
47 

ORiON, Vol. 4, No. 1, pp. 47-64 ISSN 0259-191X 

ABSTRACT 

PROBLEM SOLVING 
USING 

ARTIFICIAL INTELLIGENCE TECHNIQUES 

by 
A.R. Greef and R. Reinecke 

Centre for Robotics 
Department of Industrial Engineering 

University of Stellenbosch 

Real-world problems often do not lend themselves to an algo­
rithmic solution. Humans, however, cope with these problems 
despite their fallible problem solving techniques. Instead of 
trying to construct algorithms to solve problems AI 
researchers have concentrated on using the more successful 
methods used by humans. This paper reviews the area of prob­
lem solving in the field of Artificial Intelligence. This 
includes problem representation for comJ?utation, "weak" meth­
ods of searching for a problems solution, knowledge represen­
tations that facilitate more efficient search strategies and 
planning - an advanced problem solving technique. 

0.0 INTRODUCTION 

What is Artificial Intelligence (AI) and why should it 

be of use to Operations Researchers? 

Barr and Feigenbaum [1] answer the first part of the 

question by defining AI to be "the part of Computer Science 

concerned with designing intelligent computer systems, that 

is, systems that exhibit characteristics we associate with 

intelligent human behaviour". Margaret Boden [2) explains 

that "computers are its (AI) tools, because its theories are 

expressed as computer programmes that enable machines to do 

things that would require intelligence if done by people". 

The second part of the question is ans•vered when consid­

ering that much of Operations Research is concerned with 

http://orion.journals.ac.za/



48 

planning activities or actions required to solve problems. 

The field of AI covers a number of areas of which problem 

solving is one. Research in this area has been involved with 

finding solutions to problems that do not lend themselves to 

an algorithmic approach, a characteristic that many problems 

display. Furthermore, in many instances the knowledge or 

information about a problem domain is difficult or unnatural 

to represent in data structures such as arrays or sets of 

numbers. Often it is more "natural" to represent a problem 

as a set of English language sentences or statements describ­

ing the problem domain. In these instances AI programming 

techniques are useful. 

There are two difficulties associated with the algorith­

mic (step-by-step) approach to solving a class of problems 

(Graham [3]): 

a) there are some classes of problems for which there is no 

algorithm that will solve every problem in a particular 

class and, 

b) even if there is an algorithm that will solve every prob­

lem in a particular class, the algorithm may be so ineffi­

cient as to be unsuitable for practical problems (pro­

grammes that run in exponential time are considered to be 

impractical). 

Humans, however, often cope with a class of problems 

even though no all-encompassing algorithm exists and if one 

does exist, it runs in exponential time. This is done in 

spite of the fact that the problem solving techniques 

employed have been found to be fallible, approximate and 

based on quick-and-dirty methods. Instead of trying to con­

struct algorithms to solve problems AI researchers have con­

centrated on the more successful methods used by humans. As 

humans can understand and express problem solving knowledge 

more easily using symbols and natural language, symbolic pro­

gramming languages have been developed for AI programming 

which tend to be based on symbol processing rather than num­

ber crunching. 

This paper reviews the area of problem solving in the 

field of AI. Part 1 illustrates methods for representing a 

problem for coding into a computer. Part 2 gives an overview 

http://orion.journals.ac.za/



49 

of the "weak" methods that can be employed for finding the 

solution to a problem. Part 3 describes the production sys­

tem architecture that most AI programmes adhere to. Part 4 

presents methods of representing knowledge to enrich the 

problem representations outlined in Part 1. Finally, Part 5 

contains an overview of planning, an advanced problem solving 

technique. 

1.0 PROBLEM REPRESENTATION 

There are two well-used methods for representing a prob­

lem (see Winston (4] for details). The first method treats 

the problem as a network of inherently ordered states. The 

second sees the problem as a series of sub-problems which in 

turn have sub-sub problems and so on until a problem with an 

immediate solution is reached. 

Formally these two problem representation methods are 

known as: 

a) the state-space representation, and 

b) the problem-reduction representation. 

