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At the 1985 Annual Congress of the South African Production & Inventory 
Control Society it was pointed out that the productivity gro"th rate for 
South Africa is completely out of kilter "ith that for the western indust­
rialised nations. The latter all display positive rates (some as high 
as that of Japan) whereas the rate for South Africa is - NEGATIVE. 

Partly as a result of this situation, more and more attention is being 
given to quality control and reliability engineering by our industrialists 
in their attempts to improve productivity. 
This is going hand in hand with the introduction of better techniques and 
better use of the latest technology. 

We should also give attention to analytical tools that may 
simple inexpensive way to improve our methods of analysing 
data, and in this way to improve our performance at little 
cost. 

be used in a 
industrial 

or no additional 

To this end two tools are discussed. They are by means new. But it does 
seem as though they could be more widely applied in the industrial milieu. 
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INTRODUCTION 

The reasons for fittin~ a distribution to data have been clearly stated by 

Hahn and Shapiro [6]. These are: 

1) The desire for objectivity 

2) The need for automating the data analysis 

3) Interest in the values of the distribution parameters. 

To this list we may also add: 

4) Making probability statements. 

To precisely these ends, various empirical distributions are being used 

by industrial analysts Jaily. Foremost of them is the normal distribution 

::1n which most forms of quality control charts are based, and which is also 

the de f&cto standard for hypothesis testing. 

The Poisson distribution is used extensively for acceptance sampling proc­

edures because it is somewhat easier to handle than the Binomial: And 

the number one distribution for reliability testing and analysis is our 

old friend the negative exponential distribution. 

There are of course many variations on the above themes. For instance 

the lognormal distribution is sometimes resorted to if the range of the data 

is several powers of 10 or if they display a long right hand tail such 

as for example·metal fatigue and electrical insulation life. 

There are also the instances for which the use' of the normal distribution 

is suspect. One such instance is that in which data are obtained in terms 

of absolute units. These data ~~Lt:':_<1~~~:_~t:':!.~~<1_1!~~~:.<1~~cL~~-~t:!~-r~~'!~<1 
normal distribution in which case the use of normal probability tables 

for hypothesis testing etc. should be exercised with caution. 

With regard to the use of the negative exponential distribution for 

the analysis of life data, the mai~ advantage is that it is a single 

parameter distribution (which makes it easy to use). The Weibull distr­

ibution on the other hand has a great variety of shapes which makes it 

much more flexible. It empiricall)' fits many kinds of data. And it is 

not as difficult to use as its rather formidable expression for the prob­

ability density function would suggest. 

In this paper two tools are discussed in the hope that the analyst will 

find them useful additions to his tool kit (if he is not already using 

them). They are the Folded Normal Distribution and the ~~eibull Distribution. 

Both are easy to use and require no specialized knowledge beyond that already 

possessed by the average analyst working with industrial data. 
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A] THE FOLDED NORMAL DISTRIBUTION. 

It may be opportune to reconsider our widespread use of the normal distr­

ibution for drawing inferences about data which exhibit a character­

istic Gaussian (humped) frequency curve. 

Very often our assumption of normality is quite valid. Over the years 

it has been demonstrated time and time again that many physical meas­

urements are closely approximated by the normal distribution. 

Christopher Chatfield (Bath University) says: "Indeed non-normality 

is so rare that it is a useful clue when it does occur"- ref [9] page 93. 

The problem with using the normal approximation occurs when we examine 

data which have been recorded in absolute units. When for example the 

deviation from a specified norm is recorded without algebraic sign. 

The measurement of out-of-round or out-of-true (skewness) are t)•pical 

examples. In cases such as these, where all defects are positive, 

if we regard the data as having a normal distribution then we are ignoring 

the fact that strictly speaking the distribution requires them to exhibit 

both positive and negative deviations from the norm. 

In fact what occurs is that there is a geometric folding of the distr­

ibution as shown in Figure l. 

FOLDED DISTRIBUTION 

PARENT 
DISTRIBUT IO~J 

'V 
~----+---------------------~-

0 
Three questions naturally arise. They are: 

1) How serious is this geometric folding? 

FIGURE 1 

2) To what extent will it nullify inferences based on the use of normal 

tables? 

3) What alternative methods for analysis should be used? 
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The answers to these questions are: 

Firstly, if the mean of our data divided br the standard deviation is 

greater than about 2,0 say then there is no pro':llem associated 

with using the normal approximation as long as the data satisfy 

requirements which we would appl)' in any case to confirm the 

hypothesis that they are normally distributed.* 

Second!)·, if the mean divided by the standard deviation is less than 2,0 

then we should exercise caution even if the data satisfy our usual 

normality test criteria. 

