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Abstract 

The Cutting Stock or Trim Problem arises when jumbo rolls of 
paper are slit into reels of various width ("deckled"). The 
problem was examined as early as 1954 [1]; it is now seen as 
a classical Linear Programming formulation [2] [4] [6] [7]. 

The problem may be easy to formulate, but it is difficult to 
solve for genuine data. This is so not only because of the 
computations required to find good cutting plans. The major 
problem is this: such plans are based on certain data, but 
the data change as the plan is being executed and the plan 
no longer applies. So here it may not be optimal to optimize 
globally, but to work on a local heuristic basis [3]. 

We can propose a heuristic procedure that compares well with 
an absolute solution and that can be used on a local basis. 
This heuristic is in use at Mondi Paper in Richards Bay [5]. 

Introduction 

Mondi Paper in Richards Bay can cut about 40 jumbos per day. 
A set of orders for a given type of paper may have hundreds 
of reels in many different sizes. For example, here are the 
data that were first given to the author as a typical set: 

Table 1. Current orders for a given type of paper 

Size No. Size No. Size No. Size No. Size No. 
2465 37 2440 6 2385 3 2330 8 2305 4 
2235 3 2185 7 2175 10 2160 10 2135 22 
2070 31 2035 14 2030 13 2025 5 2020 21 
1990 15 1980 16 1955 7 1950 13 1930 10 
1920 15 1900 8 1860 23 1850 7 1830 6 
1800 9 1780 3 1745 6 1720 10 1675 7 
1665 4 1640 8 1600 3 1560 3 1550 20 
1525 3 1475 4 1430 2 1380 48 1360 10 
1350 7 1235 9 1225 12 1140 9 1130 7 
1090 6 1055 2 1015 2 990 5 975 9 

965 2 935 2 920 38 845 13 

The size in question is the width of a reel of paper wanted 
by a client. The number means the total number of reels of 
that size which are currently on order, possibly for several 
clients. All in all we have 54 different sizes (ranging from 
845 mm to 2465 mm). The total number of reels comes to 577. 

Some sizes require as few as 2 reels, but for others we want 
as many as 37 or 38, even 48. So how are we going to match 
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such different sizes and numbers to fill a jumbo? And how 
many jumbos are needed to fill this set of orders? 

Lowest possible number of iumbos 

How many jumbos are needed? The answer depends on ~hether we 
take the question theoretically or practically. 

The theoretical answer assumes that all jumbos are deckled 
perfectly, without any waste. So find the length covered by 
all reels, and divide the total by the length of a jumbo. 

Here we want 37 reels of 2465, 6 of 2440, .•. ,plus finally 
13 of 845: the total length of all reels is 997305 mm. You 
cover that distance by placing all the 577 reels end to end. 

A standard jumbo is 4800 mm, and 997305/4800 makes 208: that 
many units cover the distance if again the jumbos are placed 
end to end (disregarding the fact that the jumbo ends do not 
match the reel ends). So 208 is the absolutely lowest number 
of jumbos needed for our data, without any waste. 

Absolute !global) optimization 

How many jumbos are used in fact? That depends on how well 
we match the reel sizes that go on a given jumbo. 

Ideally we do so through the classical LP formulation of our 
problem. It enumerates all possible combinations of reels 
that fit on a jumbo, then selects the patterns filling the 
demand at hand with the fewest jumbos. 

This solution is well illustrated in any of our references, 
so it may seem superfluous to present a full example. Still, 
we wish to do so in order to make our point in the context 
of a coherent, non-trivial case. The reader should see what 
is at stake, without first having to look elsewhere. By the 
same token, he comes to appreciate two facts that are not 
intuitively obvious and easily glossed over. These are: 

1) The number of· fitting patterns grows explosively. 

2) The best solution may include very poor patterns. 

Point 1 is called "the curse of dimensionality" in another 
context and there it is well illustrated [7, p. 361]. But 
few people (including the author) respect this curse until 
it strikes them. They may benefit from seeing that we exceed 
a computer's memory with as few as 20 different sizes! 

As for point 2, the very heart of optimization is to trade a 
gain here against a loss there, so as to reduce total loss. 
And in principle an LP procedure succeeds admirably in doing 
this. In fact it is surprising to see how large a loss you 
may have to accept on individual rolls. 

