei
Deutschlands (SPD) [5].

2.1.1 The 2015 UK general elections

In 2015 in the UK, the polls and the more sophisticated forecasting models consistently
forecasted that no party would get an outright majority (see for example [30] and the
forecasts given in Table 1) since an outright majority required 326 seats in 2015.

Forecast Final Results

Party Seats %Votes Seats %Votes

Conservatives 278 34.4 331 36.9
Labour 267 32.8 232 30.4
SNP 53 4.0 56 4.7
Lib. Democrats 27 11.7 8 7.9
DUP 8 8 0.6
Plaid Cymru 4 0.6 3 0.6
SDLP 3 3 0.3
UKIP 1 10.6 1 12.6
Greens 1 4.1 1 3.8
Other 8 1.7 7 2.2

Table 1: 2015 UK general elections – Forecast [21] and Result [3].

Compared to the final results, in terms of seats, for almost all of the parties these “before
election” forecasts (Table 1) were incorrect by a large margin1. After the election one UK
polling company, Survation, claimed that their forecast was almost correct but because
it was so different from all the others they decided not to publish it [23]! The Survation
forecast was indeed almost spot on.

Cowley & Kavanagh [13] indicated that there were many more polls than during previous
elections and since these consistently showed the possibility of a hung parliament it led
“to an explosion of coalitionology” in the media. The media debated hung parliaments,
possible coalitions, constitutional process and the “legitimacy” of various outcomes, etc.
All this speculation in the media had a huge influence on the various forecasting models
used during that election.

2.1.2 United Kingdom European Union membership referendum, 2016 (Brexit)

The Brexit referendum took place on 23 June 2016 in the UK and Gibraltar (a British
Overseas Territory). The aim was to gauge support for the UK remaining a member of
the European Union (EU) or leaving the EU. The outcome of the referendum was that
51.9% of voters voted in favour of leaving the EU (17 410 742 votes) while 48.1% voted
against leaving the EU (16 141 241 votes) [4]. There were 0.08% invalid ballots (25 359
votes).

1The authors observed a significant difference (p=0.006) when using a chi-square test on the data in
Table 1.
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The 2016 Brexit result was again a surprise and an unexpected outcome, since it was
expected that most voters would vote to remain in the EU (see for example [58]). An
exit poll on the day of the referendum by YouGov [59] found some correlation between
voting preference and age as well as turnout and age (see Figure 1). This could explain
the reason for the unexpected outcome. A total of 4 772 voters were interviewed.

Figure 1: EU referendum exit polls by age group, June 23, 2016 [59].

It is clear that the older generation (50 and older) mostly favoured leaving the EU while
the younger generation were happy for the UK to remain. A high proportion of the
younger generation did not vote compared to those from the older generation(s). Analysing
campaign and survey data, Hobolt [24] shows that globalisation was an issue. In addition
those favouring leaving the EU were particularly common among less-educated, poorer
and older voters as well as those who expressed concerns about immigration and multi-
culturalism.

2.1.3 The 2016 United States of America presidential election

The most recent USA presidential election will certainly go down in history as very different
to any other election in the past. With two “controversial” candidates, generating a lot of
contention even before the election started, the 2016 election was unprecedented in nature,
creating even more interest in all the election forecasts. In the end very few forecasters
got it right!

Nate Silver, a well-known forecaster, was incredibly successful in the 2012 elections [52].
In that election, the FiveThirtyEight website, where Silver’s forecast was published, never
had Obama’s forecasted chances of winning at less than 61.1%. This time around Silver
had it all wrong [49]! Silver [50] also indicates that: “to build a model is to measure un-
certainty and to account for risk”. The model Silver used is a probability based election
forecasting model developed in 2010 [18]. The model makes use of various data sources but
relies mainly on the aggregation of pre-election polls using a technique developed by Brown
et al. [8]. Aggregated poll data are adjusted based on current demographic patterns via
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a regression model and simulations are run to quantify both the national and state-level
uncertainty around the election outcome. Specifically, a Monte Carlo simulation method
is used to draw random samples forming a matrix of, for instance, 51 states and 10 000
observations representing a possible result of the election or uncertainty. Each candidate’s
share of votes is therefore expressed as a joint distribution with these thousands of simula-
tions representing forecasts of uncertainty about the election outcome. This methodology
is applied to estimate both the popular and electoral vote shares for each candidate. The
model was, however, not able to predict Trump’s unexpected win during the 2016 presiden-
tial elections. The bad performance of this model was attributed to imperfect polling data
and the non-uniform structure of errors in the poll-based forecast which had not been per-
ceived before. Silver does, however, point out that FiveThirtyEight’s forecast gave Trump
much better odds, a 29% chance of winning the Electoral College, than any of the other
polling-based models. On further reflection Silver [51] addresses the myth that Trump’s
victory represented some sort of catastrophic failure for the polls. He points out that in
the case of the popular vote the polls were out by only 1 to 2 percentage points nationally,
predicting correctly that Trump would lose to Clinton, which was slightly more accurate
than the predictions in 2012. It is in the swing states and especially in Michigan, Wis-
consin and Pennsylvania, where Trump did much better than what the polls forecasted.
He then makes the interesting observation that the result was not a massive outlier and
points out that the polls were pretty much as accurate as they’d been, on average, since
1968.

