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Abstract

The resource constrained scheduling problem involves the scheduling of a number
of activities over time, where each activity consumes one or more resource per time
period. For a feasible solution to exist, the total resource consumption per time period
must not exceed the available resources. In addition, the order in which activities may
be scheduled is determined by a precedence graph. In this paper, valid inequalities
proposed for the resource flow-based formulation in previous studies are investigated
to determine what effect they may have on computing times. We show empirically
that improved computing times may be obtained if these valid inequalities are, in fact,
omitted from the resource flow-based formulation. In addition, a heuristic is proposed
for the generation of initial starting solutions and for estimating the extent of the
scheduling horizon which, in turn, is required to calculate the latest starting times of
activities. Our computational results are based on well-known problem test instances
as well as new randomly generated problem instances.
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1 Introduction

A solution to the resource constrained scheduling problem (RCSP) prescribes starting times
of activities such that the total resource usage by the activities per time period is within
a pre-specified resource capacity. Furthermore, the activities have to be scheduled such
that all of the precedence constraints are satisfied.

The use of mixed integer linear programming (MILP) as a modelling approach is well
suited for the formulation of the RCSP due to the logical decision-making nature of the
problem. Several different mathematical formulations may, however, exist for the same
problem. These different formulations may be equivalent in terms of representing the
feasible region and the objective function of the RCSP, but they may differ in the number
of variables and constraints. This may, in turn, have an impact on the efficiency with
which the underlying algorithm finds solutions to these models. In the literature, three
main classes of RCSP formulations can be found, namely time-indexed formulations [10,
12], resource flow-based formulations [3, 4] and event-based formulations [9, 16].
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In a resource flow formulation, the resource consumption of activities is modelled as a
network flow problem. That is, continuous variables represent the flow of a resource from
one activity to the next. The start time of an activity is modelled as a continuous variable,
while binary decision variables are required to fix the ordering of the activities. In this
paper it is shown that valid inequalities applied to the resource flow formulation in Koné
et. al [9], may actually have a detrimental effect on computing times. Empirical results
provided below show that improved computing times are obtained if these valid inequalities
are, in fact, excluded from the RCSP formulation. In addition, a resource graph expansion
(RGE) heuristic is proposed for the purpose of estimating the scheduling horizon which, in
turn, is required to calculate the latest starting times of activities. The resulting solution
from the RGE heuristic may also be applied as a starting solution of the overall RCSP.

In the following section a resource flow-based formulation of the RCSP is provided. The
valid inequalities of interest are also identified. These inequalitites may, however, be
omitted from the formulation of the RCSP in order to speed up computing times. Details of
the proposed RGE heuristic are presented in Section 3, and this is followed by a description
of an iterative linear programming approach for calculating the earliest and latest allowable
starting times of activities. Computational results are presented in Section 4 based on well-
known RCSP problem instances and instances generated randomly. The paper closes in
Section 5 with a brief summary and some ideas for follow-up future work.

2 A resource flow formulation of the RCSP

The earliest resource flow MILP formulation of the RCSP is due to Artigues et. al [3],
who proposed a polynomial insertion algorithm for solving the RCSP. This formulation
is, however, driven by an algorithmic approach and is not formulated for the purpose of
solving it with an MILP solver. Koné et. al [9] were the first to provide numerical results
for a resource flow RCSP formulation solved using an off-the-shelf, commercial MILP
solver.

In order to facilitate a formulation of the RCSP, the following notation is required. Let R
denote the set of resources and let A denote the index set of all activities. Furthermore,
let di be the duration of activity i ∈ A, measured in days, and let vri be the quantity
of resource r ∈ R being consumed by activity i ∈ A over its entire duration. Also, let
Ei be the earliest start time and let Li be the latest start time of activity i ∈ A. The
earliest and latest start times of an activity are functions of a so-called precedence graph
(of which the nodes represent the various activities and each directed edge a precedence
relationship) and the planning horizon. An approach toward calculating Ei and Li is
provided in Section 3. Moreover, let P(i) ⊆ A denote the set of immediate predecessor
activities of activity i ∈ A (that is, all incident predecessor activities according to the
precedence graph). Finally, let S(i) ⊆ A denote the set of immediate successor activities
of activity i ∈ A (that is, all incident successor activities according to the precedence
graph), and let Ur be the upper limit on the quantity of resource r ∈ R that may be
consumed per day.

