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Abstract

In this paper a comparison of classical metaheuristic techniques over different sizes of petro-
chemical blending problems is presented. Three problems are taken from the literature and
used for initial comparisons and parameter setting. A fourth instance of real world size is
then introduced and the best performing algorithm of each type is then applied to it. Ran-
dom search techniques, such as blind random search and local random search, deliver fair
results for the smaller instances. Within the class of genetic algorithms the best results for
all three problems were obtained using ranked fitness assignment with tournament selection.
Good results are also obtained by means of continuous tabu search approaches. A simulated
annealing approach also yielded fair results. Comparisons of the results for the different
approaches shows that the tabu search technique delivers the best results with respect to
solution quality and execution time for all of the three smaller problems under consideration.
However, simulated annealing delivers the best result with respect to solution quality and
execution time for the introduced real world size problem.

Key words: Petrochemical blending problems, random search, genetic algorithm, continuous tabu

search, simulated annealing.

1 Introduction

In blending problems the aim is to determine the best blend of available ingredients to
form a certain quantity of a product under strict specifications. The best blend means the
least-cost blend of inputs required to meet a designated level of output or given specifica-
tions. Blending problems are especially important in process industries such as petroleum,
chemical and food. The decision maker must determine the ingredients to use as well as
the quantities thereof.

∗Department of Logistics, University of Stellenbosch, South Africa
†Corresponding author: Department of Logistics, University of Stellenbosch, South Africa, email:

svisagie@sun.ac.za

http://dx.doi.org/10.5784/32-2-520

79

http://orion.journals.ac.za
 svisagie@sun.ac.za
http://dx.doi.org/10.5784/32-2-520


80 L Venter & SE Visagie

In general there are an infinite number of blending recipes which will make a product,
but there is usually only one set of feedstock, operating conditions, component yields,
qualities and blending recipes that satisfies the inventory constraints and meets all product
specifications at the highest economic value. The aim with blend planning methods is
to find optimal operating conditions and to identify feasible and optimal blend recipes.
Maximum profit is realized by the planning and implementation of optimal operating
conditions and through implementation of optimal blending strategies.

In refinery and petrochemical processing problems it is generally necessary to model prod-
uct flows in addition to the properties of the components. When components are combined,
nonlinear relationships are often introduced. This results in a problem where the qualities
of the components contribute to the qualities of the products in a nonlinear and nonconvex
manner. Although successive linear programming techniques [3] and approximation pro-
gramming [18] may be used to address this problem, simulation and spreadsheets are often
used in industry [12]. On the other hand, metaheuristics are useful alternative methods
to search for alternative efficient recipes.

The objective of this study is to present a comparison of the performance of the different
types of classical metaheuristics when applied to typical petrochemical blending problems.
To the best of the authors’ knowledge, there exists no application or comparison of any
metaheuristic approaches to petrochemical blending problems in the academic literature.
The comparison of these metaheuristics was chosen because a petrochemical company
wanted to know how classical metaheuristic approaches compare with each other and
their current methods. Unfortunately, the company is unwilling to disclose the working
or performance of their current method.

The remainder of the paper is structured as follows. The three sample problems from
literature are discussed in §2. In the following four sections, random search algorithms (§3),
genetic algorithms (§4), tabu search algorithms (§5) and simulated annealing algorithms
(§6) are introduced, and their respective solution results presented and discussed. A
summary of the main results is supplied in §7. A new real world size instance is presented
in §8. The best performing metaheuristics from the previous sections are then applied to
this instance and the results discussed. The paper is concluded in §9.

2 Sample problems

Three known instances were used for the development, testing and comparison of the
metaheuristic approaches. For fitness comparison purposes, all three the small instances
were modelled and solved to optimality [26].

2.1 The simplified sample problem

The first problem is the simplified sample problem (SSP) that was introduced by KBC Con-
sultants. It considers two petrol blends, namely ULP 93 (Summer Grade), also known as
M3S (a 93 octane unleaded grade), and ULP 95 (Summer Grade), also known as M5S (a 95
octane unleaded grade). The blends are comprised of five components: butane (BUT), C5
raffinate (GP1), unhydrogenated catalytic polypropolene petrol (GP4), platformate (PTF)
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and tertiary amyl methyl ether (TAME). These components should be blended in such a
way as to satisfy octane rating, vapor pressure and TAME specifications.

Generally octane blending may be a nonlinear problem, but it is assumed in this problem
that octane blends linearly by volume: The sum product of the Research Octane Number
(RON) and volume of all the five components in a particular petrol grade is equal to the
product of the final volume and RON of the petrol grade. A property that does not blend
linearly on volume may be converted to an index which does blend linearly. Reid vapor
pressure (RVP) does not blend linearly on volume. Therefore, it needs to be converted
into a Reid Vapor Index (RVI) where RVI = RVP1.25. TAME is high in octane and low
in RVP, which are very good qualities for an additive. However, the high price of TAME
restricts addition to a maximum of 15.5% in both petrol grades.

The properties of each of the five components and two products may be sourced from
Venter & Visagie [27]. Each of the components (except butane) is subject to inventory
constraints which limit the physical amount of component that may be stored. These
amounts are influenced by the run down rates. Run down rates refer to the replenishment
amounts of each component for each day as the components are extracted from crude oils
and coal. The goal is to determine an optimal blend recipe that satisfies the inventory
and blend specification constraints. A schematic representation of the SSP is supplied in
Figure 1.
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Figure 1: A schematic representation of the SSP.

2.2 The Haverly pooling problem

The Haverly pooling problem (HPP) is similar to the SSP and is presented in Haverly [7]. It
considers two types of final products, simply labelled prodX and prodY. These products
are formed when 3 components (compA, compB and compC) are combined, but what
differentiates the pooling problem from the SSP, is a so-called pooling link. It may exist
physically because there is only one tank to store compA and compB in or it may exist
because compA and compB must be mixed and transported as a mixture via, for example,
a pipeline.

The specifications for the component and product characteristics may be sourced from Ven-
ter & Visagie [27]. From the given information, the goal is to determine an optimal blend
schedule that satisfies the blend specification constraints so that profit is maximized. A
schematic representation of the HPP is given in Figure 2.
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Figure 2: A schematic representation of the HPP.