The choice of which representation to use for a particu-

lar problem is commented on by Winston (4]: 

"In a practical sense, however, some representa­

tions emphasize things that are more important to 

solving a class of problems. one scheme, there­

fore, is more powerful than another because it 

offers more convenience to the user even though 

theoretically, both can do the same work." 

1.1 THE STATE-SPACE PROBLEM REPRESENTATION 

A state-space problem representation consists of states 

which are frozen conditions of a problem at each stage of its 

solution. This representation should be used for problems 

whose solutions are characterized by a succession of states. 

An example is the "shortest path" problem (see Figure 1). 

This problem can be represented by a network with nodes 

representing cities and links representing distances between 

the cities. 

The problem is that of finding the shortest possible 

route that a traveller can take in travelling from city "S" 

http://orion.journals.ac.za/



50 

to city "G". Each node in Figure 1 depicts a state of the 

salesman in relation to his start and goal position. The 

problem's solutio~ can now be given as a suitable succession 

of states that need to be attained in going from node "S" to 

node"G". 

FIGURE 1 THE SHORTEST PATH PROBLEM 

When scanning networks for a solution it is possible to 

become trapped in a cyclic loop (for example S-D-A-S-D-A in 

Fig. 1). This can be detected and stopped by extra pro­

grammed mechanisms, however, it may be easier to eliminate 

cyclic paths from the network, the resulting structure is 

then called a state-space graph or tree (see Fig. 2). 

G 

FIGURE 2 A STATE-SPACE GRAPH FOR THE SHORTEST PATH PROBLEM 

http://orion.journals.ac.za/



51 

Although this increases the size of the problem repre­

sentational data structure it reduces the amount of difficult 

code needed to check for cyclic loops. Networks are made 

into trees by tracing all the possible paths to the point 

that they re-enter previously visited nodes or they reach a 

node with no exit path. By convention the tree has nodes 

connected by branches. Branches directly connect parent nodes 

with children nodes. The top node, the one that has no par­

ent, is called the root node. 

1.2 THE PROBLEM-REDUCTION PROBLEM REPRESENTATION 

Using the problem-reduction (or goal-reduction) method, 

the problem is structured as a set of sub-problems (or sub­

goals). The problem's solution is seen as the achievement of 

sub-goals in going from the initial goal to the final goal. 

Ah example problem represented using problem-reduction is the 

a-puzzle. A tray contains eight tiles numbered 1 to 8 and a 

space where the ninth tile has been left out as shown in Fig­

ure 3. 

The tiles are initially positioned in a random state in 

the tray (Fig. 3(a)). Solving the puzzle requires the order­

ing of the tiles as shown in Figure 3(b). The tiles can be 

moved by sliding them either up, down, left or right as the 

space permits. 

(a) (b) 

FIGURE 3 : THE 8-PUZZLE PROBLEM 

Applying the problem-reduction representation breaks the 

problem of ordering the initial a-puzzle into three sub­

problems that are easier to solve, namely: 

1) The problem of getting the first row in order. 

2) The problem of getting the second row in order and 

keeping the first row in order, given that the first 

http://orion.journals.ac.za/



52 

row was in order. 

3) The problem of getting the third row in order and 

keeping the second and first rows in order, given that 

the second and first rows were in order. 

Each of the above sub-problems can be further decomposed 

into the sub-sub-problem of moving each tile into its respec­

tive place in the row being ordered. Problem-reduction con­

tinues in this manner until an immediate problem (eg. move a 

tile either left, right, up or down) is achieved. 

The above problem decomposition is one of many ways to 

solve the 8-puzzle. Ordering columns instead of rows is 

another alternative. These multiple methods of reducing a 

problem into smaller problems can be depicted as a general­

ized tree called an AND/OR graph (Fig. 4). 