Awareness of this loss is crucial to the understanding of 
our heuristic, so we·· must see exactly how it comes about. 
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Number of cutting patterns in an absolute procedure 

How many patterns must be examined if we want to solve our 
problem absolutely? The answer cannot be found by a simple 
formula such as "N square" or "N factorial". This is so be
cause the answer depends not only on the number of sizes at 
hand, but also on how they happen to fit a given jumbo. 

Which data do we examine? The full set in Table 1 produces 
so many combinations that we cannot hope to list them, but 
any single column makes a handy set. The data are sorted by 
width, so each column has a fair share of large and small 
sizes. You could see each column as an independent set of 
data, indeed as a day's work. 

For example, here are the data in the last column, Friday. 
They were analyzed by TRIMOPT, our program for the Linear 
Programming (absolute) answer to the trim problem: 

Table 2. Friday only: raw data summary 

Sizes Units Short Long Total Jumbo Low 
10 116 975 2305 201900 4800 43 

Size No. Size No. Size No. Size No. Size No. 
2305 4 2135 22 2020 21 1930 10 1830 6 
1675 7 1550 20 1360 10 1130 7 975 9 

These are the raw data. The summary shows by "Low" how many 
jumbos are needed if we simply divide total length by jumbo 
width, here 201900/4800 or 43 units. How many do we need in 
fact, if we make sure that the reels fit a jumbo? 

We must first generate the patterns that fit. This is done 
by enumerating all possible combinations: 

Table 3. Friday: the first 13 patterns for 4800 jumbo 

Loss 
#1 190 
#2 360 
#3 475 
#4 565 
#5 665 
#6 820 
#7 945 
#8 5 
#9 160 

#10 235 
#11 390 
#12 545 
#13 530 

2305 2135 
-4 -22 

2 0 
1 1 
1 0 
1 0 
1 0 
1 0 
1 0 
1 0 
1 0 
1 0 
1 0 
1 0 
_0 __ 2 

2020 
-21 

0 
0 
1 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

1930 
-10 

0 
0 
0 
1 
0 
0 
0 
0 
0 
0 
0 
0 
0 

1830 
-6 

0 
0 
0 
0 
1 
0 
0 
0 
0 
0 
0 
0 
0 

1675 
-7 

0 
0 
0 
0 
0 
1 
0 
0 
0 
0 
0 
0 
0 

1550 
-20 

0 
0. 
0 
0 
0 
0 
1 
0 
0 
0 
0 
0 
0 

1360 
-10 

0 
0 
0 
0 
0 
0 
0 
1 
1 
0 
0 
0 
0 

1130 
-7 

0 
0 
0 
0 
0 
0 
0 
1 
0 
2 
1 
0 
0 

975 
-9 

0 
0 
0 
0 
0 
0 
0 
0 

.1 

0 
1 
2 
0 

The table heading lists the reels wanted, 2305, 2135, 2020, 
down to 975; then we have the number wanted: it is marked by 
a minus sign to signal "~emand, as yet unsatisfied". How can 
we fill the demand for 4 units of 2305, for example? Pattern 
#1 has 2 units of 2305 on a jumbo of 4800: 2*2305 is 4610, 
and 4800 - 4610 makes a loss of 190, as shown. 
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Pattern #2 has only 1 unit of 2305, then 1 of 2135, plus a 
net loss of 360; similarly, #3 is 2305 plus 2020. We list 
all combinations starting with 2305, the largest size. Then 
we turn to those without 2305, but with the next size, 2135. 

This process continues down to the bottom of the table: 

Table 4. The last patterns for Friday (end of Table 3) 

Loss 
#84 720 
#85 950 
#86 130 
#87 50 
#88 205 
#89 360 
#90 515 
#91 280 
#92 435 
#93 590 
#94 745 
#95 900 

2305 
-4 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

2135 
-22 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

2020 
-21 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

1930 
-10 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

1830 
-6 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

1675 
-7 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

1550 
-20 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

1360 
-10 

3 
2 
2 
1 
1 
1 
1 
0 
0 
0 
0 
0 

1130 
-7 

0 
1 
0 
3 
2 
1 
0 
4 
3 
2 
1 
0 

975 
-9 

0 
0 
2 
0 
1 
2 
3 
0 
1 
2 
3 
~ 

The last pattern has 4 units of 975. These could be broken 
down into 3 only (with a loss of 1875), then 2 and finally 1 
only. Should we add these extra combinations? That depends 
on whether you can ~se a large piece of waste better than an 
unwanted unit of 975. If both are recycled, you get the same 
number of jumbos either way, so we can omit the extra rows. 