Samuelson [45] states that for this USA election only three or four forecasters correctly
predicted the outcome. Most of these were not strongly quantitatively based. Lichtman
[32], a quantitative historian, has used a “13 Keys” model since 1984 to correctly forecast
the USA presidential election. While Lichtman was able to forecast the popular vote
correctly in previous elections, he was only able to forecast the electoral vote correctly in
2016.

Zogby [60], a successful pollster for many years in the USA, realised early on the difficulty
of making an accurate call on the election. During a presentation he stated: “I can’t tell
you who’s really going to win. Tell me who will vote, and I’ll tell you who will win. If
we get around 132 million votes, as we did in 2008 and 2012, Hillary wins. If we get 121
million, as we did in 2004, Trump wins.” In the end the turnout was 126 million, giving
Clinton about a 2 million vote lead. Several million non-voters, particularly Democratic-
leaning people, in the north central states of the USA helped tip those states to Trump.

A film director, Michael Moore [35], wrote on his website in July 2016 (three months
before the elections) that he expected Trump to win the election. He gave five reasons to
motivate his “speculation” about this election prediction. The main reason, according to
Moore, were the angry and frustrated white male workers, mainly union workers, in the
Rust Belt of the Midwest of the US. One or two of the other reasons was “the Hillary
problem” and Moore’s belief that“people will vote for Trump because they can”.

The media, as in the 1960 Kennedy and Nixon television debates, again played a role [34].
Clinton was perceived through media channels by many voters as a “corporate lawyer
turned politician”, while Trump’s peculiar ways during visual engagements intrigued vot-
ers, thus making Trump the preferred choice of many voters.
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Finally an artificial intelligence system, called MogAI [17], predicted a Trump victory.
The system uses 20 million data points from online platforms like Google, YouTube, and
Twitter to come up with its predictions. The system had correctly predicted three previous
presidential elections. As an AI system, MogAI learns from its environment, develops its
own rules at the policy layer and then develops expert systems without discarding any
data. In this regard it is generally accepted that President Obama was the first presidential
candidate that used social media in a big way and very successfully so [12].

The presidential election shocked many in the USA and worldwide with the most unlikely
candidate, according to the majority of people, winning the election. This was a direct
result of changes in the winning party in many of the reported swing states, which can
be seen when comparing the outcomes in these states between the 2012 and 2016 USA
presidential elections, as shown in Table 2 and Figure 2. Note that swing states, also
known as “battleground” or “purple states”, are constituent political entities which are
closely divided between the Democratic and Republican parties in the US electoral system;
such that the candidates contesting an election both have a good chance of winning the
presidency [16]. They include several states that have gone both ways in the recent
elections and are considered important to the outcome of the election [22].

2016 2012 2008 2004

States Swing Won Swing Won Swing Won Swing Won
state? by state? by state? by state? by

Colorado 4 Dem 4 Dem 4 Dem 8 Rep
Florida 4 Rep 4 Dem 4 Dem 4 Rep
Iowa 4 Rep 4 Dem 4 Dem 4 Rep
Michigan 4 Rep 4 Dem 8 Dem 4 Dem
Minnesota 4 Dem 8 Dem 8 Dem 8 Dem
Nevada 4 Dem 4 Dem 4 Dem 4 Rep
New Hampshire 4 Dem 4 Dem 4 Dem 4 Dem
North Carolina 4 Rep 4 Rep 4 Dem 8 Rep
Ohio 4 Rep 4 Dem 4 Dem 4 Rep
Pennsylvania 4 Rep 4 Dem 8 Dem 4 Dem
Virginia 4 Dem 4 Dem 4 Dem 4 Rep
Wisconsin 4 Rep 4 Dem 4 Dem 4 Dem

Table 2: Reported swing states in the 2016 USA presidential elections and
their previous expectations as swing states and their outcomes. Only states
appearing in more than one source were included for 2016 [7, 29, 33, 42, 48],
only states appearing in more than two sources were included for 2012
[11, 15, 40, 43], only states appearing in more than two sources were included
for 2008 [1, 15, 28, 53, 56] and only states appearing in more than two
sources were included for 2004 [15, 39, 47].