In order to facilitate the formulation of resource flow constraints below, two artificial
activities are introduced, both with a duration of zero. A source activity i+ is introduced
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with P(i+) = ∅ and S(i+) = {i ∈ A : P(i) = ∅}, and a sink activity i− is introduced
with S(i−) = ∅ and P(i−) = {i ∈ A : S(i) = ∅}. Furthermore, for the source and sink
activities, vri+ = Ur and vri− = Ur, respectively, for all r ∈ R.

The primary decision variables are the starting times si ≥ 0 for each of the activities i ∈ A.
In order to formulate the resource requirement constraints, resource flow variables frij ≥ 0
are introduced to denote the flow of a resource r ∈ R from activity i ∈ A to j ∈ A. Binary
variables zij ∈ {0, 1}, called the linear ordering variables, are used to indicate the ordering
of activities. That is, if zij = 1 it indicates that activity j is scheduled to start only after
completion of activity i. Consequently, the linear ordering variables also indicate whether
the transfer of a resource is permitted from activity i ∈ A to j ∈ A.

The objective of the resource flow RCSP is to

minimise si− (1)

subject to the constraints
zij = 1, j ∈ A, i ∈ P(j), (2)

sj − si − (di +M)zij ≥ −M, (i, j) ∈ A2, i 6= j, r ∈ R, (3)

frij −min{vri, vrj}/dizij ≤ 0, (i, j) ∈ A2, i 6= j, r ∈ R, (4)∑
i∈A\{j}

frij = vrj/dj , j ∈ A, r ∈ R, (5)

∑
j∈A\{i}

frij = vri/di, i ∈ A, r ∈ R, (6)

zij + zji ≤ 1, (i, j) ∈ A2, i < j, (7)

zij + zjk − zik ≤ 1, (i, j, k) ∈ A3, i 6= j, i 6= k, j 6= k. (8)

The objective function (1) minimises the makespan of the schedule by minimising the
starting time of the sink activity i−, while constraint set (2) is required to ensure feasibility
in terms of activity precedence.

Constraint set (3) is collectively called the linear ordering constraints. These constraints
determine the value of the linear ordering variables zij based on the starting time sj of
activity j and the completion time of its predecessor i, given by si + di. A reasonable
choice of the large number M in (3) would be the latest possible finishing time of the
schedule, i.e. M = Li− + di− .. According to constraint set (4), the flow of resources from
activity i to j is permitted only if activity j is scheduled to start after the completion of
activity i, that is when zij = 1.

The resource requirements are imposed by constraint sets (5) and (6), stating that all the
flow of resources into an activity (5) and all the flow of resources out of an activity (6)
should match the daily resource requirement vri/di of an activity i, for any resource r ∈ R.

According to [9], constraint set (7), which is collectively referred to as directional con-
straints, ensures that resource flow is either in one direction or the other, or that activities
i and j are being processed in parallel, i.e. zij = 0 and zji = 0. Constraints (8) are called
transitivity constraints which, according to [2], are responsible for ensuring that there are
no cycles in the permutations.
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Constraint sets (7) and (8) are redundant valid inequalities [11]. No evidence of improve-
ment in computing times are, however, provided in any of the computational results where
these valid inequalities have been included in the flow-based RCSP formulation; see e.g.
[1] and [9].

The computational results reported in this paper show that constraint sets (7) and (8)
may, in fact, have a detrimental effect on computing times for some problem instances
when included in the formulation of resource flow RCSP models.

3 The resource graph expansion (RGE) heuristic

In addition to the precedence graph, implicity defined by the predecessor and successor
sets P(i) and S(i), a resource flow graph is implied by the resource flow variables frij and
the linear ordering variables zij . The basic idea behind the newly proposed RGE heuristic
is to incrementally add activities to the resource flow graph while successively generating
partial solutions. Once a starting solution to an activity i ∈ A has been calculated, the
corresponding start-time variable si is fixed to this solution in subsequent iterations.