2 4 7 1 2 3 
1 3 --4 5 6 
5 6 8 7 8 

~ BY COLUMNS 

2 4 7 1 2 3 ~ ~ 1 2 3 1 2 3 
1 3 f--? ? ? 4 5 6 f-- 4 5 6 
5 6 8 ? ? ? ? ? ? 7 8 

~ NO.DE / 1 2 3 1 2 3 ~ 

AND NODE ? ? 7-4 5 6 
? ? ? ? ? ? l ~ 

r 
FIGURE 4 : AN AND/OR GRAPH FOR THE 8-PUZZLE 

The AND/OR graph consists of nodes representing the 

decomposed sub-problems and arcs linking the sub-problems in 

the order that they must be considered. The start node cor­

responds to the initial problem. If a parent node is solved 

by solving any one of its children nodes the parent node is 

called an "OR" node (the start node is an "OR" node) . If a 

parent node is only solved when all of its children nodes are 

http://orion.journals.ac.za/



53 

solved then the parent node is called an "AND" node. To dis­

tinguish "AND" nodes from "OR" nodes, the arcs leading to 

"AND" node children are joined by a line as shown in Figure 

4. 

2. "WEAK" PROBLEM SOLVING TECHNIQUES 

Having represented a problem using one of the methods in 

Part 1, its solution .can then be formulated as ·a search for a 

sequence of nodes in a graph that connects the root node with 

a terminal node. This sequence of nodes is the solution to 

the problem. 

If a tree search is conducted by starting with the ini­

tial problem configuration(s) at the root of the tree and 

continues by tracing the solution path to the final problem 

configuration at a terminal node, then the system conducts 

forward reasoning (forward chaining). If the search begins 

at the final problem configuration and ends at the initial 

problem configuration, the system conducts backwards reason­

ing (backward chaining). 

Two exhaustive search methods are (see Rich [5] for oth­

ers) : 

(a) depth-first search and 

(b) breadth-first search. 

A depth-first search considers each node in a down-up 

and left-to-right fashion. Breadth-first search traverses 

across the nodes, also from left-to-right, considering all 

the nodes on one level before considering any on a lower 

level. The two search techniques are shown in Figure 5. 

These brute-force techniques can be used effectively 

with small search spaces, however with most practical prob­

lems a combinational explosion results with the nodes of the 

search tree growing exponentially. Another problem associ­

ated with brute-force search is that they are not guaranteed 

to find the problem solution of least cost although they do 

find some solution. In these cases searches can be made more 

efficient by employing some "heuristic" that will guide the 

search in the right direction. 

The word "heuristic" comes from the Greek word which 

means "serving to discover". A heuristic is any hint or rule 

http://orion.journals.ac.za/



54 

of thumb which helps to guide the search for a problem. A 

search guided by heuristics is called a heuristic search. 

(This should not be confused with the term "heuristics" as 

used in knowledge representation) . 

DEPTH-FIRST SEARCH BREADTH-FIRST SEARCH 

FIGURE 5 : "WEAK" SEARCH TECHNIQUES 

A heuristic which can be used to find a solution for the 

"shortest path" problem in Part 1 is to always choose cities 

that have the least distance , as the crow flies, to the goal 

city, as the next step in the search path. A number of gen­

eralized heuristic search methods are presented in AI books 

such as those of Winston [4] and Rich [5]. 

3.0 PRODUCTION SYSTEMS 

Most AI systems have a clear separation between the 

standard computational components of data, operations and 

control. Various generalizations of this computational for­

malism are known as production systems. The major elements 

of an AI production system are (Nilson [6]) : 

a) a global data base; 

b) a set of production rules; and 

c) a control system. 

The data base contains a description of a problem repre­

sentation and whatever other information that is appropriate. 

It may be as simple as a small matrix of numbers or as com-

http://orion.journals.ac.za/



55 

plex as a large relational file structure. Some parts of the 

data base may be permanent, while others may pertain only to 

the solution of the current problem being solved. The data 

base is changed during the problem solving process to reflect 

the problems current status. 