2.2 Election night forecasts

Election night forecasting models generally become a source of insightful information dur-
ing election coverage in the media while the election outcome is still unknown. Countries
including the UK [8, 9, 37, 38], USA [2, 10], Spain [37], South Africa [19, 20, 27], New
Zealand [36, 37], Australia [37], Austria [25], Sweden [37] and Ireland [37] have, across
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Figure 2: Map of changes in swing states between 2004 and 2016 USA presidential elec-
tions.

a number of elections, made use of election night forecasting models to infer an election
outcome during hours (and sometimes days) of uncertainty around the final outcome of an
election. These models seek to provide an accurate forecast of an election outcome from a
small but reasonable sample of the released results. Hence they are considered successful
if they can correctly predict the outcome of an election while there is still considerable un-
certainty around such an outcome. The public interest is then still high. This subsection
particularly focusses on discussing a published UK election night model, as well as some
online election night forecasts for the recent USA presidential elections.

2.2.1 The UK general elections

The UK has been using election night forecasting for about 4 decades (since 1975 elections)
from which models have been continuously updated to improve the prediction accuracy
across relevant election periods. One such model was first developed by Brown and Payne
[9] for the BBC during the 1974 British general elections, and has been modified over
time to improve forecasting of subsequent elections [8]. This model is based on grouping
constituencies into three groups and applying ridge regression models on a set of variables
to obtain coefficients from which to forecast the share of votes (seats) for predominant
parties as well as the swing in party votes. Priors from ridge regression coefficients, which
can be used to represent the mean share of votes in the various seat categories, are created
using exit poll data. During election night, these ridge regression coefficients are updated
by sequentially adding actual voting results, as they become available, together with other
relevant variables, which could include socio-economic variables and the previous election
share of votes for each party. This model performed reasonably well for a number of
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election years except for the 1987 and 1992 elections. The authors attributed the poor
performance to the Gallup judgemental poll-based prior which was used as a new input
into the model during these years. Also, instead of the ridge regression that they had
previously used, a swingometer-based method was applied. An introduction of a separate
grouping of 62 special seats, its estimation from prior fixed probabilities, as well as late
declaration of such seats were also among the issues that increased the prediction errors
during the 1992 elections. Opinion polls and exit polls both forecasted an overall majority
for the Labour party in 1992 when in fact the Conservative party won by a small majority.
The election night model was slow to converge to the final outcome, as shown by the
absolute values of the errors in Table 3. Note that a total of 651 seats were contested in
the 1992 elections and 326 seats were needed for a majority [54].

Number of seats declared

Actual
Election 0 5 10 50 100 300 Winner majority

1974 (Feb.) 6 2 16 12 4 2 Lab 4
1974 (Oct.) 28 13 15 7 8 4 Lab 42
1979 4 13 2 0 9 3 Con 70
1983 2 3 7 10 16 6 Con 188
1987 70 39 46 20 20 5 Con 147
1992 62 49 40 30 36 10 Con 65
1997 25 10 15 5 18 3 Lab 254
2001 6 8 5 10 6 4 Lab 253

Table 3: BBC results-based forecasts for general elections 1974–2001: Errors in majority
of the winning party over the second party by number of seats declared [38].

Brown et al. [8] also mentioned the difficulty in accurately forecasting a closely fought
election, such as in 1992. Modifications to this model were made, in addition to reverting
back to the pure regression approach, to produce improved forecasts for the 1997 and
2001 elections [8, 38]. According to Payne [38], however, it is unclear whether the latter
more accurate forecasts were due to the improved model or due to these elections being
landslide victories, and indicates that the real test would be in a future closely fought
election. Unfortunately, forecasts from this model, or similar election night models, for
the unexpected outcome of the 2015 elections, discussed in Subsection 2.1.1, could not be
found.