Algorithm 1
Let F = ∅.
Formulate constraints (2)–(4) based on the entire set A.
Let A′ = i+ ∪ S(i+).
Formulate constraints (5)–(6) based on the subset A′.
Solve RCSP and obtain solutions s∗i , for all i ∈ A′
while A′ 6= A do
for i ∈ A′ do

fixable ← true
for j ∈ P(i) do

if j /∈ F then
fixable ← false

end if
end for
if fixable then

Fix variable si = s∗i
F = F ∪ {i}.
for j ∈ S(i) do
A′ = A′ ∪ {i}.

end for
end if

end for
Update constraints (5)–(6) based on the subset A′.
Solve RCSP and obtain solutions s∗i , for all i ∈ A′

end while

The initial RCSP formulation of the RGE heuristic comprises the constraint sets (2)–(4),
which are formulated by taking the entire set of activities into account. The resource
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flow requirement constraint sets (5)–(6) are initially formulated for a subset of activities
A′ ⊆ A, which include only the source activity i+ and its set of immediate successors
S(i+). That is, A′ = {i+} ∪ S(i+). Solving this relaxed version of the RCSP yields a
solution that is feasible with respect to the subset of activities A′.

For the following iteration of the heuristic the start-time variables si, for all i ∈ A′, are
fixed to the solutions s∗i obtained during the previous step. It should be noted, however,
that the fixing of a variable si = s∗i is only allowed if the variables of its predecessors have
already been fixed. Next, the subset of activities A′ is augmented with the successors of
all of the activities in A′, that is, A′ = A′ ∪

{⋃
i∈A S(i)

}
. The resource flow requirement

constraint sets (5)–(6) are updated each time the subset A′ is augmented. A formal outline
of the RGE heuristic is provided in Algorithm 1.

The purpose of solving the RGE heuristic is two-fold. Firstly, it provides a starting
solution for the RCSP which my result in a speed-up of the MILP solver, and secondly,
it provides an estimate of the scheduling horizon which, in turn, is required to calculate
the latest starting times of activities. Specifying MILP-specific stopping criteria provides
several variations on the RGE heuristic. For instance, by specifying a gap limit when
solving the relaxed RCSP problem during each iteration, a speed-up of the RGE heuristic
may be achieved since the branch-and-bound process will be terminated once the current
optimality gap is less than the gap limit. This may, of course, be to the detriment of the
quality of the final solution obtained by the heuristic. On the other hand, this may result
in the successful computation of feasible solutions within the overall time limit specified
for solving the RCSP. The notation RGE(γ) is used in the remainder of this paper to refer
to the RGE heuristic where a gap limit of γ is applied during each successive solution
of the relaxed RCSP. A gap limit of γ = 0 implies that the relaxed RCSP is solved to
optimality.

Recall, from the above discussion, that Ei and Li are the earliest and latest start times of
an activity i ∈ A, respectively. Conceptually, the approach toward determining Ei involves
solving an optimisation problem in which the objective is to minimise the start time si of
activity i, subject to the precedence constraints of the RCSP. Similarly, an optimisation
problem that maximises the start time si of an activity i is solved to determine Li. It
should be noted, however, that some upper bound, say T , is required on si in order to
prevent an unbounded solution in the case of solving the maximisation problem. An
estimate of T is provided by the solution of the RGE heuristic.

The optimisation problem for determining Ei and Li involves

minimising / maximising si (9)

subject to the constraints

sj − si ≤ di, (i, j) ∈ A2, (10)

si ≤ T, i ∈ A, (11)

for each activity i ∈ A.
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4 Computational results

All of the empirical tests reported in this section were performed on an HP Compaq Elite
8300, with eight cores and 32GB of RAM. SuSE Linux was used as operating system and
the IBM product, CPLEX v12.6 [7], was used as MILP solver.

