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Abstract

Segmentation (or partitioning) of data for the purpose of enhancing predictive modelling is
a well-established practice in the banking industry. Unsupervised and supervised approaches
are the two main streams of segmentation and examples exist where the application of these
techniques improved the performance of predictive models. Both these streams focus, how-
ever, on a single aspect (i.e. either target separation or independent variable distribution) and
combining them may deliver better results in some instances. In this paper a semi-supervised
segmentation algorithm is presented, which is based on k-means clustering and which applies
information value for the purpose of informing the segmentation process. Simulated data are
used to identify a few key characteristics that may cause one segmentation technique to out-
perform another. In the empirical study the newly proposed semi-supervised segmentation
algorithm outperforms both an unsupervised and a supervised segmentation technique, when
compared by using the Gini coefficient as performance measure of the resulting predictive
models.
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1 Introduction

The use of segmentation within a predictive modelling context is a well-established practice
in the industry [2, 47, 55]. The ultimate goal of any segmentation exercise is to achieve
more accurate, robust and transparent predictive models [55]. The focus of this paper is
on extending the available techniques that can be used for statistical segmentation, for
the purpose of improving predictive power. Two main streams of statistical segmentation
are used in practice, namely unsupervised and supervised segmentation.
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Unsupervised segmentation [22] maximises the dissimilarity of the character distributions
of segments based on a distance function. The technique focusses on the independent
variables in a model and does not take the target variable into account. A popular example
of unsupervised segmentation is clustering.

Supervised segmentation maximises the target separation or impurity between segments
[24]. The technique focusses, therefore, on the target variable and not on identifying
subjects with similar independent characteristics. A very popular example of supervised
segmentation is a decision tree.

Both these streams make intuitive sense depending on the application and the requirements
of the models developed [19] and many examples exist where the use of either technique
improved model performance [21]. Both these streams focus, however, on a single aspect
(i.e. either target separation or independent variable distribution) and combining both
aspects may deliver better results in some instances.

In this paper a semi-supervised segmentation algorithm is proposed as an alternative to
the segmentation algorithms currently in use. This algorithm will allow the user, when
segmenting for predictive modelling, to not only consider the independent variables (as is
the case with unsupervised techniques such as clustering) or the target variable (as is the
case with supervised techniques such as decision trees), but to be able to optimise both
during the segmentation approach. The unsupervised component of the newly proposed
algorithm is based on k-means clustering and information value [34] is used as a measure
of the separation, or impurity, of the target variable.

Simulated data are used to identify which characteristics may cause one segmentation
technique to outperform another when segmenting for predictive modelling. Furthermore,
empirical results are provided to showcase the performance of the newly proposed semi-
supervised segmentation algorithm.

The outline of the paper is as follow: Section 2 starts with a literature review of segmen-
tation techniques, focussing specifically on segmentation within the predictive modelling
context. Section 3 provides the necessary definitions and notations and in Section 4 details
of the newly proposed semi-supervised segmentation algorithm are provided. In Section 5,
empirical results are provided for the purpose of comparing the newly proposed algorithm
with a supervised and an unsupervised segmentation approach. Section 6 concludes and
discusses further research ideas.

2 Literature review

A multitude of analytic methods are associated with data mining and they are usually
divided into two broad categories: pattern discovery and predictive modelling [25].

Pattern discovery usually involves the discovery of interesting, unexpected, or valuable
structures in large data sets using input variables. There is usually no target/label in
pattern discovery and for this reason it is sometimes referred to as unsupervised classi-
fication. Pattern discovery examples include segmentation, clustering, association, and
sequence analyses.
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Predictive modelling is divided into two categories: continuous targets (or labels) and
discrete targets (or labels). In predictive modelling of discrete targets, the goal is to
assign discrete class labels to particular observations as outcomes of a prediction. This is
commonly referred to as supervised classification, and in this context predictive modelling
is sometimes also referred to as supervised classification. Predictive modelling examples
include decision trees, regression, and neural network models.

Segmentation of data for the purpose of building predictive models is a well-established
practice in the industry. Siddiqi [47] divides segmentation approaches into two broad
categories, namely experience-based (heuristic) and statistically based. Hand [24] split the
methods of segmentation into two groups as discussed in the introduction: unsupervised
and supervised.

Popular unsupervised segmentation techniques include clustering (e.g. k-means, density
based or hierarchical clustering); hidden Markov models [9] and feature extraction tech-
niques such as principal component analysis. Of these techniques, the one most commonly
used for segmentation is clustering. Cluster analysis traces its roots back to the early 1960s
[50] and it was the subject of many studies from the early 1970s [1, 10]. K-means cluster-
ing is one of the simplest and most common clustering techniques used in data analysis.
It follows a very simple iterative process that continuously cycles through the entire data
set until convergence is achieved.

