
Volume 31 (2), pp. 77–94

http://orion.journals.ac.za

ORiON
ISSN 0259–191X (print)
ISSN 2224–0004 (online)

c©2015

An exact algorithm for the N -sheet two
dimensional single stock-size cutting stock problem

T Steyn∗ JM Hattingh†

Received: 3 December 2014; Revised: 11 September 2015; Accepted: 12 September 2015

Abstract
The method introduced in this paper extends the trim-loss problem or also known as 2D rect-
angular SLOPP to the multiple sheet situation where N same size two-dimensional sheets
have to be cut optimally producing demand items that partially or totally satisfy the re-
quirements of a given order. The cutting methodology is constrained to be of the guillotine
type and rotation of pieces is allowed. Sets of patterns are generated in a sequential way.
For each set found, an integer program is solved to produce a feasible or sometimes optimal
solution to the N -sheet problem if possible. If a feasible solution cannot be identified, the
waste acceptance tolerance is relaxed somewhat until solutions are obtained. Sets of cutting
patterns consisting of N cutting patterns, one for each of the N sheets, is then analysed for
optimality using criteria developed here. This process continues until an optimal solution is
identified. Finally, it is indicated how a given order of demand items can be totally satisfied
in an optimal way by identifying the smallest N and associated cutting patterns to minimize
wastage. Empirical results are reported on a set of 120 problem instances based on well known
problems from the literature. The results reported for this data set of problems suggest the
feasibility of this approach to optimize the cutting stock problem over more than one same
size stock sheet. The main contribution of this research shows the details of an extension of
the Wang methodology to obtain and prove exact solutions for the multiple same size stock
sheet case.

Key words: Cutting stock, 2D rectangular SSSCSP, 2D rectangular SLOPP, exact solutions (for N

sheets), Wang algorithm.

1 Introduction

Wäscher et al. [16] proposed a typology to categorise different problem formulations ac-
cording to categorisation criteria. In this paper a two-dimensional cutting stock problem

∗Corresponding author: Department of Computer Science and Information Systems, North-West
University, Potchefstroom Campus, Private Bag X6010, Potchefstroom, 2530, South Africa, email:
tjaart.steyn@nwu.ac.za
†(Fellow of the Operations Research Society of South Africa), Department of Computer Science

and Information Systems, North-West University, Potchefstroom Campus, Private Bag X6010, Potchef-
stroom, 2530, South Africa

http://dx.doi.org/10.5784/31-2-527

77

http://orion.journals.ac.za
 tjaart.steyn@nwu.ac.za
http://dx.doi.org/10.5784/31-2-527

78 T Steyn & JM Hattingh

(2DCSP) is considered. This type of problem is normally encountered during the process
of cutting a set of rectangular stock sheets like glass or wood into a set of smaller rectan-
gular items in order to partially or fully satisfies a specified demand of the smaller items.
It is accepted that guillotine type cuts are employed, that rotation of the small items is
allowable and that the demand of small items cannot be satisfied by cutting only one stock
sheet. An upper bound is specified on the quantity of each type of small item needed. It
is also assumed that the stock sheets to be used are of the same size.

This problem is referred to by Wäscher et al. [16] as the two-dimensional single stock-
size cutting stock problem (2DSSSCSP). They also defined the two-dimensional multiple
stock-size cutting stock problem (2DMSSCSP) where different sizes of stock sheets and in
variable quantities may in general be available. A well known elementary case is to cut
one stock sheet to find a single cutting pattern producing the least waste. This type of
problem is generally known as the trim-loss problem or the two-dimensional rectangular
single large object placement problem (2D rectangular SLOPP) indicated as 2D-SLOPP
in the rest of the paper.

The concept of the 2D-SLOPP is extended to a 2D-SLOPP over N same size sheets, called
the N sheet two-dimensional single stock-size cutting stock problem (NS-2DSSSCSP) in
this paper. Note that this is the same as 2DSSSCSP with N specified explicitly. This is a
problem posed for utilizing the N sheets optimally by cutting items from the set of pieces
in an order. For N = 1, this then reduces to the 2D-SLOPP. It is generally considered to
be a NP hard problem to obtain the exact solution for N > 1.

To solve the 2DSSSCSP exactly either all the possible cutting patterns must be considered
to establish optimality or some proof must be given that “sufficient” cutting patterns have
been considered. An exact approach is proposed in this paper to maximize the utilization
of a specified number of stock sheets without generally enumerating all possible cutting
patterns. In §4 it is proved that it is possible to either guarantee optimality or give
an indication that more cutting patterns must be generated to improve on the current
solution. Although this approach is based on exactly N sheets, it is shown that the
solutions can be utilized as part of a further search strategy to solve the 2DSSSCSP
exactly to satisfy the full order of items. In the latter case it is assumed that sufficient
stock sheets are available to fill the order.

The proposed solution process to establish the exact solution to the NS-2DSSSCSP consists
of the systematic application of the following activities using an iterative process, namely

1. generate cutting patterns,

2. build and solve integer programming models, and

3. conduct optimality tests.

The NS-2DSSSCSP definition resembles the problem type of output maximisation defined
by Wäscher et al. [16] whereby N large objects are supplied, which (in general) does not
allow the accommodation of all small items. This means that there is generally a selection
problem regarding the small items, and all the large objects have to be used. In this sense
this problem (NS-2DSSSCSP) is an extension of the 2D-SLOPP.

The above mentioned approach of output maximisation is utilized by means of a search

An exact algorithm for the N -sheet two dimensional single stock-size cutting stock problem 79

strategy to establish the optimum number of sheets needed to fulfil the cutting of the
specified demand set of all items in the order. This is explained in §5.2 of this paper. In
this phase, it can be seen as an input (value) minimisation problem type (Wäscher et al.
[16]) from the set of large objects. Thus, all small items are to be assigned to a selected
number of large object(s) of minimal total “value” or area.

In §2 a brief literature review is given followed by §3 on notation and problem formulation.
§4 contains a theoretical discussion and proofs to support the proposed algorithms. In §5
algorithms based on the theoretical work and some ideas from the literature are discussed.
Empirical work and results follow in §6. §7 gives the conclusions followed by an overview
of some further research possibilities based on the results.

2 Background and literature

In their paper on an improved typology of cutting and packing problems, Wäscher et
al. [16] categorised a list of 413 papers dated up to December 2005 that they considered
relevant to their description of cutting and packing problems. In the spreadsheet (dated
February 28, 2012) linked to their paper, a list of 904 references is given. There are
duplicates since a paper may be categorised into more than one category and when the
duplicates are removed, there are 774 references. This illustrates that the field of cutting
and packing continues to attract attention from researchers and quite a number of research
papers are published regularly in this (broader) area.

A considerable number of research papers in the literature report on work regarding the
trim-loss problem (SLOPP) whereby one stock sheet is cut into smaller demand items in
a manner to minimize the waste. The spreadsheet from Wäscher lists 74 papers related to
both two-dimensional and SLOPP. There are, however, a wide variety of approaches and
definitions of this problem type. Some approaches allow rotation of items while others do
not. Some accept pieces to be rectangular while others do not. Some follow a constrained
(or staged) cutting approach while others do not. Some employ heuristics while others
try to follow a more exact approach. When these characteristics are combined, only a few
papers can be linked to the approach set out in this paper.