Several data sets for the RCSP and its variants are available in the research community
for the purpose of testing algorithmic ideas. For instance, the project scheduling problem
library (PSPLIB) [13] is a repository of RCSP problem instances which has been referenced
extensively over the years. The PSPLIB comprises the data sets J30, J60, J90 and J120,
which are sets of RCSP instances with respectively 30, 60, 90 and 120 activities. Each
data set consists of 480 different problem instances, except for the J120 data set which
has 600 problem instances. Details on how these problem instances were created can be
found in [8]. Other well-known data sets are the 39 problem instances of Baptiste and Le
Pape [5], henceforth referred to as the BL instances, and the Pack instances by Carlier
and Néron [6]. In order to test the efficiency of event-based formulations, Koné et. al [9]
created the problem instances KSD15 d and Pack d, which are based on the J30 and
Pack instances, respectively. These newly created instances are characterised by activities
having longer durations.

The main objective in this section is to reproduce some of the results reported by Koné et.
al [9] and to evaluate the effect that the valid inequalities (7) and (8) have on computing
times. For this purpose the same data sets used in Koné et. al [9] are considered in this
paper, with the addition of the J60 data set. Further data sets were generated randomly
using the software RanGen2 [14]. Details on the design of RanGen2 can be found in [15].
The major benefit of using RanGen2 is that it allows for the specification of several input
parameters which influence the properties of the randomly generated problem instances.
For instance, one of the parameters in RanGen2, called I2, is used to specify the level of
serialisation that the resulting precedence graph of the generated problem instance should
possess. More specifically, if the value I2 = 1 is specified by the user, a random problem
instance is created for which all the activities are serial according to the precedence graph.
On the other hand, if I2 = 0, all the activities are in parallel. For the purpose of this study,
instances containing 50 or 100 activities were generated randomly using RanGen2. The
problem instances in the data sets RG50 L and RG100 L were generated by specifying a
low degree of serialisation, that is I2 = 0.1, while the problem instances in RG50 H and
RG100 H were generated by specifying a high degree of serialisation, that is I2 = 0.5. The
data sets RG50 L, RG50 H, RG100 L and RG100 H each contains 50 problem instances.

An important collective contribution by the research community has been the character-
isation of problem instances according to various indicators. Some of the indicators used
to distinguish between “easy” and “hard” instances are briefly described:

Order strength (OS) is a measure of parallelism of the underlying precedence graph.
That is, a problem instance for which OS = 0 indicates that all activities are in
parallel, whereas OS = 1 indicates that all activities are ordered in serial. The
hardness of problem instances increases with a decrease in OS.

Network complexity (NC) is the average number of incident arcs per node in the
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precedence graph. Higher levels of NC are associated with harder problem instances.

Resource factor (RF ) measures the average number of resources required per activity.
It has been observed empirically that RF increases with an increase in the hardness
of problem instances.

Resource strength (RS) is a measure which combines resource requirements per ac-
tivity and peak resource demand due to a precedence feasible schedule based on
the earliest start times of activities. Problem instances for RS close to zero are
considered much harder than problem instances for which RS is close to one.

Disjunction ratio (DR) provides an indication of how many activities may be scheduled
in parallel by taking resource requirements and precedence relations into account.
Highly disjunctive problem instances are considered to be easier than cumulative
instances that have a lower disjunction ratio.

OS NC RF RS DR
Data set # activities avg σ avg σ avg σ avg σ avg σ
J30 30 0.52 0.09 1.81 0.26 0.63 0.28 0.62 0.29 0.56 0.11
J60 60 0.4 0.08 1.81 0.25 0.63 0.28 0.6 0.29 0.41 0.09
BL 22-27 0.34 0.07 1.67 0.13 0.66 0.06 0.34 0.09 0.34 0.07
Pack 17-35 0.23 0.07 1.61 0.06 1 0 0.17 0.08 0.44 0.19
KSD15 d 15 0.47 0.06 1.79 0.2 0.63 0.28 1 0.77 0.51 0.1
Pack d 17-35 0.23 0.07 1.84 0.27 1 0 0.17 0.07 0.45 0.2
RG50 H 50 0.92 0.01 1.91 0.07 1 0 0.26 0.69 0.99 0
RG50 L 50 0.38 0.01 4.57 0.12 1 0 0.03 0.02 0.93 0.01
RG100 H 100 0.96 0 1.89 0.04 1 0 0.1 0.35 0.99 0
RG100 L 100 0.65 0 5.84 0.04 1 0 0.01 0.016 0.96 0

Table 1: Tractability indicators for the problem instances considered.