Density based clustering makes use of probability density estimates to define dissimilarity
as well as cluster adjacency [28, 61]. In contrast to the k-means algorithm, these clustering
techniques do not start off with a pre-defined number of clusters, but is agglomerative in
that it starts with each observation in its own cluster. Clusters are then systematically
combined to minimise the dissimilarity measure used. Computationally, these techniques
are significantly more complex than k-means clustering but possess the ability to form
clusters of any form and size [24]. The k-nearest neighbour method is a well-known
density clustering approach [28]. Density clustering is only one of many agglomerative
(or hierarchical) clustering methodologies that exist. The details of these are available in
many texts [35, 36, 50, 60].

Most predictive modelling techniques may be used, to some extent, for supervised segmen-
tation. Decision trees, which originate from classification and regression trees (CART) by
Breiman et al. [14], are one of the most common supervised learning techniques used for
model segmentation. It belongs to a subset of predictive modelling (or supervised learning)
techniques called non-parametric techniques. These techniques have the useful attribute
of requiring almost no assumptions about the underlying data. Decision trees use recursive
partitioning algorithms to classify observations into homogenous groups, where the groups
are formed through repeated attempts at finding the best possible split on the previous
branch. Decision trees are relevant in various fields, like statistics [14], artificial intelli-
gence [43] as well as machine learning [41]. Although CART is the most popular method
applied in decision trees, another popular methodology for splitting is the CHAID (chi-
squared automatic interaction detection) methodology [31]. CART decision trees usually
do binary splits, whilst CHAID decision trees can be split into more than two nodes.

The goal of semi-supervised clustering is to guide the unsupervised clustering algorithm in
finding the correct clusters by providing pairwise constraints for class labels on observations
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where cluster relationships are known. The label or target here refers to a known cluster
or segment label and not another target that is used for predictive modelling. Some
well-known references to semi-supervised clustering include e.g., Bair [6], Basu et al. [7],
Bilenko [11], Cohn et al. [18], Grira et al. [23], Klein et al. [33], and Xing et al. [62].

On a high level, semi-supervised clustering is performed using one of two approaches. The
first approach is referred to as similarity adapting [18, 33, 62]. The second is a search-
based approach [7]. Bilenko [11] describes a semi-supervised clustering method that is a
combination of both these two methods (similarity adapting and search based).

Supervised clustering was formally introduced by Eick et al. [20]. They define the goal of
supervised clustering as the quest to find “class uniform” clusters with high probability
densities, otherwise known as label purity. They contrast supervised clustering with semi-
supervised clustering in that all observations are “labelled”, or have a target variable
assigned. This is opposed to semi-supervised clustering which typically has only a small
number of labelled instances. The literature on supervised clustering is quite vast [20, 27,
40, 48, 56, 63].

Note that the term semi-supervised segmentation is also found in the fields of computer
vision and pattern recognition. These applications attempt to assist with identifying or
grouping spatial images or objects based on their perceivable content. The principles
used are similar to semi-supervised clustering, as described above, but for the purposes of
segmenting photo images [29, 49, 51, 59]. For video applications see e.g. Badrinarayanan
et al. [5], for ultrasound images see e.g. Ciurte et al. [17], for spine images see e.g. Haq
et al. [26] and for peptide mass segmentation used in fingerprint identification see e.g.
Bruand et al. [15].

The algorithm proposed in this paper for performing semi-supervised segmentation is based
on k-means clustering and it applies information value [34] for the purpose of informing the
segmentation decisions. The first ideas of this approach are documented in the conference
paper by Breed et al. [13].

The abbreviation SSSKMIV is used in the remainder of this paper to refer to the proposed
algorithm. The ultimate goal of the SSSKMIV algorithm (semi-supervised segmentation),
as opposed to supervised or semi-supervised clustering, is not final object classification,
but rather an informed separation of observations into groups on which supervised clas-
sification (or predictive modelling) can be performed, i.e. segmentation for predictive
modelling.

3 Notation

In the proposed SSSKMIV algorithm, k-means clustering is used as the unsupervised
element and information value (IV) as the supervised element. Details of the k-means
clustering technique are provided below, followed by a formal definition of IV.

Consider a data set with n observations andm characteristics and let xi = {xi1, xi2, . . . , xim}
denote the i-th observation in the data set. The n×m matrix comprising all characteris-
tics for all observations is denoted by X. Let Xp = {X1p, X2p, . . . , Xnp} denote a vector
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of all observations for a specific characteristic p.