In any case, even omitting such one-size patterns, ten sizes 
generate as many as 95 combinations. 95 is near 10 squared, 
so you might think that we have a square function of N, but 
we shall see below that this is not so. 

Poor patterns essential for global optimum 

We made it a point to list all possible patterns, good and 
poor, to clarify the principle. The good patterns certainly 
look relevant, but must we include also the poor ones? 

For example, #95 entails 900 mm of waste, almost as much as 
the reel of 975 being cut. Can #95 ever beat say #92 which 
gets 975's at a loss of only 435 mm? Yes, #92 has less loss, 
but it brings 3 reels of 1130 for each one of 975. So if you 
need many 975's and few 1130's you prefer pattern #95: it 
fills total demand with fewer jumbos. 

In principle, all patterns must be considered. In fact, not 
all need to be included initially. Start with only the good 
ones, those that entail little loss, and see how many jumbos 
fill demand; then try again with a greater trim margin: if 
the number of jumbos decreases, increase the trim margin and 
examine an ever larger number of combinations. 

For example, here is a summary of a test run for Friday. we 
start with the patterns losing at·most 100 mm. There are 14 
of these, so we might as well list them. To save space, we 
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also show in the column at right the number of patterns to 
be deckled (optimal global LP solution from TRIMOPT): 

Table 5. Best choice from among "good" patterns 

Size 2305 2135 2020 1930 1830 1675 1550 1360 1130 975 
Loss -4 -22 -21 -10 -6 -7 -20 -10 -7 -9 No. 

5 1 0 0 0 0 0 0 1 1 0 4 
15 0 1 0 0 0 1 0 0 0 1 22 

100 0 0 1 0 0 0 1 0 1 0 18 
60 0 0 1 0 0 0 0 2 0 0 3 
65 0 0 0 1 1 0 0 0 0 1 10 
65 0 0 0 1 0 1 0 0 1 0 
10 0 0 0 0 2 0 0 0 1 0 
60 0 0 0 0 1 0 1 1 0 0 

. 45 0 0 0 0 1 0 0 0 0 3 
90 0 0 0 0 0 2 0 1 0 0 
25 0 0 0 0 0 ),_ 2 0 0 0 _!, 
45 0 0 0 0 0 1 0 0 1 2 
15 0 0 0 0 0 0 1 0 2 1 
50 0 0 0 0 0 0 0 1 3 0 

For example, deckle 4 jumbos for the pattern with a loss of 
only 5 mm. This yields 4 reels of size 2305, indeed all that 
is wanted in that size. You also get 4 units each of sizes 
1360 and 1130. Demand for these runs to 10 and 7, so some 
reels still have to come from other patterns. 

Where do we get the 22 reels of size 2135? They appear only 
in pattern 2, the one with a loss of 15 mm. So we obviously 
need 22 jumbos for that pattern, and that is good enough for 
2135. But the same pattern yields also 22 reels of 1675, a 
size of which we want only 7 units. So 15 are overproduced! 
1675 appears again in another inevitable pattern (25 at the 
bottom of the table), so all in all we get 16 reels surplus. 

The best solution formed from these seemingly good patterns 
finally requires .2!1. jumbos, 15 more than the "Low" of 43 
shown in Table 2. 15 in 43 means a loss of over 1/31 

Why do we use so many jumbos? Because we produce many more 
reels than we want, 4 of 1830, 16 of 1675, 15 of 1130 and as 
many as 23 of 9751 (Data calculated by hand from Table 5.) 

So loss on any one jumbo is at most 100 mm, to be sure. But, 
having so little choice, we end up with many unwanted reels. 
Perhaps in taking more loss on some jumbos, we can reduce 
total usage? Here is a summary for various trim margins: 

Table 6. Matrix size and number of jumbos for given trim 

Trim 
Rows 
Jumbos 

100 300 500 600 640 
14 36 55 66 69 

58.00 55.00 53.00 45.67 45.67 

645 700 900 
70 72 95 

44.67 44.67 44.67 

The break occurs at 645 mm: the pattern allowing for that 
much loss is just the one that succeeds Ln saving a jumbo. 