Table 1 contains a summary of the statistics for the above indicators calculated for all of
the problem instances considered in this paper. The hardest set of instances, according to
the DR indicator, are the BL instances followed by the Pack d, J60, Pack, KSD15 d and
J30 instances. The DR values for the randomly generated data sets RG50 L, RG50 H,
RG100 L and RG100 H are much higher. Although it may appear that all of these in-
stances are easy, it should be noted that none of the above indicators take the number
of activities into account. Furthermore, the RG50 L and RG100 L data sets, which were
generated according to a low degree of serialisation, exhibit relatively low OS values, which
may suggest a higher degree of difficulty.

For the purpose of reporting the computational results, the resource flow formulation of
the RCSP given by (1)–(8) is denoted by RF. The abreviation RFX is used to refer to
the resource flow formulation that excludes the valid inequalities, that is, the formulation
given by (1)–(6). In order to measure the effect of employing the RGE heuristic, the
notation RFX+RGE(γ) and RF+RGE(γ) are used to refer to the combination of the
RFX formulation and the RF formulation with the use of the RGE heuristic, respectively.
Gap limits of γ = 0%, γ = 50% and γ = 100% are considered.

The first set of results is provided in Table 2 and is for the same problem instances that
were considered in [9]. The results for the other instances follow later. For the J30 data
set, both the RFX and the RF formulations were successful in solving 75% of the problem
instances to optimality. The average time it took to solve the RFX formulation is 19.1
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Solved to optimality Feasible solution
Data set Formulation # Instances(%) Time (s) # Instances(%) Gap (%)

J30 RFX 75 19.1 100 5.8
RFX+RGE(0%) 75 13.8 98 5
RFX+RGE(50%) 75 18.7 100 5.7
RFX+RGE(100%) 75 14.9 100 5.8
RF 75 27.8 100 6.8
RF+RGE(0%) 75 19.1 98 5.7
RF+RGE(50%) 74 25 100 6.8
RF+RGE(100%) 75 29.2 100 6.8

BL RFX 13 118.8 100 18.6
RFX+RGE(0%) 13 121.7 13 0
RFX+RGE(50%) 15 93.5 100 19.1
RFX+RGE(100%) 18 124.5 100 18.6
RF 15 220.4 100 19.6
RF+RGE(0%) 13 126.8 13 0
RF+RGE(50%) 15 212.8 100 20.2
RF+RGE(100%) 15 200.4 100 19.8

Pack RFX 0 0 100 59.7
RFX+RGE(0%) 0 0 18 31.2
RFX+RGE(50%) 0 0 41 43.9
RFX+RGE(100%) 0 0 100 59.8
RF 0 0 100 62.6
RF+RGE(0%) 0 0 18 30.7
RF+RGE(50%) 0 0 41 44.5
RF+RGE(100%) 0 0 100 62.7

KSD 15 RFX 96 6.7 100 0.9
RFX+RGE(0%) 96 5.8 100 0.9
RFX+RGE(50%) 96 5 100 0.9
RFX+RGE(100%) 20 3.2 21 0.3
RF 99 6.9 100 0.1
RF+RGE(0%) 99 8 100 0.1
RF+RGE(50%) 99 7 100 0.2
RF+RGE(100%) 21 5.5 21 0

Pack d RFX 9 0.3 96 44.6
RFX+RGE(0%) 7 0.2 16 12.6
RFX+RGE(50%) 7 0.3 43 28.2
RFX+RGE(100%) 9 0.4 96 44.5
RF 9 7.7 96 49.3
RF+RGE(0%) 7 1.8 16 12.2
RF+RGE(50%) 7 3.2 43 30
RF+RGE(100%) 9 7.7 96 49.7