The process of solving a SLOPP in general needs some approach of generating and evalu-
ating cutting patterns until optimality is reached or to stop the process with the solution
at hand. Classical publications by Gilmore and Gomory [6, 7, 8] entail a series of pa-
pers on cutting stock problems where they initially concentrated on the one-dimensional
problem. Their basic idea is to employ an unconstrained knapsack type of problem by
utilizing dynamic programming strategies to establish favourable cutting patterns to be
used in a (integer) linear programming (ILP) model. Other researchers like Christofides
and Whitlock [4] employ pattern generation strategies based on tree search approaches.
Most of these approaches involve mainly heuristics while the minority are exact of na-
ture. The handling of a SSSCSP can generally be viewed as an iterative two-step process
whereby the first step is to generate patterns (SLOPP approach) followed by a step of
using these patterns as part of the input to solve the SSSCSP by means of a (integer)
linear programming model.

80 T Steyn & JM Hattingh

Cintra et al. [5] report on various algorithms related to work done on two-dimensional
cutting stock and strip packing problems. They employ dynamic programming and column
generation techniques based on different instances of the cutting stock problem. These
instances include a report on the Rectangular Knapsack (RK) problem which corresponds
to the 2D-SLOPP according to the typology of Wscher et al. [16]. The algorithms they
implemented are based on the recurrence formulas of the dynamic programming approach
proposed by Beasley [3] which they combined with the discretization points of Herz [9].
The application of the Cintra algorithms to test problems gave good results timewise for
the various instances of the 2D-SLOPP. In the next phase Cintra et al. [5] address the 2D-
SSSCSP by means of a column generation technique based on the ideas initially proposed
by Gilmore and Gomory.

As an alternative approach to dynamic programming, Wang [15] proposed two algorithms
to establish a cutting pattern with least waste over a single sheet, thus a SLOPP. In her
algorithms Wang employs a parameter β ∈ [0, 1] as a proportion of the stock sheet area and
uses it to discard patterns with waste proportion exceeding β during the process of cutting
pattern generation. She generates all feasible cutting patterns by successively combining
rectangles in a bottom-up implicit enumeration algorithm whilst conforming to constraints
like allowable size, quantity and waste percentage specification. By increasing β from some
starting value in successive iterations, the number of different patterns generated is kept
as low as necessary.

Based on the work of Wang, a number of researchers like Oliveira and Ferreira [11] and
Vasko [13] reported refinements to the algorithms in order to reduce computational time.
Vasko and Bartkowski [14] used a modified version of Wang’s first algorithm to experiment
with the initial value and step size of β to obtain optimal solutions to 265 difficult cutting
stock problems. They reported a fair amount of success with a step size of 0.002 and an
initial value of zero for the test problems. About all SLOPP approaches identifiy only the
(one) pattern (or alternatives) associated with the minimal waste.

Amaral and Wright [1] proposed an algorithm also based on the work of Wang that
enhances the process of cutting pattern generation. By noting equivalences in combining
rectangles vertically and horizontally and noting the legitimate rotation of rectangles, it
is possible to eliminate certain combinations early on. They combined this elimination
process with ordered data structures to further reduce the combinatoric effect. An added
advantage of their approach, especially for the purposes of the research reported on in this
paper, is that their algorithm generates (and stores) a list of all possible cutting patterns
satisfying the β specification in a very efficient manner. In §6 some empirical results will
be given based on the algorithm proposed by them.

During algorithm testing, Beasley [2] generated a set of 12 problems of the 2DMSSCSP
type. Each problem considers cutting a set of patterns from multiple stock size rectangles
and a list of small items for which the orientations are considered to be fixed. Beasley did
some empirical work and reports that the algorithms produce a relatively low amount of
waste but does not establish least waste comparisons. As an illustration of the waste levels
found, a waste area percentage of 5.89% for problem 12 is reported. This was achieved
by using 3 stock rectangle types. This set of problems has been used during the testing
of the algorithms proposed in this paper.

An exact algorithm for the N -sheet two dimensional single stock-size cutting stock problem 81

3 Notation and problem formulation

A 2DCSP model is first considered to address the more formal part of this research, where
an adequate number of stock sheets are available and the set of small demand items to be
cut is specified. If all possible cutting patterns are available whereby demand items can
be cut from a single stock sheet, the following integer linear program can be defined to
compute an optimal solution for this 2DCSP. The objective is to minimize the total waste.
Mathematically it can be formulated as

minimize

n∑
j=1

wjxj (1)

subject to
n∑
j=1

Iijxj = Ii, i = 1, . . . ,m, (2)

xj non-negative integers, j = 1, . . . , n, (3)

where

xj is the number of times pattern j is to be cut,
wj is the (total) waste implied by pattern j,
Iij is the number of times demand item i is cut by pattern j,
Ii is the quantity of demand item i specified,
n is the number of all possible cutting patterns, and
m is the number of demand item types in the order.

This model can be applied to the (2D)SSSCSP and adapted for the (2D)MSSCSP. In
general it is time consuming and in some cases impractical to generate all possible cutting
patterns even for a single stock sheet type. This is an important reason why researchers
often employ heuristics or consider relaxations for the problem. If multiple stock sheet
types are involved, it complicates matters further. In this research a single sheet type is
considered and the following notation is adopted to address the NS-2DSSSCSP. Let

N specify the number of same size stock sheets to be used.
SA specify the area of the sheet, thus SA = H × L, where H and L are the dimensions

of the sheet,
β specify the waste proportion per sheet allowed for in the process of generating pat-

terns according to the approach of Amaral and Wright [1] based on the initial ideas
introduced by Wang [15]1,

Wβ = {wβj | w
β
j ≤ βSA and wβj is the total waste for pattern j}, and

β1 = min
0≤β≤1

{β |Wβ 6= φ}.

Consider a special case of the NS-2DSSSCSP where the patterns used are generated based
on a β ≥ β1. Define a model SW (N, β) with the objective to minimize the total waste

1All cutting patterns with a (total) waste ≤ βSA are thus kept while the others are discarded.

82 T Steyn & JM Hattingh

over N sheets and pattern waste based on β. Mathematically it is expressed as

minimize Z(N, β) =

nβ∑
j=1

wβj xj (4)

subject to

nβ∑
j=1

Iijxj ≤ Ii i = 1, . . . ,m (5)

nβ∑
j=1

xj = N (6)

xj non-negative integers, j = 1, . . . , nβ (7)

where

xj is the number of times pattern j is to be cut,

wβj ∈Wβ is the (total) waste implied by pattern j,

Iij is the number of times demand item i is cut by pattern j,
Ii is the quantity of item i specified,
m is the number of demand item types,
N is the specified number of (same size stock) sheets to be cut, and
nβ is the number of all cutting patterns with (total) waste within β specifications.