2.3 The Marco mini-refinery problem

The Marco mini-refinery problem (MMRP) [4] is a generalisation of the SSP discussed
in §2.1. It considers five types of final products: Premium grade petrol blends, regular
grade petrol blends, distillate, fuel gas and fuel oil. The blends are comprised of eleven
components, which are obtained from two crude oils (Mid-continent crude and Texas
crude). These components are butane (BUT) fuel gas, straight run gasoline (sr-gas),
straight run naphta (sr-naphta), reformed gasoline (rf-gas), straight run distillate (sr-dist),
cracked gasoline (cc-gas), cracked gas oil (cc-gas-oil), straight run gas oil (sr-gas-oil),
straight residuum (sr-res) and hydrotreated residuum (hydro-res).

A maximum of 200 barrels of each type of crude may be purchased each day at a cost
of US$60.00 per barrel for both Mid-continent crude and Texas crude. The standard oil
barrel of 42 US gallons or 159` is used in the United States as a measure of crude oil
and other petroleum products. One standard oil barrel is equal to approximately 1.2 m3.
General attributes for the applicable components to be blended may be sourced from
Venter & Visagie [27].

The components are obtained through various chemical processes. Five processes play
a role in this problem: Atmospheric distillation, naptha reforming, catalytic cracking of
distillates, catalytic cracking of gas oil and the hydrotreating of residuum. Butane is a do-
mestic product and is manufactured rather than obtained from crudes. All crudes initially
pass through atmospheric distillation. Therefore all components not obtained through
this process must be obtained by running the intermediate streams through the other pro-
cesses. No new crude is entered into the system to obtain these components. Therefore,
the intermediate stream becomes less by one unit for each unit that is run through any of
the other processes. Specific attributes and values for the processes, components, crudes
and products may be sourced from Venter & Visagie [27]. The objective is to maximise
the profit subject to all the above constraints. A schematic representation of the MMRP
is given in Figure 3.

3 Random search techniques

Random search is a simple search technique which sample candidate solutions around the
current solution. Usually candidate solutions are sampled from a hypersphere centred
around the current solution.
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Figure 3: A schematic representation of the MMRP.

3.1 Blind random search

Blind random search (BRS) is the simplest random search method because the choice of
candidate solution does not take into account any characteristics of previously considered
solutions. That is, the blind search approach does not adapt the current sampling strategy
to information that has been gathered in the search process. The approach may be im-
plemented in non-recursive form simply by laying down a number of points in the search
space and taking the value of the solution yielding the best objective function value as an
estimate of an optimum. The approach can also be implemented in recursive form. Algo-
rithm 1 gives a pseudocode listing of the BRS as presented by Spall [23]. Spall [23] shows
that this algorithm converges almost surely to a near optimum solution under very general
conditions and when the solution configuration is low dimensional, but that the method is
generally a very slow algorithm for even moderately dimensioned solution configurations.

Algorithm 1: Blind random search

Input: An initial solution x0 chosen randomly or deterministically from the search space S. Random
initial solutions are obtained according to a probability distribution function.
Output: An approximation of a global optimum solution.

1: Set k = 0 and calculate the objective function value f(xk).
2: Generate a new candidate solution x̂k+1 from the search space according to the

chosen probability distribution.
3: if f(x̂k+1) > f(xk) then
4: xk+1 = x̂k+1

5: else
6: xk+1 = xk
7: end if
8: k = k + 1
9: Go to step 2 and repeat the algorithm until the stopping criterion is reached.
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3.2 Local random search

Methods of local search received attention in both theoretical computer science and nu-
merical optimisation. Johnson et al. [10] observed that one of the few general approaches
to difficult combinatorial optimisation problems that has achieved empirical success is local
(or neighbourhood) search. For example, local search methods have proven very successful
for the celebrated travelling salesperson problem [9].

Solis & Wets [22] propose several local random search methods for performing local search
on smooth functions without derivative information. Their so-called “Algorithm 1” uses
normally distributed steps to generate new solutions in the search space. A new solution is
generated by adding zero mean normal variates to every dimension of the current solution.
A different value for each dimension is chosen at random from a normal distribution so
that the new solution resembles the current one, but it does not match it exactly. The
algorithm then examines the solution generated by taking a step in the opposite direction
from the new direction. If neither solution is better than the current solution, another new
solution is generated. This algorithm depends upon parameters that automatically reduce
and increase the variance of the normal deviates in response to the rate at which better
solutions are found. If new solutions are better more often, the variance is increased to
allow the algorithm to take larger steps. If poorer solutions are frequently generated, the
variance is decreased to focus the search near the current solution.

Parks [19] suggests that a vector of zero mean normal variates, dk, be added to the k-th
solution, and that it should be generated according to

dk+1
i = dki + Dk$, (1)

where $ is a vector of uniform random numbers in the range (−1, 1) and Dk is a diagonal
matrix which defines the maximum change allowed in each variable. After a successful
trial (i.e. after an accepted change in the solution) Dk is updated, such that

Dk+1 = (1− α)Dk + αωΥk, (2)

where Υk is a diagonal matrix. The elements of Υk consist of the magnitudes of the
successful changes made to each control variable, i.e.

Υk
ii = ‖Dk

ii$i‖, (3)

where Dk
ii is the element in the i-th row and i-th column of D during the k-th iteration

and Υk
ii carries the same meaning for Υ. The damping constant α controls the rate at

which information from Υ is folded into Di+1 with weighting ω. This tunes the maximum
step size associated with each control variable towards a value giving acceptable changes.
Parks concludes that suitable values of α and ω are 0.1 and 2.1 respectively.

Algorithm 2 gives a pseudocode listing of a local random search algorithm as presented
by Matyas [16].

3.3 Computational results

Throughout the paper, computational results were obtained from code written in
Python 2.5 [25] executed on an Intel Core2 Duo processor running at 3.00Ghz with 2GB of
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Algorithm 2: Local random search

Input: An initial solution x0 chosen randomly or deterministically from the search space S. Random
initial solutions are obtained by using the normal distribution. Also take as input a probability
distribution for generating a vector dk that has mean zero and a variance for each component of the
solution consistent with the magnitudes of the each of the corresponding elements.
Output: An approximation of a global optimum solution.