Table 2: The effect of directional and transitivity inequalities (7)–(8) on computing times for

the problem instances considered in [9].

seconds compared to the 27.8 seconds that it took the RF formulation. In the case of the
BL problem instances, the RF formulation facilitated the solution of 15% of the instances
to optimality, compared to the 13% solved by the RFX formulation. However, the average
gap obtained for the RFX formulation is 18.6%, compared to the 19.6% achieved by the
RF formulation. The results obtained for the “easier” KSD15 d instances show that the
RF formulation performs better than the RFX formulation overall. For both the Pack and
Pack d problem instances the RFX performed better again. It allowed for the computation
of solutions exhibiting on average, a gap of 59.7% and 44.6%, respectively, compared to
the RF obtaining average gaps of 62.6% and 49.3%, respectively.

Some improvements were observed when applying the RGE heuristic. For instance, in the
case of the J30 problem instances, the average time required by the RFX+RGE(100%) to
solve the same number of instances to optimality is 14.9 seconds vs. 19.1 seconds when
applying only the RFX formulation. In the case of BL, 18% of the problem instances
were solved to optimality according to the RFX+RGE(100%) formulation, compared to
only 13% when applying the RFX. No improvements were, however, observed for the Pack
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Solved to optimality Feasible solution
Data set Formulation # Instances(%) Time (s) # Instances(%) Gap (%)

J60 RFX 67 50 100 9.7
RFX+RGE(0%) 66 21.6 78 1.4
RFX+RGE(50%) 66 35.9 100 9.4
RFX+RGE(100%) 66 37.9 100 9.6
RF 23 146.9 73 37.1
RF+RGE(0%) 45 30.5 78 5.2
RF+RGE(50%) 30 128 100 29.4
RF+RGE(100%) 27 144.2 92 31.6

RG50 H RFX 100 1 100 0
RFX+RGE(0%) 100 4.1 100 0
RFX+RGE(50%) 100 3.9 100 0
RFX+RGE(100%) 100 3.5 100 0
RF 100 0.5 100 0
RF+RGE(0%) 100 4.4 100 0
RF+RGE(50%) 100 3.9 100 0
RF+RGE(100%) 100 3.5 100 0

RG50 L RFX 46 201.6 100 6.9
RFX+RGE(0%) 34 140.5 42 1.1
RFX+RGE(50%) 38 180.5 100 5.2
RFX+RGE(100%) 42 132.6 90 7.6
RF 0 0 96 62.5
RF+RGE(0%) 12 136.9 42 8.9
RF+RGE(50%) 0 0 100 45.4
RF+RGE(100%) 0 0 88 57.4

RG100 H RFX 100 8.9 100 0
RFX+RGE(0%) 76 93.3 76 0
RFX+RGE(50%) 80 79.2 80 0
RFX+RGE(100%) 80 75.5 80 0
RF 100 2.9 100 0
RF+RGE(0%) 76 94.7 76 0
RF+RGE(50%) 80 79.1 80 0
RF+RGE(100%) 80 75.1 80 0

RG100 L RFX 0 0 100 32.6
RFX+RGE(0%) 0 0 30 9
RFX+RGE(50%) 0 0 100 27.8
RFX+RGE(100%) 0 0 90 27.8
RF 0 0 96 87
RF+RGE(0%) 0 0 30 10.2
RF+RGE(50%) 0 0 100 55.7
RF+RGE(100%) 0 0 90 69.1

Table 3: The effect of directional and transitivity inequalities (7)–(8) on computing times for

the remaining problem instances.

and the KSD 15 problem instances and a marginal improvement in the average gap was
obtained for the Pack d instances.

The main conclusion drawn from the first set of results provided in Table 2 is that there
is merit to exclude the directional and transitivity inequalities (7)–(8) from the resource
flow-based RCSP formulation. This may have an effect on the conclusions made by, for
instance, Koné et. al [9] with respect to the success of event-based formulations over
resource-flow formulations which include the directional and transitivity inequalities (7)–
(8). The results that follow for the remaining problem instances considered in this paper
are even more convincing in this regard.