The first m + 1 constraints in the model constrain the number of demand items to be
cut not to exceed the demand specified and also the number of stock sheets to be used.
Thus, the above model adheres to the problem type of output maximization as defined
by Wäscher et al. [16]. For values of β and N that render SW (N, β) feasible, such
SW (N, β)’s have optimal solutions with objective function values of (say) Z∗(N, β). For
non-decreasing sequences of values for β, Z∗(N, β) forms a non-increasing sequence of
values. In practice strictly increasing values of β will be considered. If β is sufficiently
large the sequence converges to the optimal objective function value Z∗(N) that exploits
the N sheets optimally for the given set of demand items. There thus exists a (minimum)
β∗ ≥ β1 that is large enough such that Z∗(N, β) = Z∗(N) for β ≥ β∗. It should be noted
that Z∗(N, β) gives the optimal objective function value to SW (N, β), but often it may
not be the optimal objective function value to the NS-2DSSSCSP. It will, however, be
clear from the context. The problem to identify Z∗(N) is a generalization of the (single
sheet) trim-loss (2D-SLOPP) problem to the N sheet trim-loss problem. (Note that for

all β ≥ β1, Z∗(1) = min{wβj | w
β
j ∈Wβ}).

4 Theoretical discussion and proofs

One method to establish the optimum solution of the cutting stock problem described
here, is to have all possible cutting patterns available and to solve the relevant integer
linear program. An alternative is to utilize the current information (or patterns) to prove
optimality or to indicate that more patterns are needed. These additional patterns are
generated by employing a new larger β. Thus, the theorems and corollaries given in
this section enable the decision maker to either establish that Z∗(N) = Z∗(N, β) and

An exact algorithm for the N -sheet two dimensional single stock-size cutting stock problem 83

optimality is reached or give an indication that the set of cutting patterns have to be
extended by increasing the current value of β. For the ease of the exposition of the theory
below it is assumed that the solutions mentioned exist and β has appropriate values.

Theorem 1 constitutes on the one hand optimality conditions for the specified
NS-2DSSSCSP based on the current information in the form of patterns with their asso-
ciated waste that were generated by utilising a certain β. If these optimality conditions
do not hold, it means that the solution associated with Z∗(N, β) based on the current
β-value is not optimal to the NS-2DSSSCSP. Thus the β-value must be increased in or-
der to generate additional patterns and retesting the conditions for optimality so that
Z∗(N, β) = Z∗(N) could ultimately be confirmed. On the other hand, if optimality to the
problem is confirmed in some way, it can be claimed that these conditions must hold. Thus,
this theorem forms the basis of the theoretical part of this research and plays a central role
in the implementation of the algorithm developed. It can also be seen that although the
theorem is stated in terms of N to correspond to the so-called NS-2DSSSCSP, the value
N is a generalization and can thus be applied to r, where r ≤ N in the NS-2DSSSCSP.

Theorem 1
For a given β, Z∗(N, β) = Z∗(N) if and only if, for all r ∈ {1, 2, . . . , N − 1}, with N ≥ 2,
Z∗(r) + (N − r)βSA ≥ Z∗(N, β).

Proof: Consider the if-part first and let Z∗(N, β) > Z∗(N) implying that Z∗(N, β) is not
optimal for the NS-2DSSSCSP. Then a β′ > β must exist such that Z∗(N, β) > Z∗(N, β′).
This implies that the optimal solution for SW (N, β′) must have at least one pattern
associated with a “new” pattern generated by the relaxation to β′ (i.e. βSA < waste of

new pattern ≤ β′.SA). Let there be (N − r) such new patterns. The other r patterns
in the solution have associated waste ≤ βSA. It can be argued that, for the solution
associated with β′,

Z∗(N, β) > Z∗(N, β′)

=
(∑

waste of r patterns with waste ≤ βSA
)

+
(∑

waste of (N − r) new patterns with βSA < waste ≤ β′SA
)

≥ Z∗(r) +
(∑

waste of (N − r) new patterns with βSA < waste ≤ β′SA
)

> Z∗(r) + (N − r)βSA

This proves that an r exists such that the condition does not hold.

Consider the only-if-part next and say that an r ∈ {1, 2, . . . , N−1} with N ≥ 2 exists such
that Z∗(r)+(N−r)βSA < Z∗(N, β). Adjust the model SW (N, β) by removing the number
of demand items in the model that are included in the patterns used in the solution that
gives Z∗(r) and thus adjusting the upperbounds specified on those demand items. Solve
the adjusted model SW a(N − r, β) and find the objective function value Za(N − r, β).
The combination of patterns that form the solutions giving the objective function values
Z∗(r) and Za(N − r, β), is a feasible solution to the original model SW (N, β) and thus

84 T Steyn & JM Hattingh

one can argue that Z∗(N, β) > Z∗(r) + (N − r)βSA ≥ Z∗(r) + Za(N − r, β). This proves
that Z∗(N, β) is not optimal. This completes the proof. �

Based on the concepts in Theorem 1, the attributes of the left hand sides of the optimality
criterion is considered. For a given β, these left hand sides form a non-decreasing sequence
in r for the r values under consideration. The value of the following theorem lies in the
fact that it is sufficient to only check whether Z∗(k − 1) + βSA ≥ Z∗(k, β) for a certain
k to confirm or reject optimality of Z∗(k). This follows from the characteristics of the
sequence which is proved below.

Theorem 2
The left hand sides of the optimality criterion used in Theorem 1 for a certain value of β
viz. Z∗(r) + (N − r)βSA{<,≥}Z∗(N, β) for r ∈ {1, 2, . . . , N − 1}, form a sequence that is
non-decreasing in r.

Proof: Consider a value of k such that k ∈ {3, 4, . . . , N +1}. If Z∗(k−1) is optimal, one
can argue that Z∗((k−1)−1)+βSA ≥ Z∗(k−1, β) = Z∗(k−1). That is, Z∗(k−2)+2βSA ≥
Z∗(k − 1) + βSA, proving that the sequence is non-decreasing. �

Corollary 1 gives some further information that follows from Theorem 1 and that may be
useful in the development of algorithms.

Corollary 1
When optimal solutions are produced by applying the procedure suggested in the proof of
Theorem 1, a sequence of optimal solutions Z∗(r, β) = Z∗(r) for r ∈ {1, 2, . . . , N − 1} are
produced for the rS-2DSSSCSP.

Different methods are possible to establish underestimates ZU (r) for Z∗(r) with ZU (r) ≤
Z∗(r) ≤ Z∗(r, β) and β1 ≤ β ≤ 1. Note that since Z∗(r − k) + Z∗(k) ≤ Z∗(r), then
ZU (r) = Z∗(r−k)+Z∗(k) is an underestimate for Z∗(r) for situations where Z∗(r−k) and
Z∗(k) (or good underestimates of them) are known. Utilizing this may save considerable
computational time. Formally, the following corollary follows directly from Theorem 1.