Thirdly, there is a very simple procedure for analysing data from a folded 

normal distribution. This method is presented below. It does 

not require the analyst to make use of the folded distribution 

per se but instead it allows him to map the parameters obtained 

from the field data on to a parent normal distribution which is 

then used as the reference distribution for hypothesis testing 

and for drawing inferences. 

The best way of illustrating the method is to consider an example. 

EXAMPLE: 

Consider an inspection process in which measurements are recorded 

in absolute units. 

Assume that the data clearly exhibit a Gaussian shape and that 

we are satisfied (on closer examination which need not be dealt 

with here) that they are approximately normally distributed. 

The mean is X = 30,3 units and the standard deviation is S = 21,43 

units. 

In the usual course of-events we would draw inferences etc using 

our well worn tables of the normal distribution. However, having 

been alerted to the fact that some folding may have occured, we 

form the ratio X/S and find that it is equal to 1,4. 

This value·indicates to us that we need to consider an alternative 

approach to the use of the tables. 

This approach is as follows: 

* This is not necessarily so if we are interested in the small percentiles 

of the distribution, say the 1% point. Throughout this paper it is 

assumed that we are dealing with percentiles in the region of 5%. 
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STEP 1: With X/S : 1,4 enter Table 1 below. 

It will be found that we have S/SN = 0,753 where SN is the standard 

deviation of the parent normal distribution which we seek. 

From this ratio we have: 
SN : 28,46. 

Similarly, from row two of the table the value of the mean of 

the parent distribution is found to be XN : 23,44. 

This simple step results in our being in possesion of a parent 

normal distribution which will serve as a reference distribution. 

The mean is 23,44 units and the standard deviation is 28,46 units. 

STEP 2: Use the parent distribution and the normal tables for h)'pothesis 

testing or for drawing inferences in the usual war. 

COMMENT: As expected, the parent normal distribution has a lower mean value 

and a higher standard deviation than the original data. 

Assuming that we wish to determine a 95% upper limit for the inspection 

process how would we go about this? 

ANSWER: Prob(xi ~ X) 0,95 and for the one-tailed case z : 1,64. 

Hence: X : (1,64) (28,46) + 23,44 : 70,12. 

In the long run 951o of our measurements will be less than or equal 

to 70,12. Only 5% are expected to exceed this value. 

Similarly, if we wish to establish 2 o limits in order to monitor 

quality or in order to construct a control chart, then we have: 

x + 2 o = 2(28,46) + 23,44 8:J,36. 

COMPARISONS. 
At this point some comparisons may be useful. 

Firstly, if we use the folded normal distribution per se to determine 

our 95% upper limit we obtain a value of 70,7 (in a much 

less straightforward way than the above method). 

Obviously 70,7 and 70,12 are close enough for most practical 

quality control situations. 

http://orion.journals.ac.za/



28 

Secondly, if we had not found the parent distribution and used the 

s amp 1 e values of X and S as the parameters for our 

reference distribution the 951o upper limit would be 

(1,64)(21,43) + 30,3 = 65,44. 

This is a more stringent quality limit than 70,12 

and by a fairly significant margin. 

CONCLUSION: 

x;s 
S/SN 

XN/SN = 

x;s = 
S/SN 

XN/SN 

x;s 
S/SN 

XN/SN 

THIS TABLE 

In a number of industrial applications we may find it necessary 

to regard our data as being approximated by a folded normal 

distribution and not a normal distribution. 

When this is the case we should relate the folded distribution 

to a parent normal distribution before testing hypotheses, or 

designing control charts, or drawing inferences etc. 

The method for doing so is described above and is sufficientlr 

accurate for most practical quality control situations. There 

are of course much more sophisticated techniques which make 

use of the folded distribution - but they provide only marginally 

greater precision. They are really not worth the effort. 

T A 8 L E 1 

1,320 1,340 1,360 1,380 l ,400 1,450 

0,620 0,673 0, 7013 0,733 0,753 0,793 

0,265 0,517 0,653 0,748 0,824 0,975 

1,500 1,550 1,600 1,650 1,700 1,750 

0,824 0,848 0,869 0,886 0,901 0,934 

1,097 1,203 1,298 1,386 1,468 1,545 

1,800 1,850 1,900 1,950 2,000 2,500 

0,924 o, 934 0,942 0,949 0,956 0,989 

1,619 1,690 1,758 1,825 1,889 2,46'!. 