So the good news is that we saved a jumbo and that we need 
to examine only 70 combinations, instead of 95. 
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The bad news is threefold: 

1) To minimize total loss, we must accept painfully high 
individual losses, as high as 645 in 48001 

2) By the same token, we are not likely to find the best 
set of patterns in examining only the good ones (those 
with little loss per jumbo, say less than 5%). 

3) But if we admit poor patterns, we get a number of com
binations far beyond an ordinary computer's capacity. 

Table size grows explosively 

We can handle a table with 50 or 100 patterns/rows such as 
we had for the 10 different sizes/columns on Friday. But 
what if we take the initial data set, the one for the whole 
week, with 54 different sizes? 50 by 50 suggests 2500 rows, 
but we get many, many more for minimal trim margins: 

Table 7. Memory required by various trim margins (K bytes) 

Trim 0 5 10 15 20 25 so 100 200 
Rows 208 380 572 758 921 1100 2000 3595 6376 
Tab 11648 21280 32032 42448 51576 61600 112000 201320 357056 
Memory 46 84 126 166 202 241 .!J.!!. 787 1395 

The table first lists various trim margins. For example, 0 
trim means a perfect pattern without any loss: it is good to 
see that our data contain so many perfect fits, 208 of them! 
(If there are so many perfect fits, why do we look further? 
These fits are perfect in avoiding any loss, but they do not 
necessarily contain the sizes we want.) Anyway, the perfect 
patterns alone require a table with. as many as 208 rows! 

How many columns do we need for the table? One for each size 
and then two columns to record Pattern Number and Loss, here 
54 sizes plus 2 makes 56. So the table as a whole comprises 
56*Row cells, for example, 56*208 ~ 11648, as shown. A cell 
takes at least 4 bytes (in single precision). This means a 
total memory requirement of Tab*4/1024 or so many K bytes. 

A 640K machine has about 500K free, so we can eventually run 
about fifty sizes for a trim margin of 50 mm. But this is a 
far cry from a guarantee of optimality. Nor could we expect 
to solve a problem of this size in single precision; but if 
you turn to double precision, you need twice as much space! 

So an absolute solution to the trim problem with more than 
about twenty sizes is impractical on a 640K computer, and a 
larger machine is impractical on the shop floor. 

Compact matrix method? 

Our conclusion certainly holds if we store patterns fully, 
as in Tables 3, 4 ot 5. Full storage may mean many zeros, 
especially in the section of the table holding large sizes. 
These zeros fix the position of the non-zero entries. 
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A more elegant appr9ach is to store only non-zero data and 
to retain their position explicitly in a separate cell: you 
save the space currently occupied by useless zeros, but two 
cells are required for each number other than zero. Still, 
this seems to be a good idea for a table with many zeros. 

It may be a good idea for the initial table. But as you go 
from table to table, the zeros are rapidly replaced by other 
numbers: each of these now requires two cells! So you run 
the risk of ending up with higher storage requirements than 
before (not counting the extra programming load)! 

For example, examine the change in density from the first to 
the last table for our Friday data, those with a trim margin 
of 100 mm. Table 8 shows at left a section of the initial 
matrix (copied from Table 5); at right is the corresponding 
section of the final table for reels that were overproduced: 

Table 8. Part of initial and final matrix, "good" patterns 

Size 
Loss 

5 
15 

100 
60 
65 
65 
10 
60 
45 
90 
25 
45 
15 
50 

Initial, from Table 5 
1830 1675 1130 975 

-6 -7 -7 -9 
0 0 '1 0 
0 1 0 1 
0 0 1 0 
0 0 0 0 
1 0 0 1 
0 1 1 0 
2 0 1 0 
1 0 0 0 
1 0 0 3 
0 2 0 0 
0 1 0 0 
0 1 1 2 
0 0 2 1 
0 0 3 0 