2.2.2 The 2016 United States of America presidential election

With respect to the USA election night forecasting, the focus is on two models, the one
by FiveThirtyEight [10] and the other of Aisch et al. [2], applied in the prediction of
the presidential candidate for the recent 2016 elections. The first model available on
FiveThirtyEight [10] is based on firstly setting up pre-election forecasts using polling data
(see Subsection 2.1.3 for details) and then updating the forecasts as the states get called
for presidential candidates. The pre-election models, which are developed from simulating
election results by aggregating poll data, are updated by applying several regression models
to establish a correlation structure between the states in the Electoral College. The
correlation patterns between the states play an important role as this enables the model
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to make predictions about the outcome of the uncalled states from those whose results
have been announced. Such patterns also make it possible to, for instance, forecast an
unexpected win of a state by a candidate as soon as that candidate gets an unanticipated
win from a similar state. Even though the strength of the relationships between states is
essential, the forecast results are derived from simulation runs for different or unexpected
scenarios that may arise. For instance, a candidate may win some states (as perhaps
expected) but may lose some from the same group of correlated states, which provides
some room for the unexpected or changing patterns. The focus of this model is mainly
on forecasting the electoral votes for the party candidates and the probabilities associated
with either winning or losing an election.

Figure 3: Election night forecasts during the live release of the 2016 USA presidential
elections [10].

In Figure 3, the forecasts with respect to the probability of winning the presidency and
the share of the electoral votes are shown, including a list of the declared states from
which such forecasts were made at the given time intervals. The forecasts were in favour
of Clinton from the onset (including the pre-election forecast) until only around 10:23pm
Eastern Time.

The election night forecasting model developed by Aisch et al. [2] uses historical voting
patterns of the states, county-level demographic characteristics and turnout estimates as
inputs. As the voting results get reported from respective counties, forecasts about the
likely winning party candidate are made. The model forecasts an election outcome using
three metrics which include estimating the chance of winning the presidency for the main
party candidates, the number of electoral votes, as well as the popular vote margin.

Figure 4 shows the forecast of the total electoral votes and the associated changes over time
for the two main party candidates. Uncertainties around the forecasts are also estimated.
From the onset, the Democratic Party candidate, Clinton, had a higher chance of winning
the presidency, obtaining just over 300 electoral votes while this all changed in favour of the
Republican candidate, Trump, from before 6am New York local time. Trump’s predicted
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Figure 4: New York Times 2016 election night forecast of the total electoral votes [2].

win was then maintained throughout. Fluctuations or instability in the forecasts can be
seen on the graph, particularly in the beginning when fewer counties had reported their
results but such instabilities diminished over time.

3 SA model and its adaption to the USA

The focus of the CSIR team, since 1999, has always been on an election night forecasting
model. In this section a brief outline is given of differences between the SA and USA
electoral systems. An overview of the methodology of the SA model is presented and how
it was adapted to fit the USA presidential elections. The model performance in the most
recent 2016 South African municipal elections is discussed together with the data needs
and requirements. Challenges faced are also discussed in this section.

3.1 Differences between SA and USA electoral systems

In South Africa the vote in the national and provincial elections is for a political party.
The party will receive a proportion of the seats available in parliament based on the
number of votes garnered during an election. This is commonly known as the proportional
representation (PR) voting system. However, this system changes during local government
elections, namely that voters cast two votes, one vote for the party and one vote for a ward
councillor. The first vote is a PR vote, where the party will receive a certain amount of
seats, and the rest are allocated to ward councillors [26]. The election model only forecasts
the PR vote during a local government election.

In an outline of the USA presidential election process [57] an infographic is given on the
process followed by a presidential hopeful in becoming the president of the United States.
The process before the actual election of the president is outside the scope of this paper as
this paper focuses on the election itself. The president and the vice-president get elected
via the Electoral College and not by the popular vote. The number of Electoral College
votes is based on the number of members of Congress that has been allocated to each state.
Forty-eight states, as well as the District of Columbia (which is assigned its own Electoral
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College votes), have a winner-takes-all policy and therefore even if the vote is 50.1% to
49.9%, the party candidate with 50.1% takes all the Electoral College votes for that state.
Nebraska and Maine work more on a PR system, with one Electoral College vote for each
congressional district and two for the overall state result. In special circumstances, as in
the 2016 US presidential election, a candidate may win the popular vote but not have
enough Electoral College votes to become the new president [57].

3.2 Overview of methodology

The mathematical details of the model developed for SA can be found in Greben et al.
[19] and Greben et al. [20] but a very simplified high level overview is given here. The
model works primarily on creating sets of fuzzy clusters at a selected spatial aggregation
level and in SA this is usually 20 clusters per province and/or 20 clusters for the entire
nation. The clusters are created using the voting behaviour (election results) of all voting
districts (VDs) from a previous election, after these results have been adjusted for some
VD demarcation changes. The use of fuzzy clustering ensures that each VD has a mem-
bership in each of the clusters of its spatially associated set of clusters, for example, the
set of clusters associated with the VD’s province. After clustering has taken place, the
previous election results are discarded and only the cluster memberships and number of
registered voters per VD are retained. On election night, once the results from a sam-
ple of results from counted VDs becomes available in the database, the model then uses
these results (valid vote count and percentage per party), together with the VDs cluster
memberships and registered voter count, to predict the party percentages and turnouts
per cluster. These cluster predictions are in turn used to predict the uncounted VDs.
Finally the known counted VD results and the predicted uncounted VD results are ag-
gregated together to provide an overall prediction at the required spatial aggregation unit
(municipality/province/nation).