A production rule is of the form: IF a certain condition 

is satisfied THEN do the following. The rule consists of a 

left hand side (a pattern) that determines the applicability 

of the rule, and a right hand side that describes the action 

to be performed if the rule is applied. Production rules are 

matched against the problem state in the global data base. A 

forward chaining system matches the left hand side of a rule 

against the data base and updates the data base as dictated 

by the right hand side of the rule. A backward chaining sys­

tem attempts to match the right hand side of the rules to the 

d·ata base and updates the data base as dictated by the left 

hand side of the rule. Production rules are then the opera­

tors that define the conditions necessary to move from one 

state or sub-problem (see Part 1) to another during the trav­

erse of a graph representing a problem. 

Under direction of the control system, the computer 

searches through a list of productions, trying to match each 

one against the data base. The control strategy specifies 

the order in which the rules are compared to the data base 

and a way of resolving the conflicts (conflict resolution) 

that arise when several rules match at once. A typical con­

trol strategy is to use a depth-first search to specify the 

order in which the nodes of a problem graph are to be consid­

ered. A conflict resolution strategy would be to consider 

the first rule that is found. The control system continues 

to apply production rules until a goal state exists in the 

data base or until it is discovered that the problem has no 

solution. Furthermore, it keeps track of the problems solu­

tion path. 

4.0 KNOWLEDGE REPRESENTATION 

In order to solve complex problems using artificial 

intelligence, a large amount of knowledge and some mechanisms 

for manipulating that knowledge to create solutions, is 

http://orion.journals.ac.za/



56 

needed. So far only a very general method of manipulating 

knowledge - search, has been presented. Due to their gener­

ality, these search techniques are limited and only form the 

skeleton of practical AI systems. More specific knowledge 

representation models allow for more powerful inference mech­

anisms to guide the search for a solution. Emphasis is 

placed on enriching the knowledge representations using 

semantics and heuristics that constrain the search for a 

solution. Heuristics are now embedded in the knowledge repre­

sentation rather than in the control system as was previously 

done. 

A knowledge base is the collective term for a production 

system's global data base and set of production rules. 

Objects, facts and relations describing a problem domain are 

encoded into the data base. This is termed declarative knowl­

edge. The operators that act on the data base contain knowl­

edge on what to do if certain conditions arise in the data 

base. This is termed procedural knowledge. 

There are two schools of thought concerning how knowl­

edge should be represented (Winograd [7]). One school sup­

ports the theory that knowledge is stored in the human brain 

in a declarative manner and that there are general procedures 

that manipulate the knowledge. The other school supports the 

theory that knowledge is contained as procedures (production 

rules) only and there is no declarative knowledge. Often the 

best representation schemes use both declarative and proce­

dural knowledge. 

The following sections give a brief description of the 

knowledge representation methods. 

4.1 SEMANTIC NETWORKS 

Semantic networks were first proposed by Quillian [8] as 

a psychological model depicting how declarative knowledge is 

encoded in human memory. A semantic network is a collection 

of objects called nodes. The nodes are connected together by 

arcs or links which represent actions, events or relations 

between the objects. A node-and-link network is not neces­

sarily a semantic network, however. A true semantic network 

must have semantics. Figure 6 shows a portion of a semantic 

http://orion.journals.ac.za/



57 

network depicting the relationships between different classes 

of machines. In this case lathe-20 is of the class lathe 

which is a-kind-of (A-K-0) metal remover. 

As soon as an object has been identified as lathe-20 for 

example, it can inherit all the properties of its super­

classes lathe, metal-remover and CNC-machine. Inheritance 

information can be found by searching the network and follow­

ing the A-K-0 links. For example, to find out what lathe-20 

is "controlled-by" the A-K-0 links are traced to the CNC­

machine object node that has a relation showing that all 

these machines are controlled by a computer. A simple 

breadth-first search will accomplish this. 

FIGURE 6 A SEMANTIC NETWORK REPRESENTATION 

Default values can be expressed as in the case of the 

number of axes that the milling machine and lathe have. Here 

the lathe sub-class has a default value of two axes: however, 

the metal-remover superclass has a default value of three 

axes. This is the value inherited by the mill sub-class. 