On completion of the k-means clustering algorithm each observation xi, with i = {1, 2, . . . , n},
will be assigned to one of the segments S1, S2, . . . , SK where each Sj denotes an index set
containing the observation indices of all the variables assigned to it. That is, if observation
xi is assigned to segment Sj , then i ∈ Sj . Furthermore, let uj = {uj1, uj2, . . . , ujm} denote
the mean (centroid) of segment Sj , for example uj1 will be the mean of characteristic X1.
The distance from each observation xi to the segment mean uj is given by a distance
function d(xi,uj). If an Euclidian distance measure is used, then d(xi,uj) = ||xi − uj ||2
where || · ||2 defines the length measured in Euclidean distance. The objective of the ordi-
nary k-means clustering algorithm is to make segment assignments in order to minimise
the inter-segment distances. For notational purposes c ∈ C is introduced as an index of an
assignment of all the observations to different segments with C the set of all combinations
of possible assignments. The notation Scj is now introduced to reference all the observa-
tions for a given assignment c ∈ C and for a given segment index j. In addition, ucj is
the centroid of segment Scj . The objective function of the ordinary k-means clustering
algorithm can now be stated in generic form as

min
c∈C

K∑

j=1

∑

i∈Sj

d(xi,ucj) (1)

For the proposed SSSKMIV algorithm, a function is required for the purpose of informing
the segmentation process as part of the k-means clustering process. An example of such a
function is the IV of a specific population split [34]. The IV is a measure of the separation
or impurity of the target variable between segments, if the target variable is binary. Let
y denote the vector of known target values yi, with i = {1, 2, . . . , n}. Consider a specific
segment assignment c ∈ C and let P T

cj be the proportion of events (yi = 1) of segment

Scj relative to the total population. Let PF
cj be the proportion of non-events (yi = 0) of

segment Scj relative to the total population. The IV for the segment assignment c ∈ C is
defined as

ϕ(c) =





∑K
j=1

[(
P T
cj − PF

cj

)
× ln

(
PT
cj

PF
cj

)]
, if 0 < P T

cj < 1

0, otherwise.
(2)

In this study, the pseudo-F statistic by [16], also known as the CH measure, is used to
measure the success of unsupervised segmentation. The pseudo-F statistic is not linked to
any specific clustering criteria and is well suited for the purpose of measuring the success
of the “unsupervised” element of the SSSKMIV algorithm. The CH measure is defined
as the ratio of the separation (or “between cluster sum-of-squares”) to the cohesion (or
“within cluster sum-of-squares”), more specifically

CH =

∑K
j=1 |Scj |(u− ucj)

∑K
j=1

∑
i∈Scj

(xi − ucj)
(3)

where u is the mean, or centroid of the entire data set.
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4 The semi-supervised segmentation algorithm (SSSKMIV)

The SSSKMIV algorithm takes two aspects into account: first, the algorithm incorporates
the independent variable distribution, similarly to the k-means algorithm. Second, it
focusses on target separation using a supervised function that measures the separation of
the target variable between segments.

Let 0 ≤ w ≤ 1 be a weight of how much the objective function of the clustering algorithm
is penalised by the function that informs the segmentation process (i.e. the supervised
weight). The proposed optimisation problem for the SSSKMIV algorithm, taking inter-
segment distances into account, is the following

min
c∈C


wϕ(c) + (1− w)

K∑

j=1

∑

i∈Scj

d(xi,ucj)


 . (4)

In this paper, a heuristic approach is followed for the purpose of generating solutions to
the optimisation problem in objective function (4). This includes determining the optimal
supervised weight w. The algorithm consists broadly of ten steps. More details will be
provided on these steps throughout the rest of this section.

In any general unsupervised k-means approach, the iterative process is terminated when
no changes in the current segment assignment are made from one step to the next. Even
though this could be interpreted as complete convergence, many studies have shown that
the k-means algorithm is still susceptible to local optima and could arrive at different
segments depending on the starting coordinates [38, 53, 54]. Due to the additional infor-
mation being utilized in the SSSKMIV approach (with the order in which specific points
are considered playing a role in segment assignment) complete convergence (with no obser-
vations being re-assigned) is very unlikely. For this reason, different termination criteria
need to be considered which will be discussed in more detail in Step 8 below. In addition,
to be in line with other studies [53], repeated runs of the algorithm are performed in order
to increase the odds of finding a globally optimal solution. Each of the ten steps will now
be described in more detail.

Step 1: Variable identification

Since the algorithm is based on the k-means clustering algorithm, it assumes that input
variables are numerical and continuous. Furthermore, due to its isotropic nature (i.e. its
tendency to form clusters that are spherical in m dimensions), it is common practice to
standardise (i.e. transform to have zero mean and unit variance) all input variables for
k-means analysis [37, 45, 54]. This also applies to the SSSKMIV algorithm.

However, in practical applications of SSSKMIV it is likely that the independent vari-
ables contain values of a categorical nature. The numerical and continuous assumption
is not unique to clustering algorithms, but is also present in regression analysis. There
are numerous techniques available to convert categorical variables to numeric: e.g. single
standardised target rates [2]; using weights of evidence [47]; optimal scores using corre-
spondence analysis [52] and using ‘dummy’ variables [4]. For the purpose of this paper
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we used ‘dummy’ variables for accommodating categorical inputs. This specific technique
does not force a specific relationship with the target variable for any of the segments [3].