Final, after 
1830 1675 
4.00 16.00 

.oo -.25 

. 00 1.00 

.oo -.so 

.00 .25 
1.00 .oo 

-1.00 1. 00 
2.00 .oo 
1.00 -.75 
1. 00 . 00 

.oo 1.75 

.oo .so 

.oo 1.00 

.oo -.so 

.oo -.25 

6 iterations 
1130 975 

15.00 23.00 
1.50 .00 

.00 1.00 
1.00 .00 
-.so .oo 

. 00 1. 00 
1. 00 -1.00 
1.00 .00 

.so .00 

.oo 3.00 

.so . 00 

.oo .00 
1.00 2.00 
2.00 1.00 
3.50 .oo 

The data for 1830 and 975 hardly changed, showing that these 
sizes do not match well with the others. But sizes with many 
matches have full columns. And they filled up during just 6 
iterations. More iterations lead to ever fuller tables. 

So it seems that even sophisticated matrix techniques cannot 
cope with the curse of dimensionality, at least not here. 

Successive global optima 

If we cannot handle all data at once, how about doing it on 
a more modest scale, step by step, indeed, day by day? 

So find the best solution for each day taken on its own. At 
the end of the week, add up the number of jumbos used: will 
it be any worse than the solution for the week as a whole?. 

Our data set contains enough orders for at least 208 jumbos. 
We can deckle about 40 jumbos per day, so 208/40 means work 
for roughly five days. How do we fare if we optimize each 
day on its own (as if we did not know about the next days)? 
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Table 9. Raw data grouped by day, from Table 1 

Monday Tuesday Wednesday Thursday Friday 
Size No. Size No. Size No. Size No. Size No. 
2465 37 2440 6 2385 3 2330 8 2305 4 
2235 3 2185 7 2175 10 2160 10 2135 22 
2070 31 2035 14 2030 13 2025 5 2020 21 
1990 15 1980 16 1955 7 1950 13 1930 10 
1920 15 1900 8 1860 23 1850 7 1830 6 
1800 9 1780 3 1745 6 1720 10 1675 7 
1665 4 1640 8 1600 3 1560 3 1550 20 
1525 3 1475 4 1430 2 1380 48 1360 10 
1350 7 1235 9 1225 12 1140 9 1130 7 
1090 6 1055 2 1015 2 990 5 975 9 

965 2 935 2 920 38 845 13 

The data are sorted by size, so Monday has larger units than 
Friday. But this hardly affects the decision problem. It is 
to find out, for each day on its own, how many jumbos cover 
the data available on that day. So do for each day what we 
did for Friday, find the absolute LP solution via TRIMOPT: 

Table 10. Best LP solutions for successive days 

Day Length Low I Fraction Integer Rows Trim Setup I 

Mend 266085 56 I 59.31 60 81 660 11 I 

Tues 144760 31 I 32.60 33 104 730 11 I 

Wedn 181580 38' I 38.68 39 49 240 11 
Thur 202980 43 I 42.90 43 37 140 11 I 
Frid 201900 43 I 44.67 46 70 645 11 I 

Sum 997305 211 I 218.16 221 Mean 483 55 I 
week 997305 208 I at most 212 200 51 I 

"Length" is the total length of all reels placed end to end. 
That length divided by jumbo size gives "Low", lowest number 
of jumbos required. And looking first at the bottom of the 
summary, we see "Sum", the sum of the daily data and "Week", 
the result obtained for the week as a unit. 

The bottom lines show the same total for the days as for the 
week, so the data check numerically. But the set taken as a· 
whole needs fewer jumbos than the sum of the daily sets (208 
and 211): naturally, the smaller a daily set's total length, 
the less is it likely to fit an integer multiple of jumbos. 

This is shown even more dramatically by the best solutions. 
We show both the fractional LP and the integer answer, for 
example, 59.31 and 60 on Monday: on most days going integer 
costs no more than the fraction rounded up (but it may mean 
different matches).· Only on Friday do the sizes fit poorly: 
we need 46 jumbos, one more than 44.67 rounded to 45. 

The right half of the summary shows how many rows/patterns 
are included in each LP table. "Trim" is the worst loss 
accepted on any pattern, running as high as 730 (in 4800). 
Finally, "Setup" shows the number of patterns in a solution: 
a change in pattern means changing at least one knife. 