The significance of excluding the directional and transitivity inequalities (7)–(8) from the
RCSP problem formulation is clearly demonstrated by the results for the J60 data set in
Table 3. Adopting the RFX formulation a total of 67% of the J60 problem instances were
solved to optimality, compared to 23% for the RF formulation. Further improvements
were achieved by employing RFX+RGE(50%) and an average gap of 9.4% was achieved
by generating feasible solutions to all of the problem instances, compared to 9.7% in the
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Solved to optimality Feasible solution
Data set Formulation # Instances(%) Time (s) # Instances(%) Gap (%)

J60 L RFX 73 21.3 100 6.8
|J60 L| = 106 RFX+RGE(0%) 74 39 88 1.2
µ(DR) = 0.29 RFX+RGE(50%) 73 34.6 100 6.2
σ(DR) = 0.02 RFX+RGE(100%) 19 172 100 6.6

RF 44 11.3 77 50.5
RF+RGE(0%) 25 155.1 88 6
RF+RGE(50%) 19 114.7 100 29.8
RF+RGE(100%) 0 0 97 38.6

J60 H RFX 49 54.2 100 18.1
|J60 H| = 88 RFX+RGE(0%) 49 26.1 59 2
µ(DR) = 0.54 RFX+RGE(50%) 48 33.3 100 17.6
σ(DR) = 0.03 RFX+RGE(100%) 47 24.8 100 17.8

RF 30 136.6 77 28.6
RF+RGE(0%) 36 32.7 59 5.5
RF+RGE(50%) 31 101.2 100 33.8
RF+RGE(100%) 27 90.3 84 30.4

Table 4: The effect of directional and transitivity inequalities (7)–(8) on computing times for

the J60 L and J60 H segments based on the DR ranges [0, µ− σ] and [µ+ σ, 1], respectively.

case of the plain RFX formulation.

Although the RFX formulation is outperformed by the RF formulation in the case of the
“easier” RG50 H and RG100 H problem instances, very promising results are obtained
for the “harder” RG50 L and RG100 L problem instances. The RFX allowed for the
solution of 46% of the RG50 L problem instances, whereas the RF could not facilitate
the solution of any of the problem instances to optimality. Improvements were once again
achieved through RFX+RGE(50%) and an average gap of 5.2% was obtained by generating
feasible solutions to all of the problem instances, compared to 6.9% in the case of the plain
RFX formulation. Although none of the RG100 L problem instances could be solved to
optimality, the benefits of applying RFX are still clearly visible by considering that an
average gap of 32.6% was obtained for all of the cases for which at least one feasible
solution could be computed. Feasible solutions could be computed for only 96% of the
RG100 L problem instances according to the RF formulation.

Recall that the distinction between “easy” and “hard” instances for the RG50 and RG100
data sets are only based on the level of OS. That is, the easier problem instances RG50 H
and RG100 H are associated with higher OS levels, while the harder instances RG50 L
and RG100 L are associated with lower OS levels. From the above results it is therefore
reasonable to assume that improvements in computing times may be expected for problem
instances characterised by low OS values if directional and transitivity inequalities (7)–
(8) are excluded. As indicated in Table 1, all of the RG50 and RG100 instances are,
however, considered easy when measured according to the DR tractability indicator. The
question raised here is whether the RFX is effective for problem instances characterised
by a low DR value. The results of Table 2 may hint at the contrary considering that
the RF outperformed the RFX in the case of the BL data set, which is considered to be
the hardest since it has the lowest average DR value. In order to explore this further,
attention is drawn to the positive results obtained for the J60 problem instances. Although
the average DR value for the J60 data set is higher than that of the BL data set (0.4 vs.
0.34), the J60 problem instances contains more activities and they have a higher average
RS value (0.6 vs. 0.34). In this respect the J60 data set may be considered to be harder
than the BL data set. In order to analyse the effectiveness of the RFX with respect to
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Solved to optimality Feasible solution
Formulation # Instances(%) Time (s) # Instances(%) Gap (%)

RFX 51.6 44.6 99.7 17.3
RFX+RGE(0%) 48.1 37.7 59.1 5.5
RFX+RGE(50%) 49.0 41.4 88.7 14.0
RFX+RGE(100%) 43.3 38.7 89.8 16.9