Semantic networks represent declarative knowledge con­

cerning a problem, the solution to which is found using gen­

eralized search procedures. The links in the network make 

class-based inheritance opportunities explicit, thus facili­

tating the work of class-oriented inference procedures. 

4.2 FRAME REPRESENTATIONS 

Minsky [9] first proposed the frame representation of 

knowledge. A frame is a collection of semantic network nodes 

and links that together describe a stereotyped object, act or 

http://orion.journals.ac.za/



58 

event. Stereotyping allows an element of predictability and 

expectation to be built into the representation. A frame-has 

slots that may contain default values, pointers to other 

frames, sets of rules, or procedures by which values are 

found (Harmon and King (10]). 

Figure 7 shows part of a frame representation for 

instructing a robot to move a block from position A to posi­

tion B. The frames are depicted as nodes in a graph. 

The frame "MOVE-BLOCK" has two types of slot: the loca­

tion slot, representing an expected condition and containing 

a value which gives the position of the block; and the if­

needed slot which calculates a value for the block's mass if 

it is required. The latter slot filler is called procedural 

attachment. This inclusion of procedures in frames joins 

together the declarative and procedural representations of 
knowledge. 

FRAME MOVE-BLOCK 
TYPE EVENT 
IF -PRESENT 1 BLOCK 
LOCATION 1 POS-A 
DESTINATION 1 POS-B 
IF -NEEDED : BLOCK MASS VOL x DEN 

t 
FRAME PICK-BLOCK 
TYPE MOVE-BLOCK 
GRIPPER 1 BIG GRIP 
HAND 1 OPEN 
ROBOT • IDLE 
DO-ACTION 1 EXECUTE PICK PROG. 

FRAME CLEAR-BLOCK 
TYPE EVENT 

--o 
FRAME PUT-BLOCK 
TYPE MOVE-BLOCK 
HAND 1 CLOSED 
ROBOT 1 IDLE 
DO-ACTION 1 EXECUTE PUT PROG. 

FIGURE 7 A FRAME REPRESENTATION 

Solving a problem that is represented using frames 

requires a search (depth-first, for example) to traverse the 

problem representational graph. In this case however, a node 

is only included into a problem solution if all the frame 

slots are matched in the global data base. 

4. 3 RULES 

A rule-based system encodes only procedural knowledge of 
the form: 

http://orion.journals.ac.za/



59 

IF (condition] premise 

AND (condition] 

THEN (action 1] conclusion 

and (action 2] 

Rules are used with either attribute-value (A-V) or 

object-attribute-value (0-A-V) representations. A-V and 

0-A-V relationships are a specialized case of the semantic 

network approach. Exotic links are removed leaving two 

simple relationships. The attribute <- value link is an 

"IS-A" link and the object -> attribute is a "HAS-A" link. 

FIGURE 8 REPRESENTATION USING RULES 

Rule-based systems have enjoyed the most success in the 

construction of Expert Systems. MYCIN (in O'Shea (11]) uses 

the 0-A-V rule representation and most PC based Expert System 

shells use the A-V form of rule representation. An example 

of an A-V rule is: 

ATTRIBUTE PREDICATE VALUE 

IF milling machine is requesting service 

& correct gripper is attached to robot 

& part location is input buffer 

THEN message sent to robot is "EXE MOVE PART" 

The above rule states exactly the correct action to be 

taken if the premise is true. In some domains it is advanta­

geous to assign a certainty factor to the rule which repre­

sents the certainty of the inference contained in the rule 

http://orion.journals.ac.za/



60 

(eg. MYCIN and PROSPECTOR Expert Systems). By using these 

numbers it is possible to combine several sources of incon­

clusive information to form an almost certain conclusion. 

Rule-based knowledge representations can be diagrammati­

cally represented with AND/OR graphs as shown in Figure 8. 

Finding the solution a problem is then performed by searching 

the graph in a forward chaining or backward chaining manner. 