So how many jumbos are required to fill all orders? 111 if 
we operate on a daily basis, disregarding on Monday the data 
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available for the rest of the week. But we use only lll for 
the week taken as a whole: 221 - 212 = 1, the number lost by 
fragmenting the data. A jumbo costs thousands of rands, so 
the main lesson concerning Global Optimization is clear: 

If you must optimize globally, do not fragment your data. 

Accumulate orders for as long as you can. Make cutting 
plans at the last minute, when you have many data. 

The global approach can hope to be effective only for a 
large number of data: only then can you strike a good 
balance between loss here and gain there. 

But the larger the data set, the less can you implement 
the global approach. This is so for two reasons: 

a) Such a set generates so very many cutting patterns 
that you exceed a computer's capacity, certainly so 
with an absolute solution procedure such as LP. 

b) A large set of data is likely to change while you 
work on it, so the initial plan becomes obsolete. 

A heuristic for global (and local) optimization 

We shall show below that you should not even try to optimize 
globally. It is better to go local. But if you must fill a 
large set of orders as it stands, what help can we offer? 

The help comes from seeing the essential idea of the global 
approach in an operational perspective: what does it do? The 
idea is to accept a loss here for a gain there (as long as 
you reduce total loss). You would naturally understand this 
to mean a small loss and a ~ gain. This is not so. 

The critical point is this: the loss to be accepted in one 
pattern may be quite large, so large that a deckler refuses 
to consider it, like p45 or even 730 in 4800: he would never 
let such a piece go to waste. (The deckler may even refuse 
your computer plans and work to his own designs if you let 
him, the more so if he does not see why a large loss here 
should bring a greater gain there). 

But now that we understand this fact, we might as well bow 
to it gracefully. In other words, if you must work globally, 
do not try to do too well on any one jumbo (by setting your 
trim margin to zero or some other low number like 5 or 10): 
in striving for periection on one jumbo you run the risk of 
missing the loti Rather, set the trim margin to 200, 300 or 
even higher, then accept any pattern respecting that margin. 

This is the basis of ,our heuristic procedure. It does not 
use any mathematical/LP-type formula, but scans the data for 
matching partners. Its critical feature is this: the trim . 
margin is not a mere statistic, to be minimized; rather, it 
decides whether a match is accepted 

So the margin itself is part of the analysis. Specifically, 
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set a trim margin and then --

1) Organize your data by some order of priority (below), 
then assume that the first reel must be cut, now. 

2) Scan the remaining reels for suitable partners: accept 
the first match that respects the current trim margin. 

If no partner is found within trim margin, accept the 
next best alternative (or go local, see below). 

3) Update Number of Jumbos and List of Reels, then repeat 
Step 1 until the list is empty. 

4) Change the trim margin and repeat procedure; continue 
doing so until you find the lowest number of jumbos. 

How good is this procedure? The critical data appear in the 
columns LP and TRIM: it is the number of jumbos used to fill 
the orders for each day, then for the week as a whole: 

Table 11. Best LP solutions compared to heuristic TRIM 

Da:11: Length Low I Loss SetU]2 LP TRIM Margin Setu]2 I 
Mend 266085 56 I 660 11 60 60 345 11 I 
Tues 144760 31 I 730 11 33 33 785 7 I 
Wedn 181580 38 I 240 11 39 39 105 12 I 
Thur 202980 43,: 140 11 43 43 140 10 
Frid 201900 43 I 645 11 46 46 0 13 I 

Sum 997305 211 I 483 55 221 221 53 I 
Week 997305 208 I Mean 212 200 51 I 

The evidence is overwhelming: we never do worse than the 
absolute LP procedure, certainly not on any given day. For 
the week as a whole (with all 54 sizes at once), we do not 
know the true absolute answer, but the heuristic answer of 
212 is so good that we are hardly motivated to look further. 

"Loss" is the largest trim lost by a global solution (from 
TRIMOPT). Conversely, "Margin" is the best trim margin for 
Step 2, the limit for accepting a pattern, even a poor one: 
in going global, you must eventually tolerate large losses. 
Anyway, the best margin reduces jumbo usage to the lowest 
level (other margins may use many more jumbos). "Setup" is 
the number of changes from one pattern to the next one. 