Since the South African model merely works on the PR system using total vote counts,
analogous to what is referred to as the popular vote in the USA, the model had to be
adapted to allow for the Electoral College vote count per state (see Subsection 3.1). In the
model, the predicted party percentages per state had to be calculated and the associated
number of electoral votes per state then had to be assigned to the party with the highest
predicted percentage in that state. These electoral votes for the predicted winner in each
state then had to be combined to calculate the predicted national electoral vote count
per party (presidential candidate) while still maintaining an overall national percentage
to allow for the prediction of the popular vote.

3.3 Background on model performance in SA context

The original model was developed, by the CSIR, for the South African elections and has
been applied during the 1999, 2004, 2009, 2014 general elections and the 2000, 2006, 2011,
2016 municipal elections. Up to this point it has only been used as an “election night”
model which therefore only provides predictions of the final election results as counted
and validated results from individual voting districts become available. Although initially
contracted by the IEC to predict voting district results in order to help the IEC detect
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any potential election fraud, it soon became clear that the model was also able to predict
the aggregated results of the elections with a great deal of accuracy at a very early stage
during the vote count. These predictions were particularly useful to the South African
media due to the long time delays between the time that the first results get reported until
the final counts were in, often spanning a few days. Consequently, from 2004 onwards, the
South African Broadcasting Corporation (SABC) contracted the CSIR team to provide
prediction results that could be discussed on live TV and on radio during their special
election broadcasts.

This election night model worked well in the South African context, except when certain
model assumptions were violated, as in 2014 (see [27]). A summary of most of the re-
sults up to the 2014 elections, as well as issues regarding the model assumptions, can be
found in Ittmann et al. [27]. Typically the prediction results at a municipal level are less
accurate than those at a national or provincial level since one is working with a smaller
sample of voting districts, but the findings presented in Ittmann et al. [27] were used to
make improvements to the 2016 municipal election clusters with the result that better
prediction accuracy was achieved. Overall, the 2016 municipal predictions for the metros’
PR votes proved to be a great success with the model accurately predicting that coalition
governments would take power in the Johannesburg, Tshwane (Pretoria), Ekurhuleni and
Nelson Mandela Bay (Port Elizabeth) metros; that the DA would be the largest party in
the latter metro; that the Democratic Alliance (DA) would consolidate their control over
Cape Town; and that the African National Congress (ANC) would retain control over
eThekwini (Durban), Buffalo City (East London) and Mangaung (Bloemfontein). While
the Nelson Mandela Bay prediction was not unexpected, even though the DA thought
they might get an outright majority, the prediction of the ANC not getting an outright
majority in Ekurhuleni was a complete surprise.

With voting booths having closed late (7pm), on Wednesday 3rd of August 2016, the model
was able to predict, at a very early stage on Thursday morning 4th of August (5am), when
there was still a great deal of uncertainty about where things would end, the final vote
share for all the major parties in the metros of interest to within 1.7%. In the case of
Tshwane, however, the model did not pick up until very late in the counting process
that the DA would end up winning the largest share of the metro, although this winning
margin was extremely small. The most impressive early prediction was for eThekwini –
even though no voting district results had been reported from this municipality (due to
technical issues) the model, using results from the rest of the province, determined not
only that the ANC would retain its control of the metro but got within 0.3% of the final
result for the top 4 parties (see Table 4). The prediction for Johannesburg was also very
accurate, particularly since the first prediction released to the media at 5am on Thursday
morning, after 13% of Johannesburg VDs had been declared, ended up being within 0.4%
of the final result for both the ANC and DA, while the actual counts kept showing a very
different result until late on Saturday afternoon when the final count was declared (see
Table 4).
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Metro Predicted PR % Actual PR %
(Metropolitan Party (at 5am on (at 5am on Final PR %

region) Thursday) Thursday)

eThekwini
(Durban)

ANC 58.8 0 59.1
DA 27.7 0 27.5

EFF 3.5 0 3.6
IFP 4.0 0 4.3

Johannesburg
ANC 44.5 39.5 44.9

DA 38.9 45.3 38.5
EFF 10.7 9.8 10.9

Tshwane
(Pretoria)

ANC 42.8 44.2 41.5
DA 41.5 43.0 43.1

EFF 10.7 8.6 11.6

Ekurhuleni
ANC 47.8 37.2 48.8

DA 36.0 50.8 34.1
EFF 10.7 7.1 11.1

Nelson Mandela Bay
(Port Elizabeth)

ANC 42.2 31.4 41.5
DA 48.4 59.8 46.7

EFF 3.9 3.8 5.0

Cape Town
ANC 25.1 18.8 24.5

DA 65.7 72.4 66.8
EFF 2.9 3.1 3.1

Table 4: Comparison of actual results and forecasts for some metros in the 2016 South
African local elections – using PR vote only.