Corollary 2
If ZU (r) + (N ′ − r)βSA ≥ Z∗(N ′, β) for all r-values with r ∈ {1, . . . , N ′ − 1} and N ′ ∈
{2, . . . , N}, one can conclude that Z∗(N ′, β) = Z∗(N ′).

5 Agorithms

The knowledge from Theorem 1 and 2 together with Corollary 1 and 2 can be used to
develop the following procedure.

An exact algorithm for the N -sheet two dimensional single stock-size cutting stock problem 85

5.1 An algorithm to establish Z∗(N)

Algorithm 1 (NS-algorithm) has been devised to establish Z∗(N) for a specified N > 1
for the NS-2DSSSCSP without necessarily generating all possible cutting patterns. N = 1
constitutes the trim-loss case (2D-SLOPP). It is assumed that β is large enough so that
Z∗(s, β) exists for all s ≤ N . It is also assumed that Z∗(N, β) > βSA since the alternative
would imply optimality for that N .

Algorithm 1: NS-algorithm: Generalized N sheet trim-loss algorithm

1 STOP = False
2 while !STOP do
3 Generate Patterns Wβ (Read Wβ from file according to β)
4 Compute Z∗(N, β) for model SW (N, β)
5 if Stop reason<>“Full Fit” then
6 WasteSum[N] = Z∗(N, β)
7 s = N − 1; β flag= True
8 while s > 0 and β flag do
9 Compute Z∗(s, β) for model SW (s, β)

10 WasteSum[s] = Z∗(s, β)
11 k = 0
12 while k < (N − s) and β flag do
13 β flag = (WasteSum[s] + (N − s− k) ∗ βSA ≥ WasteSum[N − k])
14 k = k + 1

15 if β flag then
16 s = s− 1
17 if s ≤ 0 then
18 STOP = True; Z∗(N) = Z∗(N, β); STOP reason=“opt. proved”

19 else
20 Increase β

21 else
22 STOP = True; STOP reason = “Full Fit”

23 Report results.

For the empirical work presented in §6, the algorithm of Amaral and Wright [1] is used to
generate cutting patterns. Although not explicitly reflected in the NS-algorithm, under-
estimates are computed and utilized in the developed program.

5.2 Establishing an optimal number of sheets

As an application and an extension to the NS-algorithm, Algorithm 2 as an order cutting
algorithm (OC-algorithm) was devised to establish the optimum (minimum) number of
sheets (or the number giving the minimum total waste area) needed to satisfy the given
2DSSSCSP. The OC-algorithm identifies the optimal number of sheets (N) by employing
the NS-algorithm in a structured manner for different N -values.

Define TA as the total area of the demand items. When the NS-algorithm is applied
to a N -sheet problem (with N ≥ 1) and the NS-2DSSSCSP is solved, a value T ∗A(N) is
obtained denoting the total area of the demand items accommodated on the N sheets plus
a residual waste of Z∗(N). It thus holds that NSA = T ∗A(N) + Z∗(N). If T ∗A(N) < TA it

86 T Steyn & JM Hattingh

holds that NSA < TA + Z∗(N) implying that the N -value is not optimal (too low) and
gives a lower bound on the optimal N . If T ∗A(N) = TA, it holds that NSA = TA + Z∗(N)
implying that the N -value is either optimal or too large. It gives an upper bound on the
optimal N and all the demand items are accommodated on the N sheets, giving a so-called
full-fit.

Some of the variables being used in the OC-algorithm to solve the 2DSSSCSP are explained
next:

MAXN is an upper bound on the optimal number of sheets needed giving a full-fit for
the 2DSSSCSP. The initial MAXN may be established by means of a heuristic
approach. The OC-algorithm strives to find the minimum MAXN .

MINN = LBN −1 where LBN is a lower bound on the optimal number of sheets needed
giving a full-fit for the 2DSSSCSP. The initial LBN may be computed based on a
theoretical approach, e.g. dTA/SAe. The OC-algorithm strives to find the maxi-
mum MINN and thus minimizes the area of the demand items not accommodated
on the ‘first’ MINN sheets. MINN < MAXN by definition.

The STOP-criterion is activated when MAXN = MINN+1. In this case MAXN will be the least
number of sheets needed to satisfy the 2DSSSCSP, giving a full-fit. If MINN is such that
for Z∗(MINN) the demand items not included in this solution do fit onto one additional
sheet, it gives the solution with the best utilization possible in terms of waste regarding
the first MINN sheets and thus maximizes the unused area on the last sheet.

The implementation of the OC-algorithm employs a binary search approach to establish
the optimal values for MAXN and MINN .

Algorithm 2: OC-algorithm: An order cutting algorithm

1 Input: The 2DSSSCSP and initial values for MAXN and MINN ,
2 N = d(MAXN + MINN)/2e
3 while MAXN > MINN + 1 do
4 Execute the NS-algorithm to establish Z∗(N)
5 if STOP reason = “Full Fit” then
6 MAXN = N

7 else
8 MINN = N

9 N = d(MAXN + MINN)/2e
10 Output: The optimal MAXN and MINN .

6 Empirical work

In this section results are given that empirically evaluate the performance of the algorithms
reported on in this paper. The data set used is a set of 12 problems (indicated by B1 to
B12) as defined by Beasley [2]. For each of these 12 problems a set of 10 stock sheet sizes is
available. Beasley considered the 2DMSSCSP type of problem and did empirical work on
these 12 problems. The research in this paper focuses on the 2DSSSCSP type of problem
and for experimental purposes each of these 12 problems is specified as a range of 10

An exact algorithm for the N -sheet two dimensional single stock-size cutting stock problem 87

2DSSSCSP’s by considering the set of demand items as specified for each of the stock sheet
sizes separately. The first 2DMSSCSP, B1, is thus associated with 10 2DSSSCSP’s named
B1 1, . . . , B1 10 and similarly for B2, B3, . . . , B12. Finally, the resulting 120 problems are
indicated by B1 1; . . . ;B1 10;B2 1; . . . ;B12 1; . . . ;B12 10. The code developed to test
the algorithms and approaches, were written in the programming language C# (Microsoft
Visual Studio 2008) and implemented on a HP Notebook computer with 2 Gb RAM and
a 2.40 GHz Intel R© coreTM2 Duo CPU.

6.1 System tested on the trim-loss problem

The first phase of the experimental work was to implement the algorithm of Amaral and
Wright [1]. A program was developed and tested [12] and compared to the results reported
by Amaral and Wright for the same data set. Table 1 compares the results for problem
B12 as a trim-loss problem from the test bed for the CSA and EWA algorithms as reported
by Amaral and Wright [1] and the TSA-algorithm as implemented for this research.

Time (sec) Total waste
Problem

CSA EWA TSA CSA EWA TSA

B12 1 0.032 0.068 0 1234 1234 1234
B12 2 0.031 0.207 0.03 1586 1586 1586
B12 3 0.048 0.428 0 2310 2310 1476
B12 4 0.047 0.287 0.02 1256 1256 1256
B12 5 0.048 0.338 0.01 1053 1053 1053
B12 6 0.071 1.149 0.02 1203 1203 1203
B12 7 0.104 2.514 0 571 571 571
B12 8 0.022 0.054 0 1041 1041 1041
B12 9 0.549 32.659 0.11 410 410 410
B12 10 0.1 3.264 0.03 203 203 203

Table 1: A comparison of the results by Amaral & Wright and this research.