1: Set k = 0 and calculate the objective function value f(xk).
2: Generate an independent random vector dk and add it to the current solution xk to obtain a

candidate solution x̂k+1.
3: If x̂k+1 is not in the search space, generate a new dk and repeat step 2 or, alternatively, choose the

nearest valid solution to x̂k+1.
4: if f(x̂k+1) > f(xk) then
5: xk+1 = x̂k+1

6: else
7: xk+1 = xk
8: end if
9: k = k + 1

10: Go to step 2 and repeat the algorithm until the stopping criterion is reached.

RAM. Unless stated otherwise, all random numbers are generated according to Python’s
standard random number generator using a uniform distribution.

The standard deviation of results was given throughout to indicate the size of the variance
between individual runs which made up the average results. Throughout, the number of
execution runs was determined by means of the half-width confidence interval oulined in
Pegden et al. [20] with a pilot number of 10 runs and desired confidence level of 90%. The
number of 10 was a rule of thumb, but the t-distribution on which the half-width confidence
interval method was based was useful for observations less than 30. The use of 10 runs
compromised between execution time and the requirements of statistical procedures. If
the observations were not normally distributed, the results for the confidence interval held
for 10 replications or more [20]. A confidence level of 90% was obtained by calculating
the average objective function values for the BRS after 9, 8 335 and 4 046 algorithm runs
for the SSP, HPP and MMRP, respectively. The same confidence level was obtained by
calculating the average objective function values for the LRS after 102, 1 025 and 10 065
algorithm runs for the SSP, HPP and MMRP, respectively.

The results for the BRS algorithm and the LRS algorithm as applied to the SSP are shown
in Figure 4(a). Because the LRS algorithm was computationally less expensive (having
only to manipulate a currently feasible solution) than the BRS algorithm (continuously
having to find new feasible solutions from the search space), it was possible to have ap-
proximately 500 iterations of the LRS execute in the same time as only 100 iterations
of the BRS. To make the results comparable, however, the stopping criterion for both
algorithms were set at 100 iterations. The comparison of the respective performances of
the two approaches are shown in Figure 4(a). Despite the much quicker execution time of
the LRS, the BRS was preferred because of the better average result it achieved. Table 1
contains a summary of the results obtained after application of the RS approaches for the
SSP.

The results for the BRS algorithm and the LRS algorithm are shown in Figure 4(b). The
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results did not imply that one technique was better than the other by a large margin,
yet the BRS technique was preferred due to the better average result it achieved as well
as its shorter execution time. Table 1 contains a summary of the results obtained after
application of the RS approaches for the HPP.

The results for the BRS algorithm and the LRS algorithm are shown in Figure 4(c). Even
though the LRS technique was preferred for the MMRP when one looks at the execution
time, on average it produced a weaker solution than the BRS technique. This is because
the specific combination of constraints for the problem made it easier to find a feasible
solution by generating random recipe matrices than finding a feasible solution by adjusting
existing recipes. Table 1 contains a summary of the results obtained after application of
the RS approaches for the MMRP.
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(a) Results for the SSP.
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(b) Results for the HPP.
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(c) Results for the MMRP.

Figure 4: The average objective function values obtained by means of BRS and LRS for the SSP,

HPP and MMRP. The units are in thousands of South African rands (kR) and tens of US$ (D$).

[Figure can be viewed in colour in the electronic version, available at http://orion.journals.

ac.za .]

SSP (kR) HPP (kR) MMRP (D$)
Result BRS LRS BRS LRS BRS LRS

Best objective function value 15.01 17.26 364.33 310.78 413.50 383.65
Average objective function value 13.95 13.11 294.98 283.57 379.48 338.85
Standard deviation 0.89 2.91 23.29 25.78 15.43 24.27

Average execution time (sec) 75.27 0.59 0.02 0.11 159.23 2.94

Table 1: Results summary for the random search techniques for the SSP, HPP and MMRP.

The units are in thousands of South African rands (kR) and tens of US$ (D$).

4 Genetic algorithm approaches

Genetic algorithms (GAs) are a particular class of evolutionary algorithms that use tech-
niques inspired by evolutionary biology, such as inheritance, mutation, selection and re-
combination.

http://orion.journals.ac.za
http://orion.journals.ac.za
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4.1 Genetic algorithms for blending problems

Toklu [24] formulates an aggregate-blending problem as a multi-objective optimization
problem and solves it by means of GAs. Toklu shows that all existing formulations of an
aggregate-blending problem can be covered and solved by means of this technique. It is
shown to be quite versatile when applied to multiple objectives, including cost minimi-
sation and approaching a given target curve. A pseudocode listing for a standard GA
formulation is provided in Algorithm 3.

Algorithm 3: Standard Genetic Algorithm

Input: A combinatorial optimization problem specification including a domain set for each decision
variable. An initial configuration x1, a population size N , a probability of crossover pc, and a
probability mutation pm. A genetic code formulation with a function mapping code substrings to a
decision variable values. An objective function f(·) to determine individual fitness.
Output: A converged population of solutions containing an approximation of a globally optimal
solution to the combinatorial optimization problem.

1: Randomly generate an initial population of N solutions.
2: Calculate the fitness of each individual solution by means of the objective function.
3: Generate a new population using the crossover and mutation operators, applied with probability pc

and pm respectively. Individuals with higher fitness must have a higher probability of reproducing.
4: Calculate the fitness of the new solutions.
5: Repeat steps 3 to 5 until a termination condition is reached.

The solutions are treated as genomes consisting of various chromosomes because the solu-
tion structure for the three problems consist of multiple submatrices. In classical genetics,
the genome of an organism refers to a full set of chromosomes or genes in an organism.
Each chromosome is formed by genes. For example, gene (i, d) in the first chromosome
of the SSP solution structure represents the amount of blend i that is manufactured on
day d and gene (j, i) on the second chromosome represents the proportion or fraction of
component j used to form the blend i. The solution structure for the HPP and MMRP is
handled similarly.