4.4 REPRESENTATION USING LOGIC 

Real-world facts, relations and actions can be repre­

sented by statements written as well-formed-formulas (wff's) 

in the First Order Predicate Calculus. Logic representations 

provide a useful method of reasoning with knowledge namely, 

theorem proving. There are two basic statements (wff's) in 

logic programming: 

A. - an assertion or piece of declarative knowledge 

A:- Bl & ... & Bn- which is a piece of procedural knowl­

edge stating that the sub-goals Bl to Bn must be 

satisfied in order to satisfy the sub-goal A. 

A fact can be represented in logic as a binary (two­

argument) relation. For example: 

OBJECT(BOOK, RED) 

states the fact that the object which is a book is the colour 

red. Action representations have n-argument relations. For 

example: 

GIVES(BOOK, JOHN, MARY) 

states that John carries out the action of giving a book to 

Mary. A procedure can be written as 

HAS(BOOK, MARY):-

OBJECT(BOOK, RED) AND GIVES(BOOK, JOHN, MARY) 

which states that Mary has the book, which is an object, 

after John carries out the action of giving the book to her. 

There are a number of inferencing mechanisms which can 

be used to infer new conditions from a knowledge base of log­

ical wff's. Modes Pones is one which uses the deduction that 

if A is true and A implies B, then B is true. Resolution is 

another inferencing mechanism which tries to prove that the 

negation of a query statement is inconsistent with the facts 

contained in the knowledge base. If it is inconsistent then 

http://orion.journals.ac.za/



-- l 
61 

the statement is true; otherwise, it is false. 

Wff's representing a problem can be mapped onto an 

AND/OR tree. The problems solution is then given as the 

sequence of logical operators applied to the data during the 

theorem proving process. 

4.5 STRONGER PROBLEM SOLVING STRATEGIES 

The control strategy determines the manner in which the 

problem representational graph is to be searched for a solu­

tion. When dealing with complex problems a more efficient 

search for a solution is facilitated by placing knowledge, 

specific to the problem, into the production system rules or 

operators. Heuristics are now coded into the procedural 

knowledge rather than in the control part of the system. 

Intelligent procedures working in conjunction with "weak" 

search techniques prune the search tree rapidly and lead to 

more efficient problem solving systems. 

There are a number of ways in which a knowledge repre­

sentation can hold information about which procedures (opera­

tors or rules) to consider during the traverse of a solution 

space : 

1) Action-centred control systems have procedures that 

know which other sub-procedures can be considered by the con­

trol system. MYCIN, for example, has rules that contain the 

rule numbers of further rules that must be considered next if 

the current rules premise exists in the data base. 

2) Object-centred control systems use class descrip­

tions to determine which set of rules apply at any given 

time. For example, if the problem is to determine which mode 

of transport to use in travelling 50 km, then it is more 

feasible to go by car, taxi or train and not by bicycle or 

plane. A class of procedures is thus considered under cer­

tain conditions. GPS (General Problem Solver) uses this con­

trol. 

3) Request-centred control systems have procedures 

which know their own purpose and volunteer for consideration 

when they can be used. This is used in blackboard systems as 

in the Hearsay II Expert System. 

http://orion.journals.ac.za/



62 

5.0 ADVANCED PROBLEM SOLVING - PLANNING 

In order to solve most nontrivial problems, it is neces­

sary to combine some of the "weak" search methods with one or 

more knowledge representation techniques. It is also neces­

sary to divide the large problem into smaller problems that 

are solved separately. The separate solutions are then com­

bined to form the full problem's solution. This is unlike 

the 8-puzzle presented in Part 1 where the problem is simple 

enough to allow the complete state description at each node 

of a graph. The methods used to decompose the original prob­

lem into sub-parts, and the ways of recording and handling 

interactions between the sub-parts as they are detected, are 

often collected under the heading of planning. 