3.4 Data requirements of the model

For the South Africa elections the model uses the ID (Identification code assigned by the
IEC) of the lowest spatial unit at which results are obtained as its primary key to link all
data files and the data required prior to the elections are the following:

• Past results containing percentage per party per spatial unit (used for clustering);

• Registered voter population for new elections per spatial unit;

• Spatial aggregation data – linking lowest spatial unit to its higher spatial units, e.g.
province; and

• List of parties contesting new elections and associated party IDs or codes that will
be used when new data is released.

For the USA presidential elections the above data were also required for the selected
spatial unit (see Subsection 3.5 on the selection of the spatial unit), with the province
being replaced by state and the parties being reduced to only 3, namely; Democratic,
Republican and “Other”. The “Other” was an aggregation of all smaller parties since
the decision was made to only focus on the predictions for the two major parties. There
was, however, the additional requirement for data on the number of electoral votes per
state (and per congressional district for Maine and Nebraska). Note that the District of
Columbia had to be treated as a county and a state, and therefore only a single data point
(spatial unit) was available for this proxy state.

On election night, in addition to the prepared data files discussed above, the model required
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regularly updated data for every spatial unit that had been counted and released. These
data per spatial unit had to contain, in a text format, the total number of valid votes
counted and the percentage per party ID.

3.5 Data challenges and testing

In South Africa, the lowest spatial unit used in the model is the voting district (VD).
Every registered voter belongs to a VD and results are released at a VD level via the IEC
database. Consequently, the previous results of VDs are clustered together to represent
groups of similar voting behaviour, as mentioned in Subsection 3.2. In adapting the model
to the USA elections, it was important to select the correct spatial unit to use in the model.
Data for all US voting precincts was not available, both historically and on election night,
and it was also not feasible to use data at this level due to spatial changes between election
periods. Consequently, the county was chosen as the lowest spatial unit [46]. Historical
data for the 2008 and 2012 presidential election results were obtained from the Data.Gov
website [14]. The only problem with using counties was that it reduced the sample size of
available data for prediction purposes, especially since some states have very few counties.
For example, the District of Columbia had to be regarded as a state and county, Delaware
has only 3 counties and for Alaska results are only released at a state level. In SA the
data for the 2016 elections contained a total of 22 612 VDs, while in the USA, where
the population is considerably larger, there were only 3 116 counties/spatial units, when
considering Alaska as a single entity.

Accessing data on registered voters per county was not straightforward since not all states
kept up-to-date information on registered voter counts prior to the elections. Data had to
be sourced on a state by state basis from the relevant state websites and for those states
where no registered voter records were available, the number of registered voters was
estimated using the turnout and turnout percentages from the 2012 presidential elections.

Before moving straight into forecasting the 2016 USA presidential elections, it was imper-
ative to test whether the adapted model would work in the USA context, using county
data. Consequently, a test simulation of the 2012 USA presidential election was run us-
ing county data clustered from the 2008 presidential election results. Although no actual
“time-stamp” could be sourced regarding the order in which counties were declared in
2012, an estimated “time-stamp” was created by using poll closure times, taking into ac-
count the time zones of the various states and then adding some randomised order of all
counties within each of those closure times. Results from the test run proved to be very
accurate (see Figure 5) in predicting the state winners and the overall electoral vote count
for the Democrats (332 for Obama) and the Republicans (206 for Romney) after about
15% of the county results had been counted and released.

However, referring back to Table 2, one can see that apart from North Carolina, there
were no changes in the winning party in the reported swing states between the 2008 and
2012 elections. Potentially, this indicates that, with president Obama standing for election
a second time, the 2012 elections were relatively easy to predict correctly.

One of the major data challenges was to obtain “live” actual votes (total valid votes and
party percentages per county) on election night for the USA 2016 presidential elections.
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Figure 5: Simulated predicted electoral vote counts for the 2012 USA presidential elections
at various percentages of counties declared.