Step 2: Segment seed initialisation

Cluster seed initialisation has been the focus of many studies [30, 32, 39, 42]. Although the
studies vary in their recommendations, it is clear that the initialisation of cluster centres
has an impact on the final results. Certain techniques are able to improve the speed with
which convergence is achieved, but may bias the final result [39].

Since the SSSKMIV algorithm adds an additional dimension to the standard k-means
algorithm, it is expected that the initialisation techniques that are proposed for k-means
above will, however, be less effective. This is due to the fact that these techniques are
generally focussed on density approximations and do not take the dependent variable into
account.

Two methodologies were considered for random initialisation: initialisation based on vari-
able range [39] and initialisation based on random observation selection [32, 39]. The
latter was chosen based on empirical analysis [12] which showed that this method reduces
the probability of segments being initialised without any assigned observations.

Step 3: Initial data set and variable preparation

Step 3 initialises the data set with the required variables needed for the semi-supervised
segmentation analysis. This is the last initialisation step before the iterative assignment
evaluation and update (Step 5) process commences.

Step 4: Assignment

The assignment step assigns observations to segments in order to improve objective func-
tion (4) of the SSSKMIV. Each observation xi is put through several sub-steps which is
discussed here. First, the Euclidian distances between the observation and all segment
centres are calculated. The output is a vector d = {d1, d2, . . . , dK} that contains the
Euclidian distance d(xi,ucj) for each segment Scj where j = {1, 2, . . . ,K}. Second, the
output vector ϕ (referred to as the supervised values) is calculated based on a given as-
signment of the observation i to each of the segments. It should be noted that if the
supervised function returns zero (see equation (2)), then the segment allocation will be
made based solely on the Euclidean distance d(xi,ucj) (see equation (4)).

The third sub-step is to standardise the distances and supervised values. For each observa-
tion i, the distance dj and supervised factor ϕj is respectively replaced with standardised
distance d′j and standardised supervised factor ϕ′j for every segment Scj by subtracting
the average and dividing by the standard deviation. The fourth sub-step is to assign each
observation i in such a way as to minimise the value of the objective function. More
specifically, assign observation i to Scjmin where jmin = arg minj=1,...,K [wϕ′j + (1− w)d′j ].
This equation is referred to as the local objective function of the SSSKMIV.
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Step 5: Assignment evaluation and update

Similar to the standard k-means algorithm, the update step of the SSSKMIV algorithm
updates the segment centroids based on the new assignments made in Step 4. This step
also evaluates the assignments made to ensure all segments have observations assigned
to it. Since the algorithm assumes a pre-specified number of segments, the segmentation
process will be randomly re-initiated if a segment has not been assigned any observations.

Step 6: Summarise and log step statistics

In order to assess various aspects and results of the SSSKMIV, a number of key statistics
are logged throughout the process. These are the coordinates of the segment centres after
each iteration; the distance moved by each centroid after each iteration; the target rate (or
target average) of each segment after each iteration; the percentage of the observations in
each segment after each iteration; the CH value of the segmentation after each iteration;
the value of the supervised function after each iteration; the relative distance of each
segment to the other segments; the number of segment assignments that was changed due
to the influence of the supervised factor (i.e. how many observations were assigned to a
different segment due to the addition of the supervised factor to the objective function);
and finally the time and speed with which each iteration was performed as well as an
estimated termination time as calculated after each iteration.

Step 7: Randomise data set

As explained earlier, the order in which observations are assessed could make a difference
to the segment they are assigned to. In order to avoid the order in which observations
are assessed biasing the final output, the observations are randomly resorted after each
assignment step. This biasing effect was pointed out by Wagstaff et al. [58] and a number
of subsequent studies in supervised [20] and semi-supervised clustering [8, 11] implemented
similar measures to avoid it.

Step 8: Evaluate stopping criterion

In standard k-means analyses, the iterative assignment and update process are stopped
when no assignments change from one step to the next. This works well for k-means clus-
tering and may be considered as a sufficient convergence criterion. This is however very
unlikely in the case of SSSKMIV as applied in this study. This is once again due to the
supervised function being dependent on the order in which observations are assessed. Sim-
ilar behaviour was observed in other studies regarding supervised clustering [40]. For this
reason the stopping criterion needed to be reconsidered for the SSSKMIV algorithm. The
following basic stopping criterion was followed: First if the standard k-means clustering
convergence criterion is assessed, and if no observations were reassigned after the previous
step, the process is stopped. Else, if the standard convergence criterion is not met, the
average distance that the segment centroids moved from one step to the next is measured
for a number of runs. As long as the average distance that the segment centroids travel
is still decreasing, the process is repeated. Whenever the average distance increases from
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one step to the next the process is terminated. More complex stopping criteria may be
used, but this may, however, be detrimental to computing times.