To compare and evaluate the fitness values of chromosomes, a proper measure has to be
defined. For the blending problem, the objective is to maximise the economic profit by
maximising the product revenue while minimising the costs. Two common fitness assign-
ment methods in genetic algorithms are proportional fitness assignment and rank-base
fitness assignment. Before the genetic operators of the algorithm can be applied for the
calculation of the new generation, so called “parent” genomes must be selected. This is
done by means of fitness proportionate selection (also known as roulette-wheel selection).
The roulette-wheel selection algorithm provides a zero bias but does not guarantee mini-
mum spread [1]. Tournament selection, as recommended by Goldberg & Deb [5], was also
implemented and tested.

The recombination and mutation operators modify the chromosome containing the daily
blend production amounts only. The recombination operator is a combination of discrete
recombination and single-point crossover. Discrete recombination performs an exchange of
variable values between the individuals. For each position the parent who contributes its
variable to the offspring is chosen randomly with an equal probability [17]. In single-point
crossover, one crossover position is selected uniformly at random from all the possible
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points in the genome’s make up, and the variables are exchanged between the individuals
about this point, so that two new offspring are produced.

Mutation occurs by means of a repair operator, as it generates the chromosome so that the
total of the day’s blend production is produced by the blend earning the highest revenue
only. This method does not lose the feasibility of the solution, as it does not require a
blend with daily production amounts higher than those set by the inventory constraints.

4.2 Computational results

The methods used for fitness assignment and selection in all the genetic algorithms are
presented in Table 2. GA1 to GA4 were applied to the SSP, GA5 to GA8 were applied to
the HPP, while GA9 to GA12 were applied to the MMRP. The results summary for all the
GA approaches applied to the three problems is shown in Table 3. The following parameter
settings were used for all the GA approaches as they achieved the best results. The
population size and the number of generations, were set to 100 (i.e., the stopping criterion
was set at 100 generations). The elitism proportion was set to 0.1 of the population size,
the recombination probability was set to 0.6 and the mutation probability was set to 0.1.

Fitness assignment Selection method
Propor- Ranked Roulette Tournament
tional wheel

GA1 & GA5 & GA9 x x
GA2 & GA6 & GA10 x x
GA3 & GA7 & GA11 x x
GA4 & GA8 & GA12 x x

Table 2: Combination of fitness assignment and selection methods use in GA1 to GA12 for the

SSP, HPP and MMRP.

For the SSP, the results in Figure 5(a) show that the problem was best solved when using
tournament selection and ranked assignment. This was in accordance with what was
expected from literature. The same best result was obtained by GA1 to GA4 during all the
algorithms runs. The average execution times of GA1 to GA4 did not differ significantly,
but GA4 was found to have a notably quicker execution time than GA3 without delivering
an average result that was much poorer than that of GA3.

For the HPP, the results in Figure 5(b) show that the problem is best solved when us-
ing tournament selection and proportional fitness assignment. GA5 and GA8 achieved
approximately the same best result during all algorithm runs. The implementation of
roulette wheel selection caused GA5 and GA6 to have the longest average execution time
while GA7 and GA8 added short execution time results to their already favourable best
and average solution quality results.

For the MMRP, the results in Figure 5(c) show that the problem is best solved when using
tournament selection and proportional fitness assignment. GA12 achieved a best solution
that was closest to the known optimal for the MMRP. The use of tournament selection
had the greatest positive effect on the performanance of the GA approaches. The best
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performing approach, (i.e. GA12) had a fair average execution time associated with it,
while GA10 had a good average execution time associated with it without delivering an
average result that was much poorer than that of GA12.
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Figure 5: Average fitness results of GA1 to GA8 obtained for the SSP, HPP and MMRP. The

units are in thousands of South African rands (kR) and tens of US$ (D$). [Figure can be viewed

in colour in the electronic version, available at http://orion.journals.ac.za .]

Algorithm Best Average Standard Average Number
fitness fitness deviation execution of runs

time (sec)

GA1 18.52 16.91 0.38 60.14 7
GA2 18.52 17.34 0.71 68.05 9
GA3 18.52 17.51 0.52 69.75 8S

S
P

(k
R

)

GA4 18.52 17.38 0.56 61.59 7

GA5 390.64 343.48 30.71 0.81 4325
GA6 391.62 356.28 16.26 0.91 1195
GA7 390.63 373.85 7.48 0.32 325H

P
P

(k
R

)

GA8 398.54 386.77 6.80 0.30 905

GA9 409.30 392.75 10.01 176.36 4845
GA10 411.45 389.17 17.39 167.70 2660
GA11 411.85 400.77 11.93 185.27 766

M
M

R
P

(D
$
)

GA12 413.45 403.91 9.17 171.73 1015

Table 3: Results obtained after execution of GA1 to GA12, respectively for the SSP, HPP and

MMRP as well as the number of algorithm runs required to obtain a confidence interval of 90%.

The units for the fitness are in thousands of South African rands (kR) for SSP and HHPP, and in

tens of US$ (D$) for the MMRP.

5 Tabu search approaches

Tabu search (TS) is a metaheuristic optimisation method belonging to the class of local
search techniques. Tabu search enhances the performance of a local search method by
using memory structures: Once a potential solution has been determined, it is marked

http://orion.journals.ac.za
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as “taboo” so that the algorithm does not visit that possibility repeatedly or converge
to a local optimum. Relatively little attention has been paid to apply TS algorithms to
continuous optimisation problems such as the problem considered here. Two approaches
of the TS algorithm for continuous problems are presented.

5.1 The hypersquare method

The work of Wang et al. [28] provides a TS algorithm for continuous problems. Their
approach will be referred to as the hypersquare method for the continuous tabu search
(CTSh). An aspiration level is added to a strategy similar to the neighbourhood space
partitioning using concentric hyperrectangles used in Chelouah & Siarry [2]. The neigh-
bourhood of the current solution is generated by not only randomly selecting a point
inside each concentric hyperrectangle, but also selecting certain points randomly inside
the central hyperrectangle, which is inhibited in all previous studies. They find that the
extra selection inside the central hyperrectangle can improve the performance of the TS
algorithm.

