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OPTIMAL DESIGN OF NETWORK 
DISTRIBUTION SYSTEMS 

Abstract 

URY PASSY1 

Department of Quantitative Management 
UNISA 

The problem of finding the optimal distribution of pressure drop over a network 
is solved via an unconstrained gradient type algorithm. The developed algorithm 
is computationally attractive. Problems with several hundred variables and con
straints were solved. 

1 Introduction 

The optimization problem solved here belongs to a class of engineering optimiza
tion problems known as pipe network optimization. Such problems are formulated 
for natural gas, district heating and water supply networks. The constraints im
posed on such problems usually represent the demand by the customers, be it 
natural gas, heat or water. During the last two decades, engineers have developed 
different algorithms for solving the pipe network optimization problem, Cohen [4], 
Fujiwaraet al. [8], Kally [10], Quindry et al. [16], Shamir (18]. An-extensive list of 
references concerning both the mathematical formulations and algorithms for solv
ing such networks is given in Walski [19]; Alperovitz and Shamir [1] used successive 
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linear programming where the lengths of the pipe segments of a given diameter 
were the variables; Epp and Fowler (7) described a Newton type method, while 
Wood and Charles (20] described a linear theory method. Nielsen [12] analyzed 
the existing methods and proposed a robust strategy for switching between the 
various methods while solving the problem. Different assumptions on the network 
were done by different people: Hansen [9] assumed that the network did not have 
any pumps and its layout is given thus-only the pipes' diameters are unknown; 
Rothfarb [17] and Murtagh [11] assumed that t,he network is defined by a tree, i.e., 
no loops. We will assume that the network does not include pumping stations, 
reservoirs, special purpose valves or loops. Such networks, for example, describe 
an offshore natural-gas pipeline system, Rothfarb [17]. In our case the network is 
defined by a directed tree T = (N, A), where N is the set of nodes and A is the 
set of edges (see Fig. 1). 

0 

I 
H(l) 

• I 
I • • • 

T(N-S+l) T(N-S+2) T(S) 

I • • 

1 2 N 

Only the terminal sections are shown in the diagram. H(A) and T(A) denote, 
respectively, the Head and Tail of arc A. 

It has N + 1 terminal nodes, i.e., a single supply node denoted by 0, and N 
demand nodes denoted consecutively by 1, . .. , N. A simple chain Ck k = 1, .. . , N 
leads from the supply node 0 to each demand node. Physically, an arc (i,j) is a 
tube of specified length, Li;, and diameter, di;· 

Given: 

(i) the network configuration 

(ii) the pressure Pk k = 0, ... , N at the supply node and at each demand node, 
and 
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(iii) the flow rate at each of those nodes Wk k = 1, ... , N, 

the determination of the physical dimensions of each arc (i,j) are required so that 
the total weight (lb) of the network is minimized. The weight per unit length of 
pipes, if the diameter is much larger than the thickness, is a linear function of the 
diameter, Murtagh [11]. Mathematically, the optimization problem Q is defined 
by: 

Q : min I: Lijdii 
(i,i)e.A 

subject to the following constraints: 

Pi2 -P}=k,jLii/dij (i,j)ECk k=l, ... ,N 

~ L· · > Lk ~ 1)- k = l , ... ,N 
(i,j)EC~c 

where 

(1.1) 

(1.2) 

(1.3) 

kij is a constant which depends on the physical properties of the fluid: viscosity, 
density, molecular weight, etc. and the flow rate. 

where: f 

dij 
L,i 
Wii 
R 
M 
g 

J.1. 

c,j 
Re 

friction factor 
0.0475 (Re)-0

·186 

0.04 75 ( 1894W;i) -0.186 
1-Ldij 

diameter (ft.) 
length of pipe (ft.) 
weight rate of flow (lbjsec) 
gas constant= 1546 (ft- lbF/lb mole 0 R) 
molecular weight (lb/lb mole) 
32.7 (lbft/lbF sec2.) 

viscosity (centipoise) 
kinetic energy correction factor 
1894W:- · ld' b ~Ldii '1 Reyno s num er 

a is a positive constant which depends on the flow rate. Here the value of a 
was set equal to 4.814, American Petroleum Institute [2]. 

Lk is the distance from the source 0 to demand node k. 