Remarks:

• The time reported in Table 1 indicates only the time needed by the algorithms for
producing the optimal pattern. The performance of the TSA-algorithm in terms of
time seems to be good when compared to the time measurements as indicated by
Amaral and Wright.

• The waste generated by TSA for problem B12 3 for the optimal (trim-loss) pattern
differs from the waste as reported by Amaral and Wright. The waste of 1476 reported
by TSA corresponds with a legitimate pattern and it (TSA) also generated a pattern
with the same waste of 2310 (as its second best pattern). It is unclear why Amaral
and Wright did not find the optimal solution.

6.2 Feasibility of generating all cutting patterns

The next phase was to test the use of the TSA-algorithm on the whole set of 120 problems
to generate cutting patterns. For each problem the algorithm starts with β = 0.0 and

88 T Steyn & JM Hattingh

increases β with intervals of 0.01. The patterns generated are saved in a text file to be
used in later experimentation. Although generally a time limit of two hours is set to
generate the cutting patterns, extra time was allowed in some cases. Table 2 gives results
regarding each of the problems. The first row in each triplet (Beta) contains the maximum
value for β reached to generate cutting patterns within the allowable time; the second row
(Time) indicates the total time (in seconds) needed to generate patterns from β = 0.0
up to the reported β (when stopped) and the third row (#Patt) indicates the number
of patterns generated for the last β reported for the given problem. The TSA-algorithm
generated all patterns (up to β = 1.0) for 87 of the 120 problems in the time allowed.
From these 87 problems, 65 took less than 10 minutes. Only 5 of the remaining 22 took
more than an hour. There are thus 33 problems for which not all (up to β = 1.0) cutting
patterns could be generated in the time allowed.

6.3 Empirical work with the NS-algorithm

The main objective of the experiments here is to establish the feasibility of finding Z∗(N)
by solving the model SW (N, β) for a given NS-2DSSSCSP and thus implementing the NS-
algorithm. A procedure that calls CPLEX [10] in order to solve the model SW (N, β) was
developed in the programming language C# to determine Z∗(N) given the set of demand
items, the stock sheet dimensions and N. In solving a mixed integer program, CPLEX uses
a tolerance option, epgap, with a default value of 0.0 which specifies the stop criterion for
the relative tolerance on the gap between the objective of the best current feasible solution
and a lower bound for the optimal solution. This gap is traditionally called the integrality
gap. In cases where CPLEX cannot solve the model easily, it is necessary to manage this
gap specification. Therefore, the time limit option, tilim, that determines the amount of
time in seconds that CPLEX will devote to solve a problem, is set to 5 (i.e. 5 seconds).
Whenever CPLEX finds a feasible solution to SW (N, β), but cannot establish optimality
within the given time limit, epgap is increased by 0.001, and the process is repeated with
the new gap tolerance.

Table 3 illustrates and summarizes the results for the model SW (N = 387, β) and the
problem B12 3. The third column (Time for β) indicates the time taken by the TSA-
algorithm to generate the patterns for the β indicated.

The total time taken by the NS-algorithm to compute Z∗(N = 387) = 2360147 is 58.17
seconds and a β-value of 0.49 is sufficient to prove optimality. Similar experimentation
was performed for different values of N on all the problems in the problem set. See §6.4
for further demonstration.

6.4 Empirical work with the OC-algorithm

As an extension to the NS-algorithm, the OC-algorithm was devised and developed as
described in §5.2 to establish the optimal number of sheets to fulfill an order of demand
items using same size sheets. This was applied to problem B12 3 and the results are
shown in Table 4. The initial value (319) for MINN is computed theoretically by using the
total area of the demand items and the sheet size. The initial value (455) for MAXN is
computed by means of an available glass cutting program based on heuristic approaches.

An exact algorithm for the N -sheet two dimensional single stock-size cutting stock problem 89