To define the neighbourhood of the current solution X, the notion of a hyperrectangle is
used. In all the problems considered here a solution X is a J × I matrix containing the
blend recipe of components to products. The element xji of X contains the amount (in
m3) of component j blended into product i. Let L and U be the matrices containing the
lower and upper bounds on the blend recipe. Define the hyperrectange H(X,H), centred
around a solution X, with radius H to be

H(X,H) = {X ′
∣∣ |x′ji − xji| < hji, lji < x′ji < uji}. (4)

The set of concentric hyperrectangles may then be defined as

Hz(X,H(z−1),Hz) = {X ′
∣∣h(z−1)ji ≤ |x′ji − xji| < hzji, lji < x′ji < uji}, (5)

for z = 1, 2, . . . , zτ , and

H0(X,H0) = {X ′
∣∣|x′ji − cji| < h0ji, lji < c′ji < uji}, (6)

where the radius H0 is an independent parameter. Figure 6 contains a partitioning of a
solution space for zτ = 3.

H2(X,H1,H2)

H0(X,H0)

H1(X,H0,H1)

H3(X,H2,H3)

X

X ′1

X ′2

X ′3

Figure 6: An example of the partitioning of a solution space in two dimensions with zτ = 3.
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Neighbours of X are obtained by randomly (using a uniform distribution) selecting a
point inside each hyperrectangle Hzτ , for z = 1, . . . , zτ and the intensification strategy is
conducted by selecting some extra points as neighbours of X inside the hyperrectangle
H0.

The tabu list contains all the visited solutions together with the objective function values
during the last t iterations (where t is the tabu tenure). In the discrete case, the tabu
mechanism relies on an equality test on the configurations. This cannot transpose to
interval domains, where two intervals have a near to zero chance to be equal. A tabu
configuration must forbid the search not only at a point, but in an area around it. To
check if a solution X is tabu, two tabu conditions are applied. The first condition is
applied to the objective function, while the second considers the solution itself. The first
condition predetermine the applicability of the second one. The first condition determines
whether f(X) is within a certain tolerance of any objective function value in the tabu list.
If f(X) is within this tolerance, the second condition is applied, else it is not tabu. The
second check is done for all the xij of X and xbij of Xb. If all values in xij are within a
specified tolerance of x′ij , solution X is considered to be tabu.

The aspiration level is to compare the objective function value f(X) with f(X∗) directly,
where f(X∗) is the best solution found. If f(X) > f(X∗), the aspiration level is satisfied.
A pseudocode listing for the CTSh appears in Algorithm 4.

Algorithm 4: Hypersquare algorithm (CTSh)

Input: An initial solution X0 ∈ S (the search space) as well as its objective function value f(X0).
Output: An approximation of a global optimum solution.

1: Initialise the current solution X ←X0 and initialise the best solution X∗ ←X0 with
f(X∗)← f(X).

2: Generate a neighbourhood N (X). Initialize test variable found ← false and initialize index k ← 1.
3: while found = false do
4: Set X ′ to the k-th best solution in N (X).
5: if f(X′) > f(X∗) then
6: Accept X ′ as the new current solution. Enter X ′ as well as f(X ′) into the tabu list. Update

X∗ and f(X∗).
7: else
8: if X ′ is not tabu then
9: Accept X ′ the new current solution, even if f(X ′) < f(X) and enter it into the tabu list

together with f(X ′).
10: found = true.
11: else
12: k = k + 1
13: end if
14: end if
15: end while
16: Repeat steps 2 to 15 until there is no improvement in f(X∗) after m iterations. Return X∗

5.2 The immediate zone method

Hajji et al. [6] propose a TS method based on the work of Hu [8]. The algorithm presented
here is based on their approach and is refered to as the immediate zone method for the
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continuous tabu search (CTSz). It uses a tabu list that contains points in the solution
space, and a prohibited zone around each or these points that depends on the value of its
objective function value. This prohibited zone decreases in size as the number of iterations
increases. Alternation of intensification and diversification phases allows the finding of the
global optimum with a good accuracy.

It is assumed that no information on the location of an optimum is available at the first
iteration. Thus the initial solutions in the neighbourhood space are generated in the
whole search space using a uniform distribution. For the next iterations, solutions are
generated using the normal distribution [8]. Let the solution X be a matrix with elements
xji, containing the blend recipe — i.e. the amount (in m3) of component j blended into
product i. The probability density is defined as

p(xji) =
1

σji
√

2π
exp

(
−

(xji − x∗ji)2

2σ2ji

)
for i = 1, 2, . . . I, j = 1, 2, . . . J, (7)

where σji is the standard deviation, and X∗ is the matrix containing the blend recipes of
the best solution in the search space at the previous iteration. All candidate solutions X ′

are generated around the best solution C∗ using a random number, r, given by uniform
distribution and the function of P (x) such that

x′ji = c∗ji + σjiP
−1(r), for i = 1, 2, . . . I, j = 1, 2, . . . J, (8)

with

P (x) =

∫ x

−∞
p(u) du, for 0 ≤ r ≤ 1. (9)

The tabu list contains all tabu regions. These regions are hyperrectangles that are defined
by their centers and sizes. Every solution generated has a tabu region associated with it.
Its center is the solution it is associated with. It is assumed that the probability to find the
global optimum near good points are higher than near bad points. The side lengths of the
hyperrectangles must therefore depend on the value of the objective function. It is assumed
that the sum of tabu regions is roughly the same whatever the iteration. This means that
the side lengths of a hyperrectangle at the gth iteration Lji(X

′, g) are computed as

Lji(X
′, g) =

xuji − xlji
λ

f(X ′)

f(X∗g−1)

2
n
√
g

for i = 1, 2, . . . I, j = 1, 2, . . . J (10)

where X ′ is the center of the hyperrectangle, n− I · J , g is the number of iterations, Xu

and X l are the respective upper and lower bounds of X ′, λ is a constant and f(X∗g−1)
is the objective function value of the best solution from the previous iteration. During
each iteration the tabu list and side lengths are updated. Tabu regions are not removed
from the tabu list, but the tabu region size decreases with an increase in the number of
iterations. The process is illustrated in Figure 7.

Again, intensification and diversification techniques are applied to improve the effective-
ness of the TS. Algorithm 5 begins with intensification. It is assumed that better solutions
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X ′1

X ′2

g = 1

X ′1

X ′2

X ′3

X ′4

g = 2

X ′1

X ′2
X ′3

X ′4

g = 3

Figure 7: The decrease of each tabu region size with increase in iteration rank for the CTSz.