A linear planning system determines a complete solution 

for a sub-part before considering another as used in the 

STRIPS (Rich [5]) programme. For some problems, however, it 

is necessary to perform some work on one goal, then on 

another and then some more on the first. Systems which solve 

these problems are called non-linear planners. If a planner 

needs to solve particularly difficult problems it may be 

advantageous to consider the problem at different levels of 

abstraction. For example, when planning a route to get from 

one city to a particular place in another city, it would be 

best to consult a large scale national highway map initially. 

The lower level detail of a street map for the city could be 

consulted at a later stage. Systems that consider problems 

in this manner are called hierarchical planners. 

There are more detailed planning systems ~hich are spe­

cific to the particular types of problem that they solve, a 

discussion of which is not necessary here. All planning sys­

tems, however, derive their power from a great deal of domain 

specific knowledge. Due to this fact the most sophisticated 

planners are found in Expert Systems where a constrained 

problem is usually considered. 

6. 0 CONCLUSION 

Artificial Intelligence problem solving techniques pro­

vide a range of tools which can be combined in any number of 

combinations to construct programmes for solving problems 

http://orion.journals.ac.za/



63 

that do not lend themselves to algorithmic solutions. Most 

real world problems fit into this category. 

The most difficult part of applying these techniques is 

in deciding which to use in solving a particular problem. 

Initially, a problem representation - state-space or problem­

reduction - must be chosen to make explicit those. factors 

that can be utilized when searching a solution space. For 

small problems it is sufficient to use a simple knowledge 

representation (not necessarily symbolic based) with a heur­

istically guided control strategy which will efficiently 

search the problem graph. The larger and more complex the 

problem, the more sophisticated the knowledge representation 

scheme needed. 

Most of the AI problem solving strategies have evolved 

by being designed to solve specific problems which have 

arisen in particular domains. As a result, it would be 

highly unlikely that one type of knowledge representation and 

control strategy would suit any other large, real-world prob­

lem. It is more appropriate then to look for similarities 

between well established problem solvers and the problem to 

be solved, and then to tailor the techniques accordingly. 

Many strategy combinations could fit a problem to be solved; 

however, as is the goal of AI researchers, it is necessary to 

pursue that combination which will yield the most efficient 

solutions in terms of computational time and resources. 

REFERENCES 

[1] A. BARR, E.A. FEIGENBAUM, "The Handbook of Artificial 

Intelligence", Volume 1, William Kaufmann, 1981. 

(2] M. BODEN, "Artificial Intelligence and Natural Man", The 

Harvester Press Limited, USA, 1977. 

(3] N. GRAHAM, "Artificial Intelligence. Making Machines 

Think.", Tab Books Inc., U.S.A., 1979. 

[4] P.H. WINSTON, "Artificial Intelligence", (2nd ed), Addi­

son-Wesley Publishing Company, Inc., U.S.A., 1984. 

http://orion.journals.ac.za/



64 

[5] E. RICH, "Artificial Intelligence", McGraw-Hill, Japan, 

1983. 

[6] N.J. NILSON, "Principles of Artificial Intelligence", 

Springer-Verlag, Berlin, 1982. 

[7] T. WINOGRAD, "Frame Representations and the Declara­

tive/Procedural Controversy", in BORROW, G D (Ed), 

"Representation and Understanding", Academic Press, New 

York, 1975, pp. 185-210. 

[8] M.R. QUILLIAN, "Semantic Memory", in MINSKY, M (Ed), 

"Semantic Information Processing", MIT Press, England, 

1986. 

(9) M. MINSKY, "A Framework for Representing Knowledge" in 

WINSTON, PH (Ed), "The Psychology of Computer Vision", 

McGraw-Hill, 1975, pp. 211-277. 

[10] P. HARMON, D. KING, "Expert Systems. Artificial Intelli­

gence in Business.", John Wiley & Sons, Inc., New York, 
1985. 

[11] T. O'SHEA, M. EISENSTADT, "Artificial Intelligence. 

Tools, Techniques, and Applications.", Harper & Row, 

Publishers, New York, 1984. 

http://orion.journals.ac.za/