Step 9: Over fit evaluation and smoothing

As with most supervised classification algorithms, the SSSKMIV algorithm may over fit
when values become too large. This happens when observations are no longer logically
assigned to segments based on independent variable proximity, but almost entirely due
to their target value. When this happens, segments can no longer be applied on new
data sets, since it cannot be described through their independent variables. As a counter
measure to prevent over fitting, the SSSKMIV applies k-nearest neighbourhood (KNN)
smoothing. This methodology is also used to assign segments to the validation set by
using the development set as input. The KNN smoothing methodology is well-established
and more detail can be found in the literature [22].

Step 10: Final evaluation and result logging

After applying the nine steps described above on the development data set, the results
obtained for the validation dataset can be evaluated. As part of this step in the algorithm,
further statistics on both the development and validation data sets are computed, so that
the result can be compared to other runs. The statistics that are calculated are: the new
segment centroids after the smoothing exercise for both the validation and development
set; the target rate for each segment; the final population percentage in each segment;
the CH value to describe the quality of the segmentation from an independent variable
perspective; the overall supervised value (i.e. the IV value); the final Euclidian distances
between segment centroids and the impact of the smoothing exercise which is expressed
as a percentage of the validation set’s observations that remained the same. The data set
can then be used for development of statistical models and the impact measured on the
validation data set.

5 Simulation study results

In this section, the performance of the SSSKMIV algorithm is demonstrated by compar-
ing its results to the results obtained by both supervised and unsupervised techniques.
Decision trees are employed as the supervised technique and k-means clustering as the
unsupervised technique. In order to analyse the performance of the three different seg-
mentation approaches, simulated data with predefined characteristics were used. This may
help to understand what characteristics cause one methodology to outperform another. It
should be noted that all possible data characteristics are not simulated here (that would
be impossible), but simply some of the more obvious ones.

In order to facilitate a good platform to explain the data simulation experiment, we first
establish a base case for simulating a data set, after which the additional elements that
are varied for further exploration are discussed. The approach described here is similar to
approaches of simulating data sets with binary outcomes followed by Shifa & Rashid [46]
and Venter & De la Rey [57].
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X3 X4

Segment Mean Variance Mean Variance

S1 4 1 6 2
S2 10 2 12 1
S3 −4 2 −2 1
S4 −2 1 −4 2
S5 1 5 10 5
S6 5 5 5 5

Table 1: The different normal distributions used for each segment.

The goal of this base case scenario is to show that it is possible to simulate a data set
on which segmentation for logistic regression modelling will have a positive impact on
accuracy, compared to the case where no segmentation is done.

In the base case scenario, the number of segments is assumed to be six (K = 6) and the
number of characteristics is assumed to be twenty (m = 20). Different weights for β are
used for each of the six segments. For S1 to S6, the first four values of β, and all other
values of β will be zero, i.e. β7, . . . , β20 will be set to zero. For S2 the values of β7 = −1
and β8 = 1 and all other values of β will be zero. This pattern will continue until the sixth
segment, i.e. for S6 the values of β15 = −1 and β16 = 1 and all other values of β will be
zero. In all cases, β0 is set to 0.

All values in X, except for X3 and X4, are drawn from N(0, 1) distribution. In order to
distinguish the segments, X3 and X4 were drawn from separate normal distributions for
each segment as indicated in Table 1.

The number of observations per segment were also varied as follows: S1 : 1 000, S2 : 200,
S3 : 500, S4 : 1 000, S5 : 1 000 and S6 : 500. The resulting probability vectors, associated
with each of the six segments, are:

p1 =
1

1 + e−(X1+X2−0.5X3+0.5X4−X5+X6)
,

p2 =
1

1 + e−(X1+X2−0.5X3+0.5X4−X7+X8)
,

p3 =
1

1 + e−(X1+X2−0.5X3+0.5X4−X9+X10)
,

p4 =
1

1 + e−(X1+X2−0.5X3+0.5X4−X11+X12)
,

p5 =
1

1 + e−(X1+X2−0.5X3+0.5X4−X13+X14)
,

p6 =
1

1 + e−(X1+X2−0.5X3+0.5X4−X15+X16)
.

Since y is binary, assign y as

yi =

{
1, ui ≤ pi
0, ui > pi,

(5)

where u = {u1, . . . , un} and the elements of u are independently drawn from a U(0, 1)
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distribution, and pi is the component of the probability vector pj corresponding to obser-
vation xi.