Here n = 2 and G = 3 where G is the total number of algorithm iterations. The dashed line

corresponds with the tabu regions in iteration g − 1. [Figure can be viewed in colour in the

electronic version, available at http://orion.journals.ac.za .]

have a higher probability to be generated close to the current best solution and thus σji

is set to
(
xuji − xlji

)
/10 at the start of each iteration. This intensifies the search around

the best solution found during the previous iteration. The normal distribution is used and
thus 68% of generated points are on average within x∗ji ± σji for all i, j.

The majority of new solutions are generated close to the best solution found. As the
solution space around the best solution becomes tabu, an increasing number of new so-
lutions are rejected because they are inside existing tabu regions. To diversify the search
the standard deviation is increased when 95% of the generated solutions are rejected. An
increase in the standard deviation ensures that new solutions are generated further away
from the best solution.

The TS algorithm, proposed by Hajji et al. [6], has four parameters that influence its
convergence. The four parameters are p – the number of candidate solutions generated at
each iteration, G – the maximum number of iterations, λ – a constant, and θ – the relative
accuracy of an optimum location.

A relative accuracy of

θ =
1

2

Lij(X
∗
i , g)

xuji − xlji
=

1

λ n
√
g

(11)

is achieved when the algorithm stops. From equation (11) the constant

λ =
1

θ n
√
g

(12)

is computed. The ratio of the total volume of all tabu regions (T ) on the volume of the
search space (S) is the same for any iteration, namely

|T |
|S|
≈ β =

p·g∑
`=1

 I∏
i=1

J∏
j=1

Lij(X`, g)


I∏
i=1

J∏
j=1

(xuij − xlij)

, (13)

http://orion.journals.ac.za
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where β is a constant between 0 and 1. Using equation (10) together with equation (13)
it follows that

β ≈ 2n · p
λn

. (14)

If β < 1 then the number of candidate solutions generated at each iteration must fulfil

p <
λn

2n
. (15)

Thus the size of the neighbourhood structure depends on the rank of the current iteration
and the relative accuracy of an optimum location.

A pseudocode listing for the CTSz appears in Algorithm 5.

Algorithm 5: Immediate zone algorithm (CTSz)

Input: An initial solution X0 from the search space S as well as its objective function value f(X0).
Output: An approximation of a global optimum solution.

1: Generate a neighbourhood N (X) with p solutions chosen according to the uniform density
probability.

2: Initialize k ← 1, g ← 1.
3: while g < G do
4: Store all solutions in the tabu list. Evaluate the size of the hyperrectangles using (10).

5: σji ← k · (x
u
ji−x

l
ji)

10
and set X∗g−1 to the best solution at the previous iteration.

6: Generate a neighbourhood N (X) with p solutions using (7) – (9).
7: Reject solutions that fall in existing tabu regions and count the number of rejected solutions.
8: if Number of rejected solutions ≥ 95% of all generated solutions then
9: k = k + 1

10: else
11: g = g + 1 and k ← 1.
12: end if
13: end while
14: Return X∗G

5.3 Computational results

The two continuous tabu search methods CTSh and CTSz were applied to the SSP, HPP
and MMRP.

5.3.1 The CTSh

The effect of different parameter settings were investigated on all the problems, and the
parameter values that yielded the best results were used. For all three problems, it was
concluded that the size of the tenure does not significantly affect the performance of the
algorithm with regard to average objective function value. A tenure of t = 5 was chosen.
The effect of different neighbourhood space sizes on the average objective function value
was also investigated. It was concluded that a change in the neighbourhood space size
does not affect the performance of the algorithm in terms of the average objective function
value obtained for the SSP and MMRP. Therefore, the smaller neighbourhood space size
of 100 solutions was recommended merely because of its quicker execution time. For the
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HPP, however, a larger neighbourhood space size delivered a better result than a smaller
one. The stopping criterion was set to 100 iterations.

5.3.2 The CTSz

During each iteration, one component was chosen at random to investigate the effect
its alteration had on the objective function value. This neighbourhood structure was
constructed by altering the value of x̂ji as described in §5.2 and the components were
normalised so that feasibility was maintained.

The effect of different values for the relative accuracy, θ, of an solution was investigated.
The value of θ affected the value of the constant, λ, which in turn affected the lenghts of
the sides of the hyperrectangles which made up the tabu regions. It was concluded that
the best objective function value was achieved with θ = 0.5. The stopping criterion was
set to 100 iterations.

5.3.3 Comparison of methods

The CTSh and CTSz were applied to the SSP, HPP and MMRP with their individual
parameters set to optimize their results. Figures 8(a) to 8(c) contain the comparative
results for the two algorithms. The CTSh delivered a higher average objective function
value for all three the problems. Table 4 contains a summary of the results obtained after
applying the CTSh and the CTSz approaches on all three of the problems.
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(a) Results for the SSP.
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(c) Results for the MMRP

Figure 8: The average objective function values as obtained by the CTSh versus the average

objective function values as obtained by the CTSz. The units for the objective function values

are in thousands of South African rands (kR) for SSP and HHPP, and in tens of US$ (D$) for

the MMRP. [Figure can be viewed in colour in the electronic version, available at http://orion.

journals.ac.za .]
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SSP (kR) HPP (kR) MMRP (D$)
Result CTSh CTSz CTSh CTSz CTSh CTSz

Best fitness 18.84 19.42 397.44 377.02 412.00 413.95
Average fitness 17.28 16.34 387.25 260.82 411.36 314.23
Standard deviation 1.43 1.70 10.22 54.85 3.66 2.10

Average execution time (sec) 1.14 1.88 0.67 0.32 0.47 3.64
Number of runs 65 160 4625 1605 300 2505

Table 4: Results summary for the TS techniques for the SSP, HPP and MMRP as well as

the number of algorithm runs required to obtain a confidence interval of 90%. The units for the

objective function values are in thousands of South African rands (kR) for SSP and HHPP, and in

tens of US$ (D$) for the MMRP.