In the SA context, the IEC has a national database containing all validated and released
VD results, to which the CSIR team is given access, but to obtain results per county for
the USA, the team had to rely on the Politico website [41]. Apart from the delay between
when the county’s results were declared and when the results appeared on the website, the
format in which the data would appear was unknown and therefore a software tool (“data
scraper”), to automatically read the data off the website and output it to a formatted
text file, could only be written once results started appearing on the website. This lead
to early data having to be captured manually, with some associated data errors, while
various software bugs and data alignment issues had to be checked and sorted out once
the “data scraper” was implemented.

3.6 Results of SA model applied to USA 2016 presidential elections

It is important to note that the model retains no prior knowledge of how people have
previously voted in each state for either the swing states shown in Table 2 or the non-
swing states and consequently predictions rely purely on new results per county, cluster
memberships per county and registered voters per county. The following graph shows
how the overall count of electoral votes, for both actual and predicted, changed as more
county data became available. Due to data issues, the first corrected forecast could only
be captured for the 8.7% sample of counties (see graph in Figure 6 and map in Figure
7) and, in addition, forecasts were stopped once it became obvious that Trump would
undeniably be the final winner. Unfortunately, data was captured in terms of % counties
declared (Figure 6) rather than time and is thus not directly comparable to Figure 3 and
4 given in Subsection 2.2.2.
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Figure 6: Final and predicted electoral vote counts for the 2016 US presidential elections
at various percentages of counties declared.

Overall, the team was satisfied that the model had worked reasonably well once the cor-
rect data was used, especially in light of the many data issues that were encountered, and
considering that it continuously predicted Trump as the winner. However, unlike the SA
elections where the total percentages are reported to decide the wining party, maintaining
the stability in the predictions for the USA elections was more difficult because of the
electoral votes per state system where winner-takes-all and because of several very closely
contested states. For example, Colorado, a swing state with 9 electoral votes, was initially
predicted by the model to go to Trump since the initial predicted percentages were 47.8%
for Clinton and 48.2% for Trump. It was only after 50% of all national counties and after
about 15% of Colorado counties were declared that it swung the other way to predict
Clinton to win the state, thus creating an overall substantial change in the total electoral
vote counts per presidential candidate. Other swing states where the predictions changed
over time were Iowa, Michigan, Minnesota, Nevada, New Hampshire, Virginia and Wis-
consin. However, overall the predictions for 44 states (including the District of Columbia)
remained stable throughout, despite no prior voting preferences having been included in
the predictions, and these 44 stable state predictions comprised of 190 electoral votes for
Clinton and 279 electoral votes for Trump – a stable overall predicted win for Trump.

4 Impact of model assumptions in USA predictions

As discussed in Ittmann et al. [27], the election night model relies on two main assumptions.
First, it assumes that voting behaviour is not random but has a statistical pattern that
can be modelled. As a result, the spatial units are clustered together into groups based



100 JP Holloway, HW Ittmann, N Dudeni-Tlhone & PMU Schmitz

Figure 7: Model forecast of the 2016 USA presidential elections: Winning party per
state in first prediction of electoral votes, with 8.7% counties declared nationally – Trump
predicted to get 332 electoral votes and Clinton 206 electoral votes.

on similar past voting behaviour. Linked to this assumption is the belief that changes in
voting behaviour are also non-random and therefore groups that voted in a similar way
before may experience similar changes in their voting preferences due to various political
and socio-economic influences. In testing the 2012 USA presidential elections using past
voting behaviour from the 2008 elections, this assumption proved to hold true, due to
reasons mentioned in subsection 3.5, thus resulting in very stable predictions. However,
in 2016, the political influences within states varied substantially due to the choice of
presidential candidates as well as their campaigns and since clusters were created using
counties across the whole nation based on the 2012 election results, it was to some degree
more difficult for this assumption to hold true. However, despite these influences and the
fact that the predictions were less stable, the clusters in the model still managed to predict
the overall winner correctly.

The second assumption of the model involves the order in which the voting results are
released, wherein the model is designed to adjust for moderate non-random patterns in
the order. The initial sample of county results that were released and used in the model
were heavily biased in favour of Trump (245 of the 275 counties declared in the initial
sample were in favour of Trump – see map in Figure 8) and although this resulted in an
over-estimation of electoral votes for Trump, the model was still able to adequately adjust
for some of this order bias (see graph and map showing first prediction in Figure 6 and 7
respectively). Although it was expected, due to time zones, that the results from the far
eastern half of the US would come in first, thus creating an extreme spatial bias, in reality
this did not prove to be quite as extreme as expected and the model was able to adjust
for some of the actual spatial bias in the order of counties released.