You may want more empirical evidence for our conclusion, but 
you have seen five experiments already. Our data come from 
one set, to be sure, but we split it into five columns and a 
column is as good as a set of its own. And if five sets do 
not convince you, ten won't either. 

In any case, the critical evidence comes from the mind, not 
from data. It is to understand the crucial aspect of global 
optimization. This is to tolerate a high loss on individual 
jumbos if that reduces the total number of jumbos. 

We apply the same reasoning. We may expect similar results. 
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Priority used in organizing data 

Step 1 is to arrange reel sizes according to some priority. 

The most likely criterion is date of delivery and we provide 
for orders to be sorted and deckled accordingly. Also, as he 
goes along, the deckler may declare any order to be urgent: 
it moves to the front and is done first, regardless of loss, 
but so as to fill most of that order at once. Declaring all 
orders to be "urgent" tends to reduce the number of setups. 

How many jumbos do we need if we respect delivery dates? One 
way to simulate that question is to run our "daily" data (by 
column rather than by row): the data for Monday get priority 
over those for Friday, but we do not prevent a Friday reel 
from joining one for Monday as a second or third piece. 

Respecting delivery dates in this way means 1!1 jumbos. This 
compares to 1li for the full week's data and to lll for five 
successive independent daily solutions (finish Monday before 
you even look at Tuesday). See also "local" example below. 

If no orders are urgent (or if all are equally urgent), we 
must think of some other criterion of priority. The natural 
answer is to go by Difficulty of Cut: start with the more 
difficult pieces. But how do we measure difficulty? By --

a) Length of a reel: long reels are more difficult than 
short ones, so arrange the data in descending order. 

b) Loss if reel is placed on its own: 4800/1600 is clean, 
but 4800/1500 is not. So start with the worst reel. 

Policy (a) is more effective; (b) pulls too many short reels 
to the front. So individual difficulty hardly counts. This 
is as it should be: a size is never difficult in itself; the 
difficulty lies in matching it with partners, and these are 
hard to find among few data. 

A different criterion is magnitude of order: consider reel 
size as well as number wanted, to favor the large order. But 
a simple multiple of size*number again pulls too many short 
reels to the front. What if we weight reels by their size, 
then multiply? Try size*size*number to decide priority. 

Table 12. Best TRIM results for different priorities 

First reel set by Size*Size*Number Simple Size 
Day Length Low TRIM Margin Setup TRIM Margin Setup 

Mond 266085 56 60 345 11 60 345 12 
Tues 144760 31 33 785 7 33 785 8 
Wedn 181580 38 39 105 12 39 320 11 
Thur 202980 43 43 140 10 43 140 10 
Frid 201900 43 46 0 13 46 645 10 

Sum 997305 211 221 255 53 221 447 51 
Week 997305 208 212 200 51 214 595 51 

On the short daily runs both methods perform equally well, 
though squaring the size leads to lower trim margins. On the 
long run it saves two jumbos, 212 compared to 214. 
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Truly local optimization 

Our procedure meets the critical requirement of the global 
approach: it is to fill orders as they stand, now, without 
any chance of revision. This requirement implies Step 1, 

1) ... assume that the first reel must be cut, now. 

If all reels must go as they stand, some must eventually be 
cut regardless of loss. Our only chance to reduce loss is 
to cut first the reel that is most in need of good partners. 
And by choosing a good trim margin, we may expect to perform 
as well as an absolute procedure (but work faster and within 
a modest memory space, indeed on a machine with 128K). 

But think again. Why should the first (or any reel) have to 
be done now, indeed today instead of tomorrow or next week? 
There are deadlines, to be sure, but chances are that they 
are as bad next week as they are now. Also, we can do urgent 
items with priority. Anyway, a set of orders as in our basic 
example takes several days to be deckled: so why not leave 
the bad pieces for the end of the run, or until new orders 
have arrived? Deal now with the good ones only! 

What happens if you do? How many good matches are there? Our 
example contains 208 perfect patterns, but of course not all 
of these are useful (some contain reels rarely sold). So run 
our program with a view to answering this question: 

Using the orders in hand, how many jumbos can be filled 
without loss on one jumbo ever exceeding a given margin? 