A total of 100 datasets were generated as described above. Note that the event rate in
each segment will differ (due the way the simulation was structured). The average event
rate for the 100 simulated datasets is around 35% for Segment 4 and 90% for Segment 5.
The average IV value for the segments is 0.9 and the average CH value is 0.27.

The data were divided into a development and a validation set. The development set
is used to perform the segmentation on and for developing the predictive models with,
whilst the validation set is used to test the lift in model accuracy (as measured by the
Gini coefficient). The development and validation sets were generally sampled with equal
sizes (i.e. 50% each). There are different ways to calculate the Gini coefficient, as well
as different names for this statistic, e.g. accuracy ratio (defined as the summary statistic
of the cumulative accuracy profile), the Somers D statistic (defined as the ratio of the
concordant and discordant pairs as a ratio of all possible pairs), and the Gini coefficient is
also closely related to the area under the receiving operating curve, i.e. two times the Gini
coefficient less one, is equal to the area under the receiving operating curve [2, 47, 55].

A single logistic regression model was fitted to the entire development set (i.e. the un-
segmented dataset). To this end stepwise regression was applied using SAS software’s
Proc Logistic [44]. The significance level for entry of parameters was set at 0.1, whilst the
significance level for removal was set at 0.05. The resulting model provides the reference
model against which the segmented models’ accuracy will be tested by calculating the
Gini coefficient.

The development set was also split into the different segments (using three different tech-
niques of segmentation), on which separate logistic models were developed (using the same
settings as described above). Once all models have been developed, they were applied to
the validation set. The unsegmented model was applied to the full validation set to obtain
the reference Gini coefficient, whilst the segmented models were applied individually to
each corresponding segment. In order to measure the combined Gini coefficient of the
segmented models on the validation set, the predicted probabilities of all segments were
combined, and the Gini coefficient was calculated on the overall, combined set. Once this
is done, the unsegmented Gini coefficient can be compared to the combined, segmented
Gini coefficient.

The best validation reference Gini coefficient (i.e. die Gini coefficient on the unsegmented
data) was 71.8%. By using the known six segments, and fitted six logistic regressions to
these six segments, the best validation Gini coefficient was 81.9%. It is evident that by
using perfect segmentation, it is possible to improve the Gini coefficient by 10% (from
71.8% to 81.9%).

Supervised segmentation was performed by means of a decision tree and Proc Split in
SAS was used to segment the data sets. Since the goal is to develop predictive models
(which cannot be done effectively on very small samples), the “Splitsize” option was used
to set the minimum number of observations in a leaf and control the number of segments
created. The procedure will still consider other options for splitting the node, but will
simply eliminate those that result in leaves that will breach the indicated “Splitsize” value.
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Method
Best

validation set
Gini

Best Gini
improvement
(over 71.8%)

Average
IV

Average
CH value

Unsupervised segmentation
(using k-means)

74.45% 2.46% 0.35 0.090

Semi-supervised segmentation
(using SSKMIV)

74.89% 2.90% 0.64 0.087

Supervised segmentation
(using decision trees)

73.42% 1.43% 1.01 0.069

Table 2: A summary of the success of different segmentation algorithms.

The initial value used was the number of observations in the development set divided by
two times K (where K is the selected number of segments).

For the purpose of performing unsupervised segmentation, k-means clustering was applied
by simply using the SSKMIV algorithm and choosing w = 0 (i.e. only the unsuper-
vised element was taken into account). For the purpose of performing semi-supervised
segmentation, the SSSKMIV was applied, while considering the supervised weight values
w ∈ {0.1, 0.2, 0.3, . . . , 0.7, 0.8, 0.9}.
The results obtained when applying the three segmentation techniques to the generated
data are summarised in Table 2. From the results it is observed that the SSKMIV algo-
rithm outperforms both the unsupervised and supervised approaches. The unsupervised
segmentation forms segments with the highest CH values, but the lowest IV values, whilst
the supervised segmentation forms segments that obtain the highest IV and the lowest CH
value. The semi-supervised segmentation strikes a good balance between the two, but can
only achieve a 2.9% Gini coefficient improvement at best (this is achieved with w = 0.7).
This is significantly lower than the optimal improvement of more than 10% (if we had
perfect knowledge on the segments).

Some characteristics of the data on which segmentation for predictive modelling is per-
formed can be controlled by simulating data sets. This provides the opportunity to explore
links between data set characteristics and dominance of a specific segmentation technique.
Practical data sets are in most cases made up of real-world data, which are extremely
complex and diverse, making it unreasonable to find an exhaustive list of reasons for one
technique outperforming another. In an attempt to explore some of the more obvious links,
the impact of varying three main characteristics in the simulated data sets was explored.
For this purpose target rate separation between segments was controlled, as measured by
the IV. Secondly, the difference in the independent variable distribution was controlled,
as measured by CH value. Thirdly, the segment complexity, defined as O, was controlled,
as measured by the number of independent variables that was used to define a segment.
Again the combined Gini coefficient improvement of the segmented models was compared
with the Gini coefficient obtained with no segmentation.