Table 5: Computational results for evaluating the effectiveness of the GRE heuristic over all

problem instances.

different levels of DR, the results for the J60 data set are presented according to different
levels of DR in Table 4. The ranges [0, µ− σ] and [µ+ σ, 1] were applied as filters on DR
values in order to create the segments J60 L and J60 H, which correspond to J60 instances
with a low DR value (hard) and J60 instances with a high DR value (easy), respectively.
The resulting number of activities in the J60 L data set is 106 with an average DR value
of 0.29. Recall that the average DR value for the BL data set is 0.34, suggesting that the
J60 L instances are, on average, harder than the BL instances. For the J60 H data set the
resulting number of activities is 88 with an average DR value of 0.54.

Positive results are reported in Table 4 for the J60 L and J60 H problem instances. By
making use of the RFX formulation, which excludes the directional and transitivity in-
equalities (7)–(8), 73% of the total number of J60 L instances are solved to optimality.
For the RF formulation, which includes the the directional and transitivity inequalities
(7)–(8), only 44% of the instances are solved to optimality. It is also encouraging to note
that the application of RFX+GRE(50%) improves the average gap, managing to generate
feasible solutions for all of the problem instances instances with an average gap of 6.2%
vs. the 6.8% gap achieved according to the plain RFX formulation without the heuristic.
Results for the J60 H data set are also positive, showing that 49% of the instances are
solved to optimality according to the RFX vs. 30% when applying RF.

As a final analysis, Table 5 provides the average performance measures for the RFX and
heuristic combinations over all of the problem instances. At a first glance the use of
the GRE heuristic does not appear to be beneficial since the RFX formulation without
the heuristic achieved the highest percentage of instances solved to optimality. It should
be noted, however, that these are averages over all of the problem instances. On closer
inspection it is observed that the application of the heuristic is especially useful when
considering harder problem instances. For instance, the application of RFX+RGE(50%)
resulted in improved average gaps for the harder instances, such as J60, RG50 L and
RG100 L, but not necessarily for the easier problem instances. Table 5 also indicates
that, on average, γ = 50% may be a good parameter choice since RFX+RGE(50%) solved
the most instances to optimality, compared to other choices of γ.

5 Summary and conclusion

The primary concern of this paper has been an investigation into how directional and
transitivity valid inequalities may influence computing times when included in the formu-
lation of the flow-based RCSP. The trend observed from the computational results shows
that improved computing times may be expected when excluding these valid inequalities,
especially when considering “harder” problem instances. This warrants a re-evaluation of
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the results presented by others which suggested that event-based RCSP formulations may
perform better than resourc flow-based formulations.

As a secondary contribution, a heuristic was proposed for the purpose of generating initial
feasible solutions and estimating the scheduling horison necessary for the computation of
the latest start dates of the activities. Positive results were reported for specifically harder
problem instances.
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[11] Olagúıbel R & Goerlich J, 1993, The project scheduling polyhedron: Dimension, facets and lifting
theorems, European Journal of Operational Research, 67(2), pp. 204–220.

[12] Pritsker A, Watters L & Wolfe P, 1969, Multi-project scheduling with limited resources: A
zero-one programming approach, Management Science, 16, pp. 93–108.

[13] PSPLIB — A project scheduling problem library , 1996, [Online], [Cited July 9th, 2015], Available
from http://www.om-db.wi.tum.de/psplib/main.html.

[14] RanGen2 — A random network generator for RCSP instances, [Online], [Cited July 9th, 2015],
Available from http://www.projectmanagement.ugent.be/?q=research/data/RanGen.

[15] Vanhoucke M, Coelho J, Debels D, Maenhout B & Tavares L, 2008, An evaluation of the
adequacy of project network generators with systematically sampled networks, European Journal of
Operational Research, 187(2), pp. 511–524.

[16] Zapata J, Hodge B & Reklaitis G, 2008, The multimode resource constrained multiproject
scheduling problem, AIChE Journal, 54(8), pp. 2101–2119.