B
1

B
2

B
3

B
4

B
5

B
6

B
7

B
8

B
9

B
1
0

B
1
1

B
1
2

B
et

a
1
.0

0
1
.0

0
1
.0

0
1
.0

0
1
.0

0
1
.0

0
1
.0

0
1
.0

0
1
.0

0
0
.7
5

1
.0

0
1
.0

0
T

im
e

4
0
.6

9
0
.4

2
4
0
3
.4

9
1
4
2

0
.3

8
2
.6

7
7
0
7
.4

8
5
2
0
6
.5

5
7
9
1
.6

6
1
3
3
.1
8

3
7
.4

3
1
.4

8
N

r1
#

P
a
tt

5
1
8

1
2
3

5
8
3
0

9
3
5

1
2
3

4
1
1

1
2
5
4

5
3
3
3

3
3
3
2

3
6
6
7

1
3
4
0

3
5
1

B
et

a
0
.3
5

0
.2
0

1
.0

0
1
.0

0
1
.0

0
0
.0
5

1
.0

0
0
.0
8

1
.0

0
1
.0

0
0
.3
4

1
.0

0
T

im
e

7
0
0
3
.8
8

7
0
8
0

3
1
6
4
.2

3
9
.4

3
1
3
.8

1
6
7
2
0

3
5
.6

9
1
0
0
8
0

5
2
6
4
.0

8
9
6

7
0
5
8
.9
6

1
6
6
.4

3
N

r2
#

P
a
tt

3
9
0
3

1
4
1
9
8

7
6
6
4

4
8
5

6
6
9

1
6
7
4
9

5
3
9

9
6
1
9

8
5
5
3

1
0
2
9

1
1
6
4
0

3
8
6
8

B
et

a
1
.0

0
0
.1
0

0
.1
0

1
.0

0
1
.0

0
1
.0

0
1
.0

0
0
.3
5

1
.0

0
1
.0

0
0
.6
0

1
.0

0
T

im
e

2
6
1
.3

2
1
2
6
6
0

5
0
4
0

2
1
5

1
0
6
5
.5

3
3
8
.5

7
7
8
5
.9

3
1
2
8
5
9
.6
8

6
3
0
.5

6
1
4
9

7
4
8
3
.4
9

3
.8

2
N

r3
#

P
a
tt

7
5
1

1
6
7
2
4

1
8
1
1
8

1
2
5
1

3
5
6
7

1
1
7
8

1
2
0
4

8
6
9
0

3
0
5
5

1
2
0
5

9
1
4
2

5
8
2

B
et

a
1
.0

0
0
.6
8

1
.0

0
0
.5
5

1
.0

0
1
.0

0
1
.0

0
1
.0

0
1
.0

0
1
.0

0
0
.3
9

1
.0

0
T

im
e

0
.1

9
6
8
6
5
.7
7

6
5
9
6
.3

9
6
2
2
0
.4
9

0
.2

9
7
6
6
.5

1
4
2
4

0
.5

7
3
9
.4

6
0
.6

4
6
9
1
2
.1
5

2
0
.7

7
N

r4
#

P
a
tt

2
8

8
8
0
4

1
0
7
8
7

4
1
4
5

8
0

3
4
6
1

1
1
1
4

1
0
3

1
4
9
3

1
1
5

1
1
3
0
0

8
9
7

B
et

a
1
.0

0
1
.0

0
1
.0

0
1
.0

0
1
.0

0
1
.0

0
1
.0

0
0
.7
0

1
.0

0
1
.0

0
1
.0

0
1
.0

0
T

im
e

6
6
.7

1
5
8
.4

9
4

1
5
.5

3
6
9
6
.2

6
4

2
7
8
6
.0

3
7
1
4
7
.3
4

4
1
9
9
.9

0
.5

6
3
0
.4

9
9
.5

5
N

r5
#

P
a
tt

5
0
7

1
2
1
8

2
0
4
8

3
8
8

3
0
0
3

1
3
9
2

2
2
1
1

4
8
7
2

4
5
4
5

1
1
2

1
0
2
0

8
2
6

B
et

a
1
.0

0
0
.4
6

1
.0

0
1
.0

0
0
.1
0

1
.0

0
1
.0

0
0
.2
0

0
.0
8

1
.0

0
1
.0

0
1
.0

0
T

im
e

6
5
4
.9

7
2
1
6
.0
3

1
7
3
5
.9

7
0
.2

6
5
8
2
0

3
4
0
.3

3
8
4
0

7
0
2
0

6
9
6
0

1
5
.1

4
1
1
6
5
.4

3
5
.7

8
N

r6
#

P
a
tt

1
2
6
9

1
1
4
5
5

5
4
5
2

7
7

1
6
9
9
8

3
2
9
5

1
2
9
5

1
0
8
7
6

1
2
5
2
6

3
7
6

3
0
2
2

1
4
8
4

B
et

a
1
.0

0
0
.1
5

0
.2
0

1
.0

0
0
.1
7

0
.0
8

1
.0

0
1
.0

0
0
.0
6

1
.0

0
1
.0

0
1
.0

0
T

im
e

1
.9

8
6
6
0
0

6
4
2
0

0
.1

4
7
6
2
0

5
1
0
0

1
3
5
5
.1

5
1
0
8

5
8
8
0

1
9
.6

7
2
4
8
5
.9

3
5
8
.5

2
N

r7
#

P
a
tt

1
3
8

1
8
1
9
3

1
8
6
3
6

3
9

1
7
7
9
3

1
5
6
3
7

1
7
3
8

1
0
9
8

8
1
0
2

4
3
0

4
1
5
9

3
4
9
7

B
et

a
1
.0

0
1
.0

0
0
.1
4

1
.0

0
0
.1
8

0
.2
3

1
.0

0
1
.0

0
0
.8
5

1
.0

0
1
.0

0
1
.0

0
T

im
e

4
.7

8
0
.5

7
0
2
0
.4
4

5
8
3
.4

8
6
1
2
0

6
8
1
3
.9
9

0
.4

3
4
3
9

7
3
7
8
.9
5

0
.1

7
1
6
0
2
.0

2
1
.1

3
N

r8
#

P
a
tt

2
0
7

1
3
1

1
8
3
1
5

1
8
1
9

1
6
4
3
7

1
7
8
6
7

7
6

1
7
0
9

7
9
8
1

2
5

3
1
2
0

3
0
9

B
et

a
1
.0

0
1
.0

0
1
.0

0
1
.0

0
0
.1
4

1
.0

0
1
.0

0
1
.0

0
1
.0

0
1
.0

0
1
.0

0
0
.0
9

T
im

e
0
.2

1
6
0

8
6

0
.1

9
1
0
3
2
0

0
.7

1
7
2

0
.6

3
1
.7

4
1
.0

2
5
2
.0

7
6
9
6
0

N
r9

#
P

a
tt

2
9

1
7
7
2

1
9
6
6

6
0

2
1
4
6
6

1
7
9

5
5
1

1
2
2

2
5
7

1
6
6

1
1
5
0

2
6
9
1
9

B
et

a
1
.0

0
1
.0

0
1
.0

0
1
.0

0
0
.9
0

1
.0

0
1
.0

0
1
.0

0
0
.5
5

1
.0

0
0
.6
6

0
.1
6

T
im

e
0
.2

5
3
2
1

2
2
6

0
.3

5
7
1
2
8
.1
2

7
8
2
7
.8

7
0
.2

3
1
.4

8
6
3
6
7
.3
2

0
.2

7
0
5
8
.3
5

9
2
4
0

N
r1

0
#

P
a
tt

4
0

2
4
6
4

2
2
8
3

8
9

8
0
9
1

7
5
4
3

6
0

2
0
2

1
1
3
4
9

5
4

7
9
4
0

9
3
1
1

T
a
b

le
2
:

A
su

m
m

a
ry

o
f

th
e

T
S

A
re

su
lt

s
fo

r
th

e
d

a
ta

se
t

fr
o
m

B
ea

sl
ey

[2
]

90 T Steyn & JM Hattingh

Beasley12 3 N = 387 Total time needed: 58.17 seconds

β # patterns Time for β Waste Comments

0.32 328 00:00.03 Infeasible Too few patterns; no feasible solution
0.33 348 00:00.03 2842119 Feasible solution; Need to increase β
0.34 361 00:00.03 2842119
0.35 375 00:00.03 2842119
0.36 391 00:00.03 2842119
0.37 412 00:00.03 2842119
0.38 424 00:00.03 2842119
0.39 437 00:00.04 2842119
0.4 454 00:00.04 2842119

0.41 470 00:00.04 2842119
0.42 480 00:00.04 2842119
0.43 494 00:00.04 2842119
0.44 501 00:00.04 2393159 Improved waste; Still need to increase β
0.45 513 00:00.04 2393159
0.46 522 00:00.04 2393159
0.47 528 00:00.04 2393159
0.48 533 00:00.04 2393159
0.49 541 00:00.04 2360147 Improved waste; Z∗(N) confirmed; STOP

Table 3: The NS-algorithm applied to problem B12 3 (with N = 387).

Table 4 summarizes the results comparable to those in Table 3 for each N value in the
order required by the OC-algorithm, thus sequentially from N = 387 to N = 439 when
the stop criterion is reached. In the first row (Result) an entry of “Optimal” means that
the NS-algorithm was able to prove utilization optimality for the N requested and an
entry of “F.Fit” means that a full-fit was established for the specific N value. In the
second and third rows (MINN and MAXN) the numbers indicate the values related to the
resulting lower and upper bounds respectively after the application of the NS-algorithm.
A minimum of 440 sheets are needed to fulfill the order of demand items. By inspecting
the cutting patterns associated with Z∗(N = 439), computations show that the remaining
demand items correspond to a feasible cutting pattern for one sheet. It can therefore be
concluded that by optimizing over N = 439 sheets, the area not utilized on the 440th sheet
is maximized. The fourth row in the table (Time) demonstrates the performance of the
process in terms of time needed to solve the problem. The maximum β-value required to
solve the problem is 0.51.