By adding Equation (1.2) along each chain, one obtains: 

L k;jLsiltlt; = Pf- PJ = bk k = 1, ... ,N. 
(i,j)EC~r 

(1.4} 
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It can be shown that the constrained set defined by Equations (1.2) and (1.3) is 
equivalent to that defined by Equations (1.4) and (1.3). Since constraint Equation 
(1.3) has a geq sign, the optimization is a reversed geometric program, Duffin and 
Peterson [6), which is highly nonconvex and can be solved by a branch and bound 
method, Passy [15]. In that method, a series of regular geometric subprograms, 
Duffin et al. [5], 

Q( f) : min L Liidii , 
(i,j)E.A 

subject to Equation (1.4) and to 

{1.5) 

where e = { eij} is a given set of tube lengths generated by the branching pro
cess, are solved at each iteration. It can be shown that if (Lii' di) solves Q(f), . . . 

t) - tJ• 

bound algorithm, or as in many models c.f. Hansen [9], Murtagh [11], where the 
tubes' lengths are given, the only unknown variables are the diameters, di/s, which 
can be determined after substituting Lii = fii in the objective function, and the 
constraints of Q( f) 

Q(f) : min :L .eiidii : 
(i,j)E.A 

:L kij.eij I dij < bk , 
(i,j)ECk 

k=l, ... ,N. 

Since the constraints are each a monotonic decreasing function of the tube's di
ameters, it was possible to replace the equality constraints (1.4) with inequalities 
(see Lemma 1). 

In the present paper, a fast and simple algorithm for solving Q(£) is given, 
together with convergence properties and results on the rate of convergence. Due 
to the simplicity and speed, the algorithm can be adapted as a subroutine to 
networks with loops, reservoirs, etc .. The simplicity of the algorithm stems from 
the fact that the dual is an unconstrained program. This is an example of a 

constrained program whose dual is unconstrained, Ben-Tal and Barzilai [3]. The 
algorithm was tested on problems with several hundred variables and up to one 
hundred constraints (Eq. (1.4)). 

2 Properties of Q(£) and The Algorithm 

Define the following variables: 

Xij 

kij.eij 
bk 
IAI 

O'.ij 

. S The number of arcs in A which is 

equal to the number of tube sections . 
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If this notation is used, then Q( f) is defined by: 

Q(f) : min :L fiixi/ (3 = 1/a (1/a = 0.2077) 
(i,j)EC 

subject to N linear inequality constraints: 

""" ~-·x·· < 1 L...J ....... ] t] - k = l, ... ,N 
(i,j)EC~t 

Xjj > 0 (i,j) EA . 

Q(f) is a very special geometric program. Its objective function is convex and 
separable, and the constraints are linear. 

There are many ways to enumerate the arcs A E T. One way is to enumerate 
the arcs so that A1 is the directed arc whose tail, T(A1 ), is node 0 and As-N+i is 
the directed arc whose head, H(As-N+i) is node i, i = 1, ... , N. With such an 
enumeration, it is possible to rearrange the variables Xij and the coefficients O:ij 

and fii in a one-dimensional array. Then: 

s 
Q(f) : minLfixj.a ll g0(x) 

j=l 

subject to g(x) ll Ax ::::; e, e = [1, 1, ... , 1]T E EN. Accordingly, A, the matrix 
of coefficients, has the following form: 

[ an a12 ... al(S-N+l) 0 ... 0 ] 
A= a21 a22 · · • ·.. 0 N, (2.1) 

aN1 aNz • • · 0 ... aNs 

S-N N 

where A is a non-negative matrix, the first column of A, a 1 , is a positive vector and 
the last N columns have only a single non-zero but positive element, ai(S-N+i) > 0. 
Each row of A has at most S- N + 1 positive elements. Thus, the matrix A is a 
highly sparse matrix. 

The solution point x* of Q(f) is not changed if, instead of minimizing g0 (x), 
one minimizes C g0( x) where C is a positive constant given by · 

e-t = (JS(.O+l)(maxf ·)(max a· ·)IJ . . J . . I] 
] t,J 

(2.2) 

Without ambiguity it will be assumed that 

go(x) = C (t.l';xjp) "'t.C;xjp 

This normalization is done for the purpose of bounding the Lagrange multipliers 
from above (see Lemma 7). 

Recall that the equality constraints (1.4) were replaced with inequalities . The 
following lemma justifies this change. 
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Lemma 1 At the solution point x*, Ax* = e. 

Proof. Assume that 9i(x*) =aT x* < 1 . The variable xs-N+i appears only in the 
i-th constraint. By slightly increasing this component, the objective function is 
decreased and the new point is still feasible, contradicting the optimality of x*. 