IS TAKEN FROM REF (2] WHICH ALSO EXPLAINS THE THEORY UNDERLYING THE 

APPROXIMATION. 

The use of TABLE 1 makes life easy since it greatly simplifies the application 

of the folded normal distribution. 
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B] THE WEIBULL DISTRIBUTION. 

In 1939 Wallodi Weibull introduced his distribution as follows: 

"Consider a variable X which is random and has cdf F(x). 

l.Je mar write any F(x) in the form: 

F(x) = 1 - exp(- ~(x)) where the function ~(x) 

must be: 
1) Positive. 

2) Non-decreasing. 

3) Zero at a v~lue xu where xu is not necessaril)' zero. 

The simplest function satisfying these criteria is: 

F(x) = 1 - exp[-(x - x f'! X
0 

] 
u 

The onl)' merit of this cdf is that it is the simplest expression of 
the appropriate form. 

And since we cannot hope to expect a theoretical basis for distribution 

functions of random variables such as the strength of steel, or particle 

sizes etc. we should choose a simple function, test it empirically, 

and stick to it as long as no better has been found." 

There is no doubt that the Weibull distribution is an attractive one 

to deal with. It has come to play a very important part in reliability 

theory and in quality engineering. 

In an earl)' paper (1964) J N Berrettoni [7] demonstrates the wide .spread 

of applications of the distribution for describing empirical data. 

The applications he describes are: 

Corrosion resistance of magnesium alloy plates. 

2 Return goods classified by number of weeks after shipment. That 

is the number of weeks it took the customer to return a defective 
product. 

3 Number of down times per shift. 

4 Leakagefailure of dry batteries. 

5 Life expectancy of ethical drugs. 

6 Reliability of electric motors. 

7 Reliability of solid tantalum capacitors. 
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Another early application is due to J H K Kao (Technometrics 1959) [8} on 

the life-testing of electron tubes. 

More recently, B P Gu et al. (Materials Science & Engineering 1986) used 

it to describe the AL,Li particle distribution in binary AL-Li alloys. 

These are only a few examples. Many more are to found in the 'literature. 

Generally we de\'iate from the original .. ay of writing the distribution 

and use the following Greek notation instead: 

Where: 

F(x) 1 - exp[-(x/ a)8 ) for x > 0 

a = characteri~tic life-time of the function. This 

is the life-time at which 63,Z% of the items 

have failed. The matter of characteristic life­

time is referred to again later. 

8 = the shape parameter of the distribution. 

There are two aspects which we will immediately recognise. The first is 

that this is a shifted exponential distribution when 8 = 1 and when 1 # 0. And 

we have our well known negative exponential distribution so often used 

for life-testing when 8 = 1 and 1 = 0. 

Not so obvious is the fact that when 8 = 3, 5 the distribution approximates 

the normal distribution. 

In the above formulation of F(x) we have assumed that xu 0 

If this is unrealistic then the following modification must be introduced: 

F(x) = 1 - exp[-((x- 1 )/a) 6} 1.> 0 and x > 0. 

What this implies is that our data start at a point 1> 0 and not at zero. 

In many life-time situations this is usually the case. There is a certain 

minimum time below which no items have beer. observed to fail. 

The first step in using the Weibull distribution is of course to estimate 

the parameters. This is relatively simple. There is no need to resort 

to the use of ldeibull probability paper. 

STEP 1. Tabulate the data and determine the cumulative frequencies (cum.f). 

From the cum f find the cumulative probabilities F(x). 
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STEP 2. Calculate ln(xi) and ln[ln{ 1/(1 - F(xi))) J for all i. 

STEP 3. Optional. Plot ln(xi) on the.horizontal axis and the values of 
,. 

ln[ln {1/(1- F(xill} Jon the vertical axis using ordinary linear 

graph paper. 

Your points should form a straight line. If not then revise your 

value of 1 as per the procedure described on page 12. 

A common occurence is that some points fall on a straight line 

whereas uthers fall on another straight line. In this case there mar 

be more than one set of parameters. We will return to this sit­

uation later. 

STEP 4. Perform a linear regression analysis. 

Obtain the parameters in the model: 

ln[ln {1/(1 - F(x))j j a + b ln(x). 