In order to further explore the wider applicability of the NS-algorithm and its extension,
the OC-algorithm was applied to all 120 problems in the problem set. Table 2 indicates
that for 33 of these problems the TSA-algorithm could not generate all the patterns up
to β = 1.0 within the time limit. These 33 problems were investigated further and can
be divided into two sets, i.e. a set of 12 problems with sufficient β-values (and patterns)
to prove optimality by means of the OC-algorithm and a set of 21 problems requiring
larger β-values (and patterns). Table 5 gives the results of the 12 problems. The sixth
column (TSA Max β) gives the largest β-value for which patterns were generated in the
allotted time. The seventh column (OC-alg Max β) gives the final β-value employed by
the OC-algorithm to prove optimality while the eighth column (Time for β sufficient) gives
the time needed by the TSA-algorithm to generate patterns up to the β-value sufficient

An exact algorithm for the N -sheet two dimensional single stock-size cutting stock problem 91

β N = 387 N = 421 N = 438 N = 447 N = 443 N = 441 N = 440 N = 439

Result Optimal Optimal Optimal F.Fit F.Fit F.Fit F.Fit Optimal
MINN 387 421 438 438 438 438 438 439
MAXN 455 455 455 447 443 441 440 440
Time 00:58.17 01:05.86 01:10.05 00:10.32 00:10.07 00:10.11 00:09.99 01:11.61
0.32 Infeasible Infeasible Infeasible Infeasible Infeasible Infeasible Infeasible Infeasible
0.33 2842119 Infeasible Infeasible Infeasible Infeasible Infeasible Infeasible Infeasible
0.34 2842119 Infeasible Infeasible Infeasible Infeasible Infeasible Infeasible Infeasible
0.35 2842119 Infeasible Infeasible Infeasible Infeasible Infeasible Infeasible Infeasible
0.36 2842119 Infeasible Infeasible Infeasible Infeasible Infeasible Infeasible Infeasible
0.37 2842119 Infeasible Infeasible Infeasible Infeasible Infeasible Infeasible Infeasible
0.38 2842119 Infeasible Infeasible Infeasible Infeasible Infeasible Infeasible Infeasible
0.39 2842119 Infeasible Infeasible Infeasible Infeasible Infeasible Infeasible Infeasible
0.4 2842119 Infeasible Infeasible Infeasible Infeasible Infeasible Infeasible Infeasible

0.41 2842119 Infeasible Infeasible Infeasible Infeasible Infeasible Infeasible Infeasible
0.42 2842119 Infeasible Infeasible Infeasible Infeasible Infeasible Infeasible Infeasible
0.43 2842119 Infeasible Infeasible Infeasible Infeasible Infeasible Infeasible Infeasible
0.44 2393159 3235135 3656123 3878999 3779943 3730415 3705651 3680887
0.45 2393159 3235135 3656123 3878999 3779943 3730415 3705651 3680887
0.46 2393159 3235135 3656123 3878999 3779943 3730415 3705651 3680887
0.47 2393159 3235135 3656123 3878999 3779943 3730415 3705651 3680887
0.48 2393159 3235135 3656123 3878999 3779943 3730415 3705651 3680887
0.49 2360147 2956417 3377405 3600281 3501225 3451697 3426933 3402169
0.5 2772481 2979269 3184481 3085425 3035897 3011133 2991787

0.51 2991787

Table 4: A summary of the results for the OC-algorithm applied to problem B12 3.

to prove optimality. The second last column (#N) indicates the number of times the
OC-algorithm called the NS-algorithm with a specified N . The last column (Time for
OC-algorithm) indicates the time needed for the OC-algorithm. Only problem B11 10
took more than 2 hours and the others took less than 1 hour each. It shows that even
for problems for which it is time consuming to generate cutting patterns, the “readily”
available patterns are often sufficient to prove optimality and in this case brings the total
of ‘solved’ problems to 99 out of the 120.

The set of 21 problems not solved to optimality by means of the OC-algorithm, was
analyzed further. The main objective was to get an indication as to “how far” one can get
with the readily available patterns. In order to do this, the NS-algorithm was employed in
a structured way with different values for N for each problem to establish the results as
reported in Table 6. The first and second columns (Initial LB and Initial UB) correspond to
the (initial) LB and (initial) MAXN respectively as discussed earlier. As another lower bound
the fifth column (Max N Opt) gives the maximum N for which optimality of utilization
is proved using the available patterns. The sixth column (Max β N Opt) indicates the
maximum β with associated patterns sufficient to prove optimality for the corresponding
Max β N Opt value. The fourth column (Min N F.Fit) indicates the minimum N for which
a full-fit is established by the NS-algorithm. For only two problems, B6 2 and B6 8, it
was not possible to establish a full-fit utilizing the available patterns. The seventh column
(% not utilized) gives the percentage of the area of demand items not included as part of
the Max N Opt sheets while the eighth column (N not placed) gives a theoretical lower
bound on the number of sheets still needed to cut these demand items. The last column
(%Gap) is calculated by ((Column 4 - Column 9)/ Column 4)×100. Column 9 (Final

92 T Steyn & JM Hattingh

Initial Initial Min Max TSA OC-alg Time for β Time for
Problem

MINN MAXN MAXN MINN Max β Max β sufficient
#N

OC-algorithm

B1 2 49 56 54 53 0.35 0.30 4091.63 3 1730.3
B2 4 133 152 147 146 0.68 0.36 1892.49 4 2168.9
B3 7 188 201 194 193 0.20 0.12 540.36 4 631.7
B4 4 51 55 54 53 0.55 0.16 87.98 2 479.1
B5 10 132 157 146 145 0.90 0.33 933.86 5 847.5
B8 5 142 186 176 175 0.70 0.41 2193.16 6 837
B9 8 230 310 301 300 0.85 0.45 2289.94 7 3223.5
B9 10 226 273 257 256 0.55 0.47 4713.04 6 1858.7
B10 1 52 68 61 60 0.75 0.38 1375.31 4 536.8
B11 3 123 133 128 127 0.60 0.26 1126.9 3 300.2
B11 4 119 131 130 129 0.39 0.29 3035.5 4 1333.9
B11 10 126 148 145 144 0.66 0.50 4120.73 5 7232

Table 5: The OC-algorithm applied to the set of 12 problems (with β < 1.0) not solved to

optimality.

LB), calculated by (Column 5 + Column 8), serves as a measure of success by utilizing
the available patterns. The gap seems to be useful since 16 of the problems have a gap
of 3.85% or less with 6 of these with a gap of even less than 1%. These results suggest
that the NS-algorithm may be valuable in heuristic search techniques like greedy search
approaches.

7 Conclusions

The TSA-algorithm based on the work of Amaral and Wright [1] is given to enable the em-
pirical research with efficient code. As a test bed, the problems as reported by Beasley [2]
were adapted to give a total of 120 2DSSSCSP’s. This implementation of the TSA-
algorithm enabled the generation of all possible cutting patterns for 87 of the 120 test
problems within the time allowed and is thus regarded as useful.