Here are the answers for margins up to 200 mm: 

Table 13. Number,of jumbos with loss within trim margin 

Trim 0 5 10 20 30 50 100 200 
Jumbos 142 144 153 151 154 196 

117 out of 208 jumbos, more than half of all orders, can be 
deckled without any loss at all! We could be busy for three 
days in a row without losing one millimeter in 5760001 This 
may seem too good to be true, but it is true. It is equally 
astounding that we get 149 jumbos out of 208 with at most 10 
mm lost. To be exact, total loss comes to 590 mm in 715200, 
less than 4 mm per jumbo! So roughly speaking, 

2/3 if not 3/4 of all orders go with hardly any loss! 

Most of the loss comes from the remaining 1/3 of orders. 

If we can deckle so many reels without loss, do we get those 
wanted for Monday? Not necessarily. Our example assumed that 
the data were sorted by size, not by date. But you can also 
go by date: put the data for Monday first, but do use reels 
for subsequent days if they fit better than those for Monday 
on its own. How many jumbos must be deckled before Monday's 
demand is filled? 1Q! jumbos in all, with a total loss of 
990 mm, less than 10 mm per jumbo! 104 jumbos are more than 
you can do on Monday alone, so start on Friday. 
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We said "most of the loss comes from 1/3 of orders". These 
are the reels left at the end of the run. Why do they cause 
so much loss? Not because they are poor sizes, but because 
n~ pieces are left to match them. We noted this previously 
when discussing "difficult" sizes: no size is inherently 
difficult; it becomes so only through lack of partners. 
Partners tend to lack whenever you have few data. 

To see that this is so, run the full set of 507 reels and 54 
different sizes and deckle 149 jumbos with a trim margin of 
at most 10 mm. After doing that, you still need --

Table 14. Reels left after four days "local'' work 

Sizes Reels Min Max Total Jumbo Low 
21 138 1550 2465 282695 4800 59 

Size No. Size No. Size No. Size No. Size No. 
2465 13 2440 6 2385 3 2305 4 2235 3 
2185 6 2175 6 2160 10 2135 6 2070 10 
2030 4 1990 8 1980 8 1950 11 1920 8 
1860 9 1850 2 1830 4 1780 3 1720 1 
1550 13 

There are small sizes and large ones, but none is inherently 
more unsuited for jumbos of 4800 than the reels already cut. 
It is just that those reels had others to match and that the 
matching sizes are now used up. So await orders for more of 
the missing sizes, before you deckle those left now. 

What if you must deckle the remaining reels now, before new 
orders arrive? If so, you should run the initial lot with a 
margin of 200 mm, not first with a low margin, then with a 
margin yet to be found: this keeps usage to 212 jumbos. 

But if you insist on separate sets, run the remaining reels 
globally (or use TRIMOPT): you need another 67 jumbos. So 
149 near perfect jumbos plus 67 poor ones makes 216 in all: 
216 - 212 or 4 jumbos are lost because we divided the data 
into two sets, good matches and poor matches (but we lost 9 
jumbos when we divided the data into five daily sets). 

Losing four jumbos in 212 is the possible Cost of Perfection 
-- on most of your work. The cost is due to the risk of not 
getting the new orders that would make perfection of the bad 
sizes, too. The risk should be negligible in a company with 
a continuous stream of orders. 

Implementation 

Data are required not only for size and number of reels, but 
also for paper type, delivery, client information and so on. 
So data input is naturally done in the office (via TRIMRAW, 
a program designed for data capture and file creation). Once 
the data are on disk, the disk can be used in the factory: . 
our program can run there and then, on an ordinary desk-top 
computer. The operator himself can print his deckling plans 
as he goes along, certainly so if he optimizes locally. 

---------------------~-~--~-----~--~~- -------
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In fact, at Mondi deckling plans continue to be made in the 
office, by the former master deckler: he enjoys running our 
program much more than he did his attempts at matching reels 
paper and pencil in hand. 

So the deckler has not lost his job. On the contrary, now 
he works effectively: he no longer juggles numbers, but he 
organizes cutting plans so as to integrate delivery dates 
with production schedules. He also decides whether a set of 
orders can be run locally or whether he must eventually get 
an absolute, global solution (if deadlines are to be met). 
If so, he finds the best global trim margin via TRIMARG. 
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