We then have: 

1 - F(x) 

exp - ~ x/ a] 13 

Where: a = [exp(a)]-l/b 

8 b 

Note: In the foregoing we have assumed that T = 0. 

EXAMPLE: 

Eighty specimens of Kevlar belting which is used on a popular 

belt driven motor crcle were tested to the limit of serviceability. 

The results are tabulated below. 

The lifetime is in units of 500km. 

LIFETIME 20 30 40 50 60 70 80 90 100 110+ 

N° OF FAILED 6 8 6 14 11 10 4 9 = 
SPECIMENS 

CUM f 6 14 20 34 45 55 62 67 71 80 
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Using these data the folloe;ing table is obtained as described in STEP 2. 

F(x) ln(xi) ln[ln { 1/(l - F(x. ))} 
1 

0.075 3,00 -2,55 

0,175 3,40 -1,65 

0,250 3,69 -1,25 

0,425 3,91 -0,59 

0,563 4,09 -0,19 

0,690 4,25 0,16 

0,780 4,38 0,42 

0,840 4,50 0,61 

0,890 4,61 0,79 

1,000 4,70 N/A 

A linear regression analysis is then performed as required by STEP 4. 

The results of this analysis for the above data are: 

a - 8,9 

b 2,12 also r = 0,998 

The estimates of the parameters of the approximating Weibull distribution 

are: 
a = 66,98 and B = 2,12. 

Note: In the above table it will be observed that when F(x) = 0,632 

then the value in the last column is ~ 0. We expect this since 

the characteristic life of the distribution is the lifetime at 

which 63,2% of the items have failed. 

This is also the value of the parameter a . 

Having performed STEPS 1 to 4 and obtained values for a End B we are in 

a position to answer a number of relevant questions concerning the experiment. 

Q 1. The warranty period on these belts is 35 OOOkm. How many are expected 

to fail before the warranty expires? 

ANS: 1 -{F(x) = exp[- (70/66,98) 2 •12 ]) = 67%. 

http://orion.journals.ac.za/



33 

Q 2: How do •~e determine percentiles? What is the 10% percentile? 

ANS: Let x be the p th percentile. p 

Then: X o;(- ln(l - p)]l/13 
p 

Hence 66,98[- ln(0,90)] 112 •12 23,2. x,l 

Q 3: What is the most likely life of these belts, i.e. the mode? 

ANS: Let be the mode. X m 

then X = o;fl - 1/ 13 J1113 
m 

66,98~1 - 1/2,12!112 •12 = 49,57 " 50. 

Q 4: What is the hazard function of this distribution? * 

ANS: The hazard function is given by h(x) = ( B/o;)(x/o;)l3-l for x>O 

This is a very useful function. From the above expression it is 

apparent that it can describe failure rates which are increasing, 

decreasing or constanL The clue is the value of B. 

The correspondence is: 
a) Increasing rate with age 8 

b) Decreasing rate with age B < 
c) Constant s l** 

In the Kevlar belt example we have S > 1 and hence the belts have 

an increasing failure rate with age. They tend to wear out. 

A table of the Kevlar belt data together with the l.Jeibull estimates 

i5 given below. 

b~· the x2 test. 

The approximation is a good one, as confirmed 

KEVLAR BELT EXAMPLE-RESULTS OF WEI BULL F I T 
--~-------------------------------------------------------

LIFE = X 20 30 40 50 60 70 80 90 100 

" OBSERVED F(x) 0,075 0,175 0,250 0,425 0,563 0,690 0,770 0,840 0,890 

WEI BULL F(x) 0,07 0,17 0, 29 0,42 0.55 0,67 o. 77 0,85 0,90 

110 

1,00 

0,94 

* The hazard function is a measure of the proneness to failure as a function 
of the age of the item. It is defined as follows: 

Hazard Function h(y) = f(y)/[1 - F(y)l 

** Remember that when this parameter· is unity we have the negative exponential 
distribution - it is the unique distribution with a constant hazard rate. 
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A NOTE ON THE ESTIMATION OF 1. 

It is frequently found in practice that the plot resulting from STEP 3 is NOT 

a straight line. In these situations we need to obtain a value of 1 such that 

when ln(x -1) is used in place of ln(x) a stLaight line is in fact obtained. 

This requires a lot of trial and error, particularly when graphical proc­

edures are resorted to exclusively. 

And even when a straight line does result we may ask ourselves: How straight 

is straight? Is the choice of 1 a good one? The optimum perhaps? 