Table 3 illustrates the application of the NS-algorithm to solve the problem B12 3 exactly
for a specified number of N = 387 sheets. It took 58.17 seconds with a maximum β value
of 0.49 sufficient to prove optimality. Thus, in this case, the number of cutting patterns
generated could be limited. The NS-algorithm was extensively tested on all 120 problems
with a range of values specified for N according to the requirements of the OC-algorithm.
The OC-algorithm utilizes the NS-algorithm to solve the problem of finding the optimal
number of sheets for cutting the total order. Table 4 illustrates the OC-algorithm applied
to problem B12 3. The optimal number of sheets needed for this problem is N = 440 and
it is also established that the area not used on the last, i.e. the 440th sheet, is maximized.
The time needed for each specified N (the NS-algorithm) does not exceed 72 seconds
showing that the process is feasible for this problem. The lowest β value sufficient to solve
the problem to optimality is 0.51.

For 82.5% of the 120 test problems the application of the OC-algorithm results in the
optimal number of sheets (and cutting patterns) and in that sense demonstrates the gen-
eralization of the trim-loss problem for a single sheet to N sheets (without necessarily

An exact algorithm for the N -sheet two dimensional single stock-size cutting stock problem 93

Initial Initial Min N Max Max β % not N not Final
Problem

LB UB F.Fit N Opt N Opt utilized placed LB
% Gap

B2 2 108 125 117 101 0.2 10.43 12 113 3.42
B2 3 96 104 99 95 0.09 2.99 3 98 1.01
B2 6 120 138 134 128 0.41 2.26 3 131 2.24
B2 7 109 126 123 99 0.14 11.97 14 113 8.13
B3 3 163 176 168 159 0.1 4.47 8 167 0.6
B3 8 172 193 183 164 0.13 8.22 15 179 2.19
B5 6 96 111 101 87 0.09 11.03 11 98 2.97
B5 7 108 123 116 105 0.17 7.55 9 114 1.72
B5 8 110 121 118 116 0.17 0.8 1 117 0.85
B5 9 101 110 105 100 0.11 3.69 4 104 0.95
B6 2 140 159 − 95 0.05 − − − −
B6 7 161 174 167 146 0.08 11.6 19 165 1.2
B6 8 201 243 − 192 0.22 − − − −
B8 2 94 109 99 74 0.08 23.48 23 97 2.02
B8 3 128 179 170 114 0.31 23.16 30 144 15.29
B8 6 119 130 127 118 0.19 5.35 7 125 1.57
B9 6 167 181 173 163 0.08 4.96 9 172 0.58
B9 7 155 173 160 139 0.06 12.42 20 159 0.63
B11 2 116 133 130 114 0.34 9 11 125 3.85
B12 9 174 187 180 170 0.09 4.82 9 179 0.56
B12 10 188 221 213 143 0.15 27.94 53 196 7.98

Table 6: The NS-algorithm applied to the set of 21 problems (with β < 1.0) not solved to

optimality.

generating all possible cutting patterns). By utilizing the NS-algorithm directly for the
remaining 21 or 17.5% of the problems the gap between the computed lower and upper
bounds on N is less than 4% for 16 out of the 21 problems. The experience gained with
this set of data and the NS-/OC-algorithms suggest that practitioners may prefer to run
complex problems until an acceptable gap is obtained.

This research demonstrates that this type of approach may help to solve problems that
were considered intractable thus far. Giving attention to methods that employ the better
management and role of β during the generation of cutting patterns may prove to be
worthwhile to improve the efficiency. Less attention was given here to these aspects since
the main goal was to investigate the feasibility of the NS-algorithm. It may also be
worthwhile to extend these ideas to solution methods for the 2DMSSCSP.

8 Acknowledgements

The authors would like to thank the referees for their constructive comments and sugges-
tions.

References
[1] Amaral ARS & Wright M, 2001, Efficient algorithm for the constrained two-dimensional cutting

stock problem, International Transactions in Operational Research, 8(1), pp. 3–13.

94 T Steyn & JM Hattingh

[2] Beasley JE, 1985, An algorithm for the two-dimensional assortment problem, European Journal of
Operational Research, 19(2), pp. 253–261.

[3] Beasley JE, 1985, Algorithms for unconstrained two-dimensional guillotine cutting, Journal of the
Operational Research Society, 36(4), pp. 297–306.

[4] Christofides N & Whitlock C, 1977, An algorithm for two dimensional cutting problems, Opera-
tions Research, 25(1), pp. 30–44.

[5] Cintra CF, Miyazawa FK, Wakabayashi Y & Xavier EC, 2008, Algorithms for two-dimensional
cutting stock and strip packing problems using dynamic programming and column generation, Euro-
pean Journal of Operational Research, 191(1), pp. 61–85.

[6] Gilmore PC & Gomory RE, 1961, A linear programming approach to the cutting-stock problem,
Operations Research, 9(6), pp. 849–859.

[7] Gilmore PC & Gomory RE, 1963, A linear programming approach to the cutting-stock problem
Part II, Operations Research, 11(6), pp. 863–888.

[8] Gilmore PC & Gomory RE, 1965, Multistage cutting stock problems of two and more dimensions,
Operations Research, 13(1), pp. 94–120.

[9] Herz JC, 1972, A recursive computational procedure for two-dimensional stock-cutting, IBM Journal
of Research and Development, 16(5), pp. 462–469.

[10] IBM ILOG CPLEX V12.1, User’s Manual for CPLEX, 2009, Available at: ftp://public.dhe.ibm.
com/software/websphere/ilog/docs/optimization/cplex/ps_usrmancplex.pdf.

[11] Oliveira JE & Ferreira JS, 1990, An improved version of Wang’s algorithm for two-dimensional
cutting problems, European Journal of Operational Research, 44(2), pp. 256–266.

[12] Steyn T & Hattingh JM, 2011, Notes and experiments with Amaral’s algorithm for generating
cutting patterns, (Unpublished) Technical report: Research Unit for BMI, Potchefstroom Campus,
North West University, FABWI-N-RKW: 2011-271. (2011-02-08).

[13] Vasko FJ, 1989, A computational improvement to Wang’s two-dimensional cutting stock algorithm,
Computers and Industrial Engineering, 16(1), pp. 109–115.

[14] Vasko FJ & Bartkowski CL, 2009, Using Wang’s two-dimensional cutting stock algorithm to solve
difficult problems, International Transactions in Operational Research, 16(6), pp. 829–838.

[15] Wang PY, 1983, Two algorithms for constrained two dimensional cutting stock problems, Operational
Researchs, 31(3), pp. 573–586.

[16] Wäscher G, Haußner H & Schumann H, 2007, An improved typology of cutting and packing
problems, European Journal of Operational Research, 183(3), pp. 1109–1130.

ftp://public.dhe.ibm.com/software/websphere/ilog/docs/optimization/cplex/ps_usrmancplex.pdf
ftp://public.dhe.ibm.com/software/websphere/ilog/docs/optimization/cplex/ps_usrmancplex.pdf