A similar approach for performing the additional simulations was followed as described
above. A few additional steps were, however, performed in order to ensure that the IV
and CH values differ. Each segment size (SSj) was drawn from a normal distribution such
that SSj ∼ N(S̄S, 0.2× S̄S) where S̄S is the average size of the segment (chosen as 1 000).
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The event rate was drawn from a normal distribution N(0.5, 0.2) such that each event rate
is between 0.02 and 0.98. The limits of 2% and 98% were set to ensure an IV can always
be calculated for each simulated data set, since IVs are not defined for bad rates of 100%
or 0% [47]. The segment complexity, O, is the number of independent variables that was
used to define a segment. For each of these variables used to define a segment, the mean
and the standard deviation were drawn from the uniform distribution U(0, 3). Variables
X1 to X11 were generated as described above, but variables X12 to X26 were subjected
to variation depending on the complexity selected. For this purpose the parameter O was
allowed to be varied between 1 and 15. More specifically, if O = 15 a total of 26 variables
were chosen.

A total of 20 000 simulated datasets were generated while considering complexity values of
O ∈ {5, 10, 15}. The IV values were grouped into four groups namely, (0, 0.05], (0.05, 0.5],
(0.5, 0.8] and above 0.8. The values used for the ranges of each of the groups were based
on analysis of the results observed for the different segmentation techniques on data sets
with IVs in these ranges. As will be seen in the results section, grouping the IVs in this
way provides us with enough volume in IV areas where different segmentation techniques
perform well. This provides a comparative view of how IVs can influence the effectiveness
of specific segmentation techniques.

The allowable range of CH values differ depending on the value of the complexity parameter
O. For this purpose, all the scenarios that were generated for a specific value of O were
divided into deciles (ranked groups consisting of 10% of the total number of scenarios)
based on the CH value. Only scenarios from the first, fifth and tenth decile for a specific
value of O were selected for the purpose of obtaining a good spread of CH values without
the need to do too many iterations. The first decile contains the highest CH values, and
is therefore called the “High” group. The fifth decile contains mid-range values of the CH
value, and is therefore called “Mid”. The tenth decile contains the lowest CH values, and
is subsequently called “Low”.

K-means clustering was applied again as the unsupervised segmentation technique, deci-
sion trees as the supervised segmentation technique and SSKMIV as the semi-supervised
segmentation technique, while using w ∈ {0.25, 0.5, 0.75}. The selections made above
meant that a total number of 1 800 segmentation iterations was performed and 10 800
models developed for each value of O. In addition to this, time was required to select
and generate the required data sets. Even though the size of the data sets were relatively
small, the estimated time required to perform the analyses per value of O was between
four and five days.

The discussion to follow contrasts the lowest complexity case (O = 0.5) with the highest
(O = 15) since by doing this, the results obtained for the scenario where (O = 10),
are more clearly put into perspective. Table 3 summarizes the results for O = 5. The
best possible Gini coefficient improvement percentage was obtained by the supervised
segmentation (decision trees) when CH values are high and IVs are greater than 0.8.
This group obtains an average of just over 40% of the true Gini coefficient improvement.
Although the decision tree clearly dominates for the most part, the stable performance
of the SSSKMIV algorithm is clear, since the SSSKMIV algorithm shows improvement
over non-segmented models in all but one group. This is not the case with unsupervised
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Data Gini % improvement

IV CH
Unsupervised
segmentation

Semi-supervised
segmentation

Supervised
segmentation

(0, 0.05] Low −6.79% −1.79% −11.08%
(0, 0.05] Mid −2.06% 1.75% −8.85%
(0, 0.05] High 4.16% 9.53% −7.20%

(0.05, 0.5] Low −6.61% 0.10% 5.31%
(0.05, 0.5] Mid −0.56% 5.28% 7.62%
(0.05, 0.5] High 4.62% 11.38% 19.56%
(0.5, 0.8] Low −1.10% 3.79% 19.09%
(0.5, 0.8] Mid −0.11% 8.40% 27.59%
(0.5, 0.8] High 9.79% 18.84% 32.08%

Above 0.8 Low −4.87% 5.67% 19.49%
Above 0.8 Mid 7.38% 18.63% 35.98%
Above 0.8 High 13.54% 25.48% 41.15%

Table 3: Improvement in Gini by CH and IV group (O = 5)

segmentation (k-means) or supervised segmentation (decision trees). This is indicated by
the negative signs in seven of the twelve cases for the unsupervised segmentation (up to
6.79% worse than the non-segmented models) and two negative signs in the twelve cases for
the supervised segmentation (up to 11.08% worse than the non-segmented models). The
semi-supervised segmentation (SSSKMIV) only had one negative sign while only being
1.79% worse than the non-segmented models.