These questions can be answered to some degree by making use of the fact 
~ 

that when ln[ln l l/(1- F(x))j ). -7 then F(x) = 0 for all practical purposes. 

Let a + b ln( x - T 10 = -7 

Then ln(x - 1 )0 = (-7 - a)/b 

(x - 1 lo = exp[ (-7 - a)/b) 

If (x - 1 )
0

oo 0 our choice of 1 is a good one. 

Naturally one cannot adopt this little procedure blindly. The analyst 

will need to bring his knowledge of the system that is generating the data 

to bear on the problem of finding 1. 

In the Kevlar belt example we have: 

(x)
0 

= exp[(-7 + 8,9)/2,12] = 2,45 ~ 0. 

Our knowledge of the system leads us to disregard the small 

value of (x)
0 

obtained above and to leave 1 = 0. 
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COMPLEX WEIBULL DISTRIBUTIONS. 

A number of researchers have commented on the sensitivity of the Weibull 

plot and its ability to show up heterogeneous and/or mixed distributions. 

Weibull himself found them when he was investigating the fatigue life of 

steel samples. Berretonni found dichotomies in the leakage failure of 

batteries. Investigation brought to light the fact that early leakage 

occured at the top of the battery whereas later failures were due to bottom 

leaks. Berretonni also found that ethical drug failure has two phases. 

In the first phase the failure per se.is increasing at a decreasing rate which 

terminates at a high point and then remains constant. 

In the case of tests on capacitors it has been found that the failure rate 

decreases initially and then enters a second phase with a further decrease 

in failure rate. Interestingly enough this implies that the product actually 

tends to improve with age. This is the well known burn-in phenomenon. 

EXAMPLE OF A CASE IN WHICH WE NEED TO DETERMINE A COMPLEX DISTRIBUTION. 

Consider the following data: 

" ln[ln { 1/(1 - F(x) J}) LIFE = x F(x) In(x) 

10 0,022 2,300 -3,81 

15 0,130 2,710 -1,97 

zo 0,522 3,000 -0,30 

25 0,739 3,220 0,295 

30 0,826 3,400 0,662 

35 0,913 3,560 0,893 

40 0,939 3,690 1,029 

45 0,961 3,810 1,177 

50 0,98:3 3,910 1,405 

55 0,991 4,010 1,550 

60 l,OOll 4,090 N/A 

Casual examination of these data may not reveal the fact that they describe 

a complex distribution. In many cases such as this one, if we plot the 

original frequency distribution using x and f(x) then we see the situation 

depicted in Figure 2 below whereas the real situation ma0 be similar to 

that shown in Figure 3. 
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f( x) 

X 

FIGURE 2 FIGURE 3 

When the last two columns of the abo~e table are plotted we have the following 

result: 

3 

2 

"'; 
.... 0 

'- -1 
c: .... ...... 
c: -2 ..... 

-3 

-4 

2 3 4 
ln(x) 

Clearly there are two straight lines that can be drawn through the data. 

From these separate regression models two sets of Weibull parameters can 

be obtained. 

X 
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A simple distribution is just not good enough for modelling this complex 

failure situation. 

Fort una tel)' the Wei bull distribution lends itself admirably to complexity. 

It will be shown below that it is fairly simple to obtain mixed models 

and composite models of two (or more) Weibull distributions. 

It is possibly for this reason that many researchers have opted for the 

Weibull instead of choosing lognormal, Pearson type Ill, or one of the 

Johnson distributions. 

After all, there is little theoretical justification for choosing it above 

the others. 

There are two commonly used complex models. 

THE MIXED WEIBULL DISTRIBUTION. 

The cdf is given by: 

STEP M1: 

STEP M
2

: 

F(x) l: P/ i (x) X ) 0 

Plot the ln( x) and ln[ ln { 1/(1 - F ( x) } ] data and obtain reg­

ression estimates etc .. 

Assuming that we have only two Weibull distributions (as is the 

case here) formulate the model as follows: 

Initial failure is given by: 

Bl 
- exp[- { (x - 1 1 )/a 1 } ] and wear out failur.e by: 

Bz 
- exp[- { ( x - 1 2 ) I a 2 } l 

The mixed cdf is: 

6 1 B 2 
1- p1exp-((x -1 1l/a 1] -p2 exfJ-[(x- 1 2lla 2J 

Where p1 and p2 are the mixing parameters and p1 + p2 = 1. 
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The explanation given to F(x) is that the life of the component is a mixed 

chance of surviving failure in the initial stages and then surviving wear 

out later on. 

