
75

ORiON, VoL. 5, No. 2, pp. 75-83 ISSN 0259-191 X

EVALUATING PARALLEL OPTIMISATION ON TRANSPUTERS

ABSTRACT

A 0 Chalmers, J W Hearne and C J Scogings

Department of Computer Science

and

Department of Mathematics & Applied Mathematics

University of Natal

P 0 Box 375

PIETERMARITZBURG 3200

South Africa

The faster processing power of modern computers 'and the development of efficient

algorithms have made it possible for operations researchers to tackle a much wider range

of problems than ever before. . Further improvements in processing speed can be achieved

utilising relatively inexpensive transputers to process components of an algorithm in

parallel.

The Davidon-Fietcher-Powell method is one of the most successful and widely used

optimisation algorithms for unconstrained problems.

identifies the components that can be processed

This paper examines the algorithm and

in parallel. The results of some

experiments with these components are presented which indicates under what conditions

parallel processing with an inexpensive configuration is likely to be faster than the

traditional sequential implementations. The performance of the whole algorithm with its

parallel components is then compared with the original sequential algorithm.

The implementation serves to illustrate the practicalities of speeding up typical OR

algorithms in terms of difficulty, effort and cost. The results give an indication of the

savings in time a given parallel implementation can be expected to yield.

http://orion.journals.ac.za/

76

INTRODUCTION

The tools of the operations researcher have improved considerably over the last decade or

so. Jobs that once required so much computational time from a mainframe computer that

they typically bad to be run over weekends can now be done inter-actively on a personal

computer (PC). These advances have come about as a result of improvements in the

erriciency of the algorithms used by the operations researchers as well as major increases

in the speed and power of computers. Despite the advances there is still a great need for

faster processing power, but physical laws are placing constraints on possible speed

enhancements of the single processor. Faster computing ability can be achieved by Vector

Processors, but their price puts them well beyond the reach of the average operations

researcher. However, a reasonably priced parallel system can be constructed with

transputers (I].

When transputers first came on sale three years ago they were hailed as a dream come true

for scientists and engineers. However, with some exceptions in computer graphics,

solid-state physics and fluid dynamics there has been very little exploitation of this new

technology (Galea [2]). In particular, other than some experiments in simulation (Karplus

and Shibata [3]) the operations research community appear to have ignored the advent of

the transputer. There has been some work in the area of parallel programming on a variety

of other machines

equipment). Byrd,

(in fact the machines are usually not mentioned or are very expensive

Schabel & Schultz [4] and Grandinetti & Conforti (5] are typical

examples of papers on parallel optimisation methods. Grandinetti & Conforti make use of a

CRAY X-MP/48 supercomputer which is not available to most researchers.

The transputer, which costs only a little more than a PC, is a "complete computer" which

can be used as a programmable component to construct a large multiprocessor system.

Communication and synchronisation between the transputers are achieved via high speed

serial links. It has been stated in some quarters that it is not worth studying

transputer applications as they are an interim measure which will give way to more

advanced parallel systems in the near future. On the contrary, the move is away from bit­

serial array processors (such as the connection machine) towards parallel nodes which are

stand alone processors, such as the transputer. Intel are even entering the market with

their transputer look-alike, code named iW ARP, due out towards the end of 1990 [6]. One

of the major advantages of the transputer is that it is designed as a building block for

parallel processors [7] and thus a small initial system can be gradually expanded into a

larger parallel system as finances become available.

http://orion.journals.ac.za/

A typical distributed algorithm consists of a Collater process and one or more Worker

processes. The Collater is responsible for apportioning the calculating effort to the

Workers and collating and displaying the results as sent hack. The Workers perform the

required calculations on the data supplied by the Collater returning any results along

with requests for more work.

The language Occam 2 was developed alongside the transputer to facilitate the distribution'

of an algorithm to several processes running on the individual processors.

succinct language whose very foundation encompasses the concept of a process.

It is a small

Other programming languages, such as Fortran, C and Pascal are also available on the

transputer. These languages run within an occam harness which expedites the

communication.

For this paper a system comprising three T800 transputers was configured as shown in

figure I. This is a minimal parallel configuration but suffices to illustrate the

potential of parallel processing. Such a system costs about the same as three stand-alone

PC's. In the next section an algorithm, well known to operation researchers; is examined

with a view to implementation on such a parallel system. This is achieved by identifying

those components of the algorithm that are suitable for parallel processing.

are performed and compared with a traditional sequential implementation.