Table 4 summarize the results for O = 15. The best performance overall in this case
is the SSSKMIV algorithm. The highest improvement achieved is 73.99% of the true
Gini coefficient improvement on average in the high CH value, high IV group by the
SSSKMIV. The IV group between 0.0 and 0.05, with high CH values, is most closely
contested, with the unsupervised k-means algorithm (52.43%) obtaining results very close
to the SSSKMIV algorithm (53.35%). When the complexity is high, the semi-supervised
segmentation (SSSKMIV) outperforms both the supervised and the unsupervised segmen-
tation.

Lastly the middle group, where O = 10 is considered in Table 5. In nine of the twelve
cases, the semi-supervised segmentation (SSSMIV) outperforms the supervised segmenta-
tion (decision trees). In this specific analysis, the unsupervised segmentation never out-
performs the semi-supervised segmentation, although it does outperform the supervised
segmentation in five cases (especially in the low IV groups).

A note on the value of w to use in SSSMIV: there is no single value of w that always
outperforms independent of the data set characteristics. It is, therefore, not possible to
recommend a good value of w. The most appropriate value of w is to be determined
iteratively on every data set that is segmented using the SSSKMIV algorithm.
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Data Gini % improvement

IV CH
Unsupervised
segmentation

Semi-supervised
segmentation

Supervised
segmentation

(0, 0.05] Low 28.22% 29.91% −7.09%
(0, 0.05] Mid 38.37% 41.94% −5.05%
(0, 0.05] High 52.43% 53.35% −2.67%

(0.05, 0.5] Low 27.91% 36.29% 16.99%
(0.05, 0.5] Mid 42.88% 50.61% 17.22%
(0.05, 0.5] High 55.29% 62.55% 25.32%
(0.5, 0.8] Low 31.43% 43.86% 29.29%
(0.5, 0.8] Mid 47.73% 57.78% 33.43%
(0.5, 0.8] High 55.58% 68.16% 41.20%

Above 0.8 Low 43.94% 55.10% 42.46%
Above 0.8 Mid 51.63% 64.99% 50.14%
Above 0.8 High 62.96% 73.99% 54.01%

Table 4: Improvement in Gini by CH and IV group (O = 15)

Data Gini % improvement

IV CH
Unsupervised
segmentation

Semi-supervised
segmentation

Supervised
segmentation

(0, 0.05] Low 5.52% 9.97% −9.29%
(0, 0.05] Mid 17.70% 21.26% −4.24%
(0, 0.05] High 29.66% 32.47% −4.66%

(0.05, 0.5] Low 8.85% 16.80% 11.78%
(0.05, 0.5] Mid 20.38% 27.99% 20.45%
(0.05, 0.5] High 29.52% 37.88% 18.68%
(0.5, 0.8] Low 14.09% 23.54% 29.21%
(0.5, 0.8] Mid 25.37% 34.42% 33.78%
(0.5, 0.8] High 40.11% 48.83% 40.12%

Above 0.8 Low 18.37% 31.54% 37.27%
Above 0.8 Mid 27.94% 41.58% 44.30%
Above 0.8 High 43.49% 53.46% 49.86%

Table 5: Improvement in Gini by CH and IV group (O = 10)

6 Conclusions and future research

The objective function of the semi-supervised algorithm (SSSKMIV) proposed in this
paper, comprises a supervised element (using information value) and an unsupervised
element (using k-means clustering). In addition, a supervised weight w was introduced
which measures how much the objective function of the unsupervised element is penalised
by the supervised element.

Empirical tests were performed on simulated data to demonstrate the performance of the
proposed SSSKMIV, compared to a supervised and an unsupervised segmentation ap-
proach. It was found that data sets which comprise complex underlying segments, and
are described by many variables, are not well suited to supervised segmentation. The
segmentation will be more successful if unsupervised or semi-supervised techniques are
used. Conversely, supervised segmentation appears to be more successful when segments
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are simple (i.e. not described by many independent variables), and target rates differ sub-
stantially between segments. The SSSKMIV algorithm consistently performed well within
a large range of data set characteristics, and outperformed known techniques in many
instances. Specifically, when the complexity is high, the semi-supervised segmentation
(SSSKMIV) outperforms both the supervised and unsupervised segmentation.

Within this study, not all avenues of possible research could be explored, and some are
therefore left for future work. One aspect identified for future research is the efficiency
and execution time of the proposed semi-supervised segmentation algorithm. Another
challenge is to determine a narrower band for the supervised weight (w), which could also
be useful in reducing the number of required iterations. In this study, only data sets with
binary target variables were considered, due to the use of IV as a supervised function.
Further studies could focus on extending the algorithm proposed in this paper to models
with continuous target variables.
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