Usually one finds that the initial failure rate is a flatter line than 

the "ear out line if there is no initial burn-in. 

The mixing parameters p1 and p2 mar be obtained graphically or may be com­

puted. In the computational procedure the value of ln(x) for which the 

line with the greatest b-value reaches a value of ln[ln { (1/(1 - F(x)»] 

equal to +2 is used to estimate p1• The rationale behind th·~ choice of the 

value +2 is that at this point F(x) = 1 for all practical purposes. 

We have: 

EXAMPLE: 

The first 

The mixing proportion p
1 

is then obtained from: 

p1(est) =I- l/[exp{exp(a1 + b1(2- a2)/b2l)] 

An analogous expression pertains when b1 > b2. 

Consider the data given on page 13. 

four points fall on the line with constants al = 

and incidently we have rl = correlation coeff = 0,995. 

On calculating (x) 0 we find (x)o = exp[-(a1 + 7)/bl] = 5. 

-14,37; 

For this situation this is a significant departure from zero. 

Hence it is necessary to assign a value other than zero toT. 

Try T : 7. 

bl 

Then: a1 = -6,494 ; b1 = 2,339 ; (r = 0,991) and (x - T) 0 = O,B. 

This is satisfactory. We find therefore that a1 = 16,06 

In a similar way it is found that: 

<Az = 16,61 s2 = 1,4 and T2 5 

The mixed model is to be composed of: 

and 

1 - exp-[(x - 7)/16,06]2•339 

- exp-[(x- 5)/16,61]1 ' 4 

B1 = 2,34. 

= 4,6081 
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The next step is to find p1 and p2, the mixing parameters. 

From p1 = 1 - 1/[exp{ exp(a2 + b2(2 - a1)/b
1

l)J 

we have p1 0,95 and hence p2 = 0,05. 

The mixed Weibu11 model is: 

F(x) = 1 - p1exp-[(x- 7)/16,06]2•339 - p2exp-[(x- 5)/16.61]1•4 

THE COMPOSITE WEIBULL DISTRIBUTION. 

The cdf is: 

F(x) F. (x) 
J 6 j ' X ' 6 j+l j = 0,1,2 .... 

Where: Fj(x) 1 - exp-[(x Tj)/ajJ 
Bj 

The 6j's are points at which partition occurs. 

n. 

Note that 60 = 00 Hence if we have a distr-

ibution with two components there is only one partition parameter. 

The value of 6 is obtained from: 

When graphical procedures are used 6 is taken as the intersection of the 

two Weibull plots. 

EXAMPLE: 

Referring to the data on page 13 we have the following composite Weibull 

model: 

F(x) 1 - exp-[(x- 7)/16,06) 2,339 for 7 ~ x .( 25 

- exp-[(x- 5)/16,61]1,4 for 25 ' x < "' 

0 otherwise. 
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RESULTS: 

COMPOSITE WEI BULL ~1 I XED ~IE !BULL 
" F(x) r

1
(x) 'z(x) F(x) 

[(] 0,022 O,ll20 0,027 
15 0,130 0,100 0,188 
20 0,522 0,457 0,463 
25 0, 739 0, 730 o, 727 0, 729 
30 O.U26 0,830 0,898 
37 0,913 0,900 0,97J 
40 0,?39 0,940 0,992 
45 0.961 0,967 0,997 
50 0,983 0,982 0,999 
55 0,991 0,991 
60 1,000 0,995 

NOTE: The better fit of the composite model indicates that failure is due to 

tl•JO different causes and is not a mixed chance. See also page 16 (top). 

A general observation regarding the mixed model (which is borne out above) 

is that it favours the LHS of the distribution. For this reason it is 

often employed by life-data analysts who are especially interested in 

early failure rates. 

The mean of the mixed distribution can be shown to be equal to the weighted 

average of the means of the subpopulations in the proportions p
1 

and Pz·* 

CONCLUSION 

The value of the l·Jeibull distribution and its derivative models has been 

illustrated using two examples. 

Graphical means (which are often the norm for Weibull analysis) have 

not been resorted to. 

The use of Weib~ll paper is not essential. 

It is hoped that the easy-to-use prdperty of the ~.,eibull distribution 

has been illustrated. You really need nothing more th3n a cheap pocket 

calculator. Preferably one which can perform linear regression analysis 

automatically. 

* Obtaining the first moment of the compl0x distribution is described in 

ref [8 J. 
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