From SA to the USA: Election forecasting 101

Figure 8: Spatial distribution and political party preference of counties declared in the
first prediction (8.7% sample of counties).

A third model assumption, which has never been an issue in the South African elections, is
the availability of correct numbers of registered voters per spatial unit, since in SA there is
stringent control of the voter registration roll across the country. In the case of the USA,
however, where registered voters had to be estimated for counties in certain states, there
was a concern that this would play a significant role on either under or over estimating the
vote count and voter turnout for some areas in the model, thus affecting the predictions.
In order to do a post-election analysis to test this assumption, test simulations using
the 2010–2014 estimated Census Voting Age Population (CVAP) for all counties across
all states obtained from the United States Census Bureau website [55], in place of the
registered voter population figures used on election night, was carried out. The differences
between these two sets of voter count values was quite substantial since the percentage
difference between the two counts per county revealed an overall average difference of
11.3% and an overall standard deviation of 26.8%. For certain states the values were
fairly similar but for some states these differences were quite large. The test simulation
showed that the initial prediction, at 8.7% of counties declared, using the CVAP in place of
registered voters was slightly worse (by another 16 electoral votes) than the one obtained
on election night but after this time point the predictions were almost exactly the same.
The implications of this test are that the correctness of the registered voter population can
affect the early predictions from the model when the sample size of counted spatial units
is small but it becomes less of an issue as more election result data becomes available.
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5 Remarks on election forecasting and potential adaptions
to the SA model

In the “unexpected outcome” elections, discussed in Section 2, forecasts from polling data
were predominantly found to be inaccurate, even though the methodologies sometimes
differed substantially, and there has been an abundance of literature that have delved
into the issues surrounding these inaccuracies. However, pre-election forecasts do play
a vital role in terms of stimulating public interest and driving party campaigns in the
lead up to the elections. In some cases it could even be said that forecasts can affect the
outcome by encouraging the turnout or non-turnout of certain groups of people or people
in certain contentious areas. The South African model discussed in this paper has so far
only been applied to election night forecasting but going forward there is indeed scope
to apply this same model to a sample of spatial units taken from polling data to obtain
pre-election forecasts. This would involve using the same set of clusters that would be
setup for election night and extrapolating cluster predictions, from the polling sample, to
non-sampled spatial units. It would, however, rely strongly on the sampling methodology
of the polling within each spatial unit which would need to be sufficiently representative
of that entire voting area.

Election night forecasting models also have their value in capturing public interest but in a
limited time frame. The common issues arising from the election night forecasting models
found in the literature in Subsection 2.2, as well as the South African model discussed in
Section 3, include the problem of accommodating changes to the demarcation of voting
booths or voting districts, as well as the non-random manner in which the elections results
are released during the election night. In terms of methodology, these models all have a
component of grouping voters even though the manner in which the groups are constructed
varies. Unlike the South African model, the other election night models predominantly
incorporate polling data to initialise the model predictions on election night. In many
cases, such as the USA examples in subsection 2.2.2, these priors actually negatively
affected the starting election night forecasts causing a complete swop in the forecasted
winning party at some point during the election night. The South African model could
potentially be adapted to incorporate pre-election forecasts from polling data as initial
priors in the election night model but it carries the risk of initialising the starting points
of the forecasts to unreliable values, as seen in the recent UK and USA elections, that
could then cause the model to converge more slowly to the correct outcome. On the other
hand, if pre-election forecasts are reasonably correct, a much faster convergence to the
final outcome on election night could result. One of the strong points of the SA model
has always been its independence of prior data and its reliance on only initialising the
forecasts from actual released results. Therefore, such adaptions need to be considered
with caution and tested for robustness before being implemented.

6 Conclusion

In summary, it was found that the SA election night forecasting model could be success-
fully adapted to different electoral systems such as the one used in the USA. The model
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assumptions did have some influence on the stability of the forecasts but this impact was
limited, allowing the model to still produce reasonable forecasts for the 2016 USA pres-
idential elections. Forecasting outside of South Africa, however, does come with a lot of
data problems and is therefore difficult unless access to appropriate data at the desired
spatial level can be obtained both historically and in “real time” during the election night.

With growing technology, which has sped up the collection of voting results, the “win-
dow of opportunity” for such election night forecasting has, in some countries, become
considerably smaller and therefore going forward, serious consideration needs to be given
to testing the applicability of this SA model on polling data collected at relevant spatial
units. Should such an exercise be successful, it would certainly increase the value of the
model by increasing the time window of its forecasts, allowing the model to be used for
both pre-election and election night forecasting.
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