Figure 1: Configuration utilised

Time tests

http://orion.journals.ac.za/

78

AN OPTII\IISATION ALGORITIIM

One of the most successful general purpose methods of optimisation for unconstrained

problems is based on a method developed by Da~idon [8] and extended by Fletcher and Powell

[9] to become commonly called the Davidon-Fietcher-Powell (DFP) method. The method finds

the minimizer of the function f(!). Denoting the gradient of f at ~ by g(!), the method

proceeds as follows:

Step 1: Start with an initial estimate and any positive definite matrix

usually the identity matrix.

For i = 0, I, 2 .. . until satisfied do :

Step 2: •
Step 3: •
Step 4:

Step 5:

Step 6: •

Step 7:

Step 8: •

Set a direction of search !!i - Hi gi(~i)

Perform a line search along l!_i + A!!
1

to find A
1

which minimises f(!i + Ai!!i)

yi = Ai!!i

~i+l = ~~ + yl

Evaluate f(l!_i+l) and g(l!_i+l) and terminate the procedure if

I g(l!.i + 1) I or I yi I are sufficiently small.

Let !!i = g(l!.i +I) - g(l!_i)

Update matrix H

11i+l = 111 + Ai + Bi

where

The line minimisation algorithm used in step 3 was .a simple one-dimensional bracketing

procedure to broadly bracket the minimum, followed by cubic interpolation to establish

this minimum to a specific accuracy.

The steps marked with an asterisk (' •') indicate where parallelism was introduced into the

algorithm. Steps 2 and 8 involve matrix multiplication while steps 3 and 6 involve

function evaluations. Note that the evaluation of the gradient usually needs to be done

numerically. This means that an objective function of n variables will need to be

evaluated nt least n +I times to obtain a reasonable approximation of the gradient. In the

next section the potential for time-saving by parallel processing in the two common

operations of matrix multiplication and function evaluation is examined.

http://orion.journals.ac.za/

79

The experiments were done by implementing algorithms for these two operations in parallel

on a configuration as shown in figure l, and in sequence on a single TSOO transputer.

Both implementations were in Occam 2.

PARALLEL vs SEQUENTIAL : !\latrix multiplication

A parallel matrix multiplication algorithm, !<g A * B = C, utilises the independence of

each row of a matrix in a processor farm topology as suggested by Packer [10] and May [II].

Each row of Matrix A is 'farmed out' to a Worker process where it is multiplied by a

column of B, and the returned result stored in the appropriate row of matrix C. The

communication speed of a TSOO transputer link is 2.4 Mbytes per second overall rate for

bi-directional data transfer [I]. For low dimension matrices this communication overhead

resulted in better performance by the sequential method. However as the dimension of the

matrices · inc~eased, so the parallel implementation easily outperfbrmed the sequential one.

This is illustrated in figure 2.

Matrix Multiplication

Parallel vs Sequence
15 ll--------------------------~------------------------,
14

13

12

10

10x10 20x20 30x30

0 Parallel

40x40 SOx SO

Dimensions of !he matrices
+ Sequence

75x75 90x90 100x100

Figure 2: Time comparison of parallel and sequential matrix mullipllcatlon

http://orion.journals.ac.za/

80

PARALLEL vs SEQUENTIAL : Function e\·aluation

A function that takes one second to evaluate was used in this experiment. Figure 3 shows

a comparison of parallel versus sequential execution of different numbers of function

evaluations. When five evaluations of the function are required the parallel algorithm

results in a saving of approximately 60% of the time taken for the sequential evaluations.

Function Evaluation

Parallel vs Sequence

4-

Number of !unction evaluations

0 Parallel + Sequence

Figure 3: Time compnrison of seqnentinl and parallel function evaluations

It must be remembered that in many applications the evaluation of the objective function

is very time consuming. For example, the objective function might be some performance

index of a dynamic system. In such cases, a system of differential equations needs to be

solved each time an evaluation of the objective function is required. Thus reducing the

time taken for all function evaluations represents a significant improvement in overall

performance of an optimisation package. Both techniques developed for the above tests

were incorporated in the Da,·idon-Fietcher-Powcll method.

http://orion.journals.ac.za/

81

PARALLELISM IN THE DFP METHOD

The farm topology as mentioned above was used throughout the DFP implementation. The most

time consuming part was found to be step 3, the initial bracketing of the minimum prior to

the application of the cubic interpolation. In the sequential implementation this meant

the sequential evaluation of f at successive points along the line J!,i + Adi until the

function stopped decreasing. The increment for the search was chosen as 0.1. In the

parallel implementation, use was made of the two available Worker processes to perform

"look ahead" calculations of the f(J~, + A!!)'s, allowing two comparisons at each iteration

instead of one. This contributed greatly in the time savings.