6 Simulated annealing approaches

Simulated annealing (SA) is a technique which finds a good solution to an optimization
problem by introducing random variations of the current solution. A worse variation
is accepted as the new solution with a probability that decreases as the computation
proceeds. The slower the rate of this probability decrease, the more likely the algorithm
is to find an optimal or near-optimal solution. The search attempts to avoid/escape local
optima by moving away from them early in the computation when the probability of
accepting worse solutions is still high. Towards the end of the computation, when the
probability of accepting a worse solution is nearly zero, it seeks the bottom or top of the
local optimum. The chance of getting a good solution can be traded off with computation
time by slowing down the decrease in probability of accepting worse solutions. The slower
the decrease, the higher the chance of finding an optimum solution, but the longer the
run time. Thus effective use of this technique depends on determining a decrease rate
that determines good enough solutions without taking too much computational time.
Locatelli [14] formulates the SA problem as shown in the pseudocode listing of Algorithm 6.

Algorithm 6: Simulated annealing algorithm

Input: A combinatorial optimization problem with a continuous domain X which combined with the
continuity of the objective function f , guarantees the existence
of an optimum value f∗. An initial configuration X0 ∈ S, the next candidate distribution Φ, an
acceptance function Γ, an initial temperature T0, an annealing schedule Ψ and a stopping criterion.
Output: An approximation of a global optimum solution.

1: Set ` = 0 and T` = T0.
2: Sample a candidate solution X ′`+1 from the candidate distribution Φ.
3: Sample a uniform random number r in [0, 1] and set

X`+1 =

{
X ′`+1, if r ≤ Γ(X`,X

′
`+1, T`)

X`, otherwise.

4: Set T`+1 < T` according to the annealing schedule Ψ.
5: Check the stopping criterion and if it fails, set `← `+ 1 and go back to step 2.

For the three problems the algorithm was initialized with a single randomly generated
feasible solution. A candidate solution was generated by means of the method proposed
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by Parks [19] as described in §3.2. The Metropolis acceptance function [21] was used.
A total of ten algorithm runs per temperature setting with all other variables fixed was
performed in order to calculate a reasonable average result. A standard deviation was
computed for each set of twenty runs and an average of these deviations was obtained as
a measure of the acceptance function’s performance. The average standard deviation was
computed to be approximately 0.005 for the Metropolis acceptance function.

Table 5 shows the best performing number of algorithm iterations for each starting tem-
perature T0 for the SSP, HHP and MMRP. When the initial temperature was relatively
high, the resulting probability of accepting a worsening solution was high and fewer iter-
ations at each temperature should be allowed in order to obtain a good solution. When
the initial temperature was relatively low, the resulting probability of accepting a worsen-
ing solution was low and more iterations at each temperature may be allowed for a more
extensive exploration of the search space.

Number of iterations
Initial temperature T0 SSP HPP MMRP

0.8 100 500 200
0.7 100 400 300
0.6 200 500 300
0.5 400 400 400
0.4 300 300 300
0.3 500 500 500
0.2 500 500 500

Table 5: A summary of the best number of iterations for each starting temperature for the SSP,

HPP and MMRP.

Figure 9 contains the objective function values obtained by the algorithm for each problem
for each initial temperature set at its best number of iterations. For the SSP, a lower
starting temperature (0.2 to 0.4) combined with a mid-range number of iterations (300 to
500 iterations) delivered the best solutions. For the HPP, a higher starting temperature
(0.7 to 0.8) combined with a larger number of iterations (400 to 500 iterations) delivered
the best solutions as it allows for the most extensive solution space exploration. For the
MMRP, a mid-range starting temperature (0.4 to 0.7) combined with a mid-range number
of iterations (300 to 400 iterations) delivered the best solutions.

7 Solution summary for SSP, HPP and MMRP

Figure 10(a) contains the best and average results obtained over 100 independent algorithm
runs for the SSP. The genetic algorithm achieves a best result, i.e. closest to the LP
solution, with the best result of the tabu search as a close second. On average, the
tabu search obtains a result closest to the exact solution, with the genetic algorithm as
a close second. However, the error bars on the graph show that the average objective
function value of the tabu search is subject to a greater standard deviation than the
average objective function value obtained by the genetic algorithm. Figure 10(b) contains
the average execution time of a single run for each metaheuristic. The time it takes for a
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Figure 9: Average objective function values for each initial temperature at its best number of

iterations. [Figure can be viewed in colour in the electronic version, available at http://orion.

journals.ac.za .]

single run of the GA is much longer than the time it takes for a single run of any of the
other metaheuristics. The genetic algorithm requires an entire population of solutions to be
found in the search space as opposed to only one as in the case of the other metaheuristics.

10

15

20

A
v
er

a
g
e

o
b

je
ct

iv
e

fu
n
ct

io
n

va
lu

e
(k

R
)

Average solution Best solution

LP BRS GA7 CTSh SA0.4t300L

(a) Best and average solutions of the meta-
heuristic approaches. The error bars indicate
one standard deviation around the average ob-
jective function value.

0

20

40

60

80

A
v
er

a
g
e

ex
ec

u
ti

o
n

ti
m

e
(s

ec
)

BRS GA7 CTSh SA0.4t300L

(b) Average execution times for each meta-
heuristic

Figure 10: A summary of the results for the SSP.

Figure 11(a) contains the best and average results obtained during 100 independent algo-
rithm runs for the HPP. Best results are obtained after application of the blind random
search, genetic algorithm and tabu search, with the simulated annealing approach not
performing as well. Similar to the results obtained for the sample problem, again on
average, the tabu search obtains a result closest to the exact solution with the genetic
algorithm as a close second. The standard deviations indicated by the error bars show

http://orion.journals.ac.za
http://orion.journals.ac.za
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that the difference between results is least in the average best performing approach, i.e.,
the tabu search. Figure 11(b) contains the average execution time of a single run for each
metaheuristic. Again the time it takes for a single run of the genetic algorithm or blind
random search is so much greater than the time it takes for a single run of any of the
other metaheuristics because both techniques require that an entire population of feasible
solutions be found in the search space as oppose to only one as in the case of the other
metaheuristics.
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Figure 11: A summary of the results for the HPP.

Figure 12(a) contains the best and average results obtained during 100 independent al-
gorithm runs for the MMRP. The best results are obtained after application of the blind
random search, genetic algorithm and tabu search, with the simulated annealing approach
not performing as well. Similar to the results obtained for the SSP, on average, the tabu
search obtains a result closest to the exact solution with the genetic algorithm as a close
second. All four approaches are quite stable and the small standard deviations associated
with each approach is illustrated by the error bars in Figure 12(a). Figure 12(b) contains
the average execution time of a single run for each metaheuristic approach. Again the time
it takes for a single run of the genetic algorithm or blind random search is much longer
than the time it takes for a single run of any of the other metaheuristics because both
techniques require that an entire population of feasible solutions be found in the search
space as opposed to only one as in the case of the other approaches.

8 A real world size instance

Certain characteristics of the four metaheuristic approaches have been identified and il-
lustrated in the literature. Random search techniques may perform better on relatively
small problems while more intelligent configuration search techniques such as the GA, TS
and SA approaches may perform better on larger problems. This behavior is illustrated by
Judson et al. [11] where random search techniques, GA and SA approaches are applied to
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Figure 12: A summary of the results for the MMRP.

a scalable model problem to measure relative performance over a range of molecule sizes.
They find that both GA and SA approaches perform progressively better relative to the
random search techniques as the problem size increases.

The MMRP is the most complex of the three problems and is the closest to a problem
likely to be found in real life. Therefore performance of the metaheuristic approaches to
this problem is investigated when the size of the problem is increased. The structure of
the MMRP is used to generate a larger problem, called the extended MMRP (EMMRP).
The EMMRP is comparable to a real world instance of petrochemical blending problems.
The parameters are set so that the problem now considers the production of 100 types
of final products as opposed to the original 5. These products are formed by blending
from a selection of 1000 components as opposed to the original 11 and these components
are obtained from 100 types of crude oil (as opposed to the original number of 2). The
components are obtained by refining the crude with 100 processes as opposed to the
original number of 5. All other problem parameters are maintained as described in §2.3.
The data for this problem is available form Venter & Visagie [27].

Candidate solutions for the initial solutions and populations are generated by choosing
random values within estimated bounds. For the product characteristic constraints, the
minimum allowable RON limit is a value in [0, 130] while the maximum allowable RVP,
density and sulfur limits are values in [0, 20], [300, 350] and [0, 5], respectively. The price
for each product is a value in [0, 20]. For the process constraints, the maximum number
of barrels of crude that may pass through each process is an integer in [0, 100], while the
cost per barrel that passes through each process assumes a value in [0, 1]. For the crude
constraints, the maximum allowable number of barrels that may be purchased for each
crude is an integer in [0, 500], while the cost per barrel for each crude is a value in [0, 10].
Finally, for the component constraints, the RON, RVP, density and sulfur present in each
is generated as a value in [0, 130], [0, 20], [0, 350] and [0, 5], respectively.

A hundred initial solutions were generated. These solutions were feasible in terms of the
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four main characteristic constraints, i.e. octane rating, vapour pressure, density and sulfur
content as well as in terms of production constraints (e.g., the limit on the amount of crude
that might pass through each process).

The best performing algorithm of each type from the previous sections were used to solve
the EMMRP. The commercial software package Lingo [13] was not able to load the input
data for this problem due to size of the dataset and thus the results could not be compared
to an optimal solution. Figure 13(a) contains the best and average results obtained for
each metaheuristic approach using 100 independent algorithm runs. The best results are
obtained from the simulated annealing and tabu search approaches. The SA approach
obtains the best average result, although it has the largest standard deviation associated
with its average solution. The GA approach delivers the most stable result as is illustrated
by the error bars in Figure 13(a). Figure 13(a) contains the average execution time of
a single run of each metaheuristic approach for the EMMRP. In conclusion the SA is
preferred in terms of solution quality and execution time.
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Figure 13: A summary of the results for the EMMRP.

9 Conclusion

This paper starts out with a brief introduction to petrochemical blending problems. In §2
a description of the three instances from literature, namely the SSP, HPP and the MMRP,
that are used to test the metaheuristics is presented.

A solution approach for this three problem instances by means of random search techniques
is investigated in §3. It is concluded that local random search outperforms blind random
search on average for the SSP, albeit by a small margin, blind random search outperforms
local random search on average for the HPP and this result also holds for the MMRP.

The discussion of the application of metaheuristic approaches to the petrochemical blend-
ing problems commences in §4. An algorithm configuration that combines the use of
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elitism, ranked fitness assignment and tournament selection of solution candidates gives
the best average performance for all three problems. The method of fitness assignment,
however, has the greatest influence on the average performance of the algorithm.

Tabu search approaches follow in §5. Despite the continuous nature of the problems, two
methods are successfully applied. Neither the size of the tabu tenure nor the size of the
neighbourhood significantly influence the performance of the tabu search algorithm for the
three problems. A relative accuracy value of 0.5 delivers a better average result and the
hypersquare method outperforms the immediate zone method with respect to the average
objective function values obtained for the three problems.

The final metaheuristic, simulated annealing, is presented in §6. It is concluded that a
higher initial temperature in combination with a smaller number of algorithm runs per
temperature level delivers the best solutions to all three problems. Section 7 contains
a summary of the performance of the various solution approaches on the three small
instances. It is concluded that, on average, the tabu search approach delivers the best
result with regards to objective function value and execution time for the SSP. Both
the tabu search and the genetic algorithm approaches deliver the best average objective
function value, but the tabu search performs better in terms of its execution time for the
HPP. For the MMRP, this result again is evident.

Section 8 contains results of the metaheuristic approaches when applied to an extended
version of the MMRP. The simulated annealing approach is found to deliver the best aver-
age performance for this problem. The SA approach performs better relative to the other
approaches as the size of the problem increases due to the fact that it requires fewer compu-
tations per iteration relative to the other approaches as the size to the problem increases.
This trend (of simulated annealing performing better as the problem size increases) was
also found by Low et al. [15] and Judson et al. [11]. The recommendation is thus that
simulated annealing should be the preferred approach amongst classical metaheuristics for
larger instances of blending problems.

The objective of this study was to compare the performance of classical metaheuristics
over a range of blending problems. It was beyond the scope of this study to find the
best performing metaheuristic to solve blending problems in general. In future research
improvements on the classical metaheuristics, such as hybrid methods or variable neigh-
bourhood search algorithms may be considered in the quest to find the best algorithm(s)
to solve large blending problems.
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