Two classical test functions were used to compare the performance of the DFP method in

both the parallel and sequential implementations. These functions are popular when

evaluating optimisation methods due to their difficulty in finding a minimum (Bunday and

Garside [12]).

The first function optimised was the Rosenbrock function with 2 variables

f(J~,) min (1, I)

with the customary initial values of (-1.2, 1).

The Powell function with 4 variables :

min (0,0,0,0)

with starting points (3, -1, 0, I) was the second known function tested.

The third function optimised was an 8-variable function

fW

min (I, I ,1,1,1,1, 1,1)

with starting points (-1.2, I, -1.2, I, -1.2, !', -1.2, 1).

http://orion.journals.ac.za/

i
m
e

i
n

s
e
c
0
n
d
s

82

The times to optimise these three functions for the parallel and sequential

implementations are shown in figure 4.

Davidon-Fietcher-Powell Method

12

10

8

6

4

2

0
2 4 8

no of variables in the function

--Parallel -e- Sequential

Figure 4: r~rformance el·aluation of Davidon-Fietcher-Powcll method

CONCLUSION

The advent of the transputer has put a parallel computer architecture within the financial

means of most operation researchers. The Davidon-Fietcher-Powell method was implemented

in both a sequential and parallel form in Occam 2 to evaluate the potential of the

transputer for solving problems in operations research. Despite the limited equipment

available (only three T800s), some very promising results were achieved. Tite time

required to make one evaluation of either of the test functions is relatively short.

Despite this, some significant savings of time were achieved in locating the optimum using

the parallel algorithm. M?re dramatic results could be expected with more complex

functions that require large amounts of time to evaluate.

http://orion.journals.ac.za/

83

It has been shown that it is desirable to perform such optimisations on paraliel

processors and that the transputer is particularly desirable because of the low cost and

the ability to expand from a small working system. Although more transputers are not

currently available, even greater improvements are expected when extra transputers are

added to the existing system.

ACKNOWLEDGEMENTS

Thanks to Kevin Cameron and Nina Ligeti for helping with the programming.

REFERENCES

[I] 11\IS TSOO Architecture, /NMOS Technical Note 16, INMOS Bristol (1987).

[2] E. Galea, Supercomputers and the need for speed, New Scientist, 120:1638, 50-55

(12 November 1988).

[3] W.J. Karplus & Y. Shibata, The qpplication of small peripheral array processors

to the modelling of distributed parameter systems, Simulation, 46, 231-238 (1986).

[4] R.ll. Byrd, R.B. Schabel & G.A. Schultz, Parallel quasi-Newton methods for

unconstrained optimization, Mathematical Programming, 42, 273-306 (1988).

[5] L. Grandinetti & D. Conforti, Numerical comparisons of nonlinear programming

algorithms on seriai and vector processors using automatic differentiation,

Mathematical Programming, 42, 375-389 (1988).

[6] Electronics Weekly, no 1456, Wednesday 12 April (1989).

[7] R.W. llockney & C.R. Jesshope, Parallel computers 2 : Architecture,

programming and algorithms, lOP Publishing Ltd., Bristol (1988).

[8] W.C. Davidon, Variable metric methods for minimization

AEC Research and Der•e/opment Report, ANL-5990, Argonne, Illinois, (1959).

[9] R. Fletcher & M . .T.D. Powell, A rapidly convergent descent method for minimisation,

.., 17re Computer Joumal, Vol 6 No 2, 163-168 (1963).

[10] J. Packer, Exploiting Concurrency: A Ray Tracing Example, /NMOS 1'ec/111ical Note 7,

INMOS Bristol (1987).

[II] D. May & R. Shepherd, Communicating Process Computers, /NMOS Technical Note 22,

INMOS Bristol (1987).

[12] B.D. Bunday & G.R. Garside, Optimisation met/rods in Pascal,

Edward Arnold Publishers Ltd, London (1987).

http://orion.journals.ac.za/