Q.E.D. o 

In the following simple lemmas we will show that both Q( Cf) and its dual have 
optimal solutions. 

Lemma 2 Program Q( Cf) is superconsistent [4], i.e., there exists a point x"' such 
that Ax* < e and x* > 0. 

Proof. Choose: 

xj= (S-~+l)(mf-x{aii}+l)-1 j=l, ... ,S. 

Then Ax"' < e, and x* > 0. Q.E.D. O 

The Geometric Dual (GD)(Cf) of Q(Cf) is: 

where 

subject to: (a) the normality condition: 

s 
l::Eoj = 1, 
j==l 

(b) the orthogonality conditions: 

L 6ii = f38oj j = 1, ... , S 
iEp(j) 

and (c) the positivity conditions: 

6ij > 0 j = l, ... ,N 
8oj > 0 j = 1, ... ,s 

{i = 2::: 8ij > 0 i = l, ... ,N 
jEq(i) 

j E q( i) 

q(i) - {jlai; f.: O} (see Equation 2.1). 
p(j) { ilaij f.: 0} 

(2.3) 

(2.4) 

(2.5) 

(2.6) 

(2.7) 

Lemma 3 The geometric dual G D( C i) is feasible and there exists a feasible point 

8 > 0. 
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Proof. The proof is constructive. Set: 

(J 
(S-N)N+N i#O (i,j)#(l,S-N+l) 

8o(S-N+1} 

_!_ ( L Dij) j = 1' ... ' s j f- s - N + 1 
(J iEp(j) 

s 
1- L Doj 

ji.S-N+1 

1 
(JDo(S-N+l) • 

This solution satisfies the hypothesis. 

Lemma 4 Program Q( C R) has a solution. 

Q.E.D. o 

Proof. The proof follows directly from Lemmas 2, 3 and (Duffin et al. [5), page 
81). 

The Algorithm 

Step (0): Choose .\}0
) = 1 

Step (k): 

i = 1, ... ,N. 

(k) 
X· J ( 

(JC; ) 1//3+1 . 
N (k) .. J = 1, ... 'S 

Li""l ,\ a,J 

,\(k+I) we have fixed the value of a(k) = 1 thus : 
1 

'(k) ·( (k)) . - 1 N /\i g, X Z - , ••• , • 

Set k ~ (k + 1) and go to step k. 

Q.E.D o 

(2.8) 

(2.9a) 

(2.9b) 

3 Properties of the Algorithm Numerical Re

sults 

The ,\'s generated by the algorithm are an approximation of the Lagrange multi
pliers. Let L(x, ,\) be the Lagrangian function associated with Q(CR) 

N 

L(x, ,\) = Yo(x) + L(Yi(x) - l)Ai (3.1) 
i=l 
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where go(x) and 9i(x) respectively denote the objective function and the linear 
constraints. 

Lemma 5 The saddle-point of the Lagrangian sati4ies: {a) x* > 0, (b),\*> 0. 

Proof. Since the program is convex, has a solution and satisfies Slater's condition 
(see Lemma 1) its Lagrangian possesses a sa~dle-point. 

(a) Follows from Lemma 3. 

(b) By solving 8L(x*,.\)j{)x(S-N+i) = 0 for.\*, it follows that: 

'* - C · (3( * )-<.8+1)/ · · 0 . - 1 N -"i - (S-N+s) XS-N+i a,,(S-N+t) > Z- , · · ·, 

Q.E.D. o 

In the following lemmas we shall prove several properties of the algorithm. 

Lemma 6 x(k), Equation {2.8}, is the solution ofminx>o L(x, _\(k)), Equation {3.1}. 

Proof. This can be verified by solving the equation \7 xL( x, .X (k)) = 0 for x(k). 

Q.E.D. o 

By using the optimality conditions for geometric programming, Duffin et al. 
[5, page 80), it is possible to obtain additional insight into the method . 

Set: 8(k) .\~k)a;jr<."> 
i = l, ... ,N (3.2) - ' l 

t,J 90 (xU<)) 

li( 8<k>) I: 8~~> 
tj j E q(i) . 

jEq(i) 

In this case 8~) are dual feasible, Equations (2.4)- (2.6). The optimality conditions 
are: 

1) dual feasibility, Equations (2.4), (2.5) and (2.6) 

2) primal dual relations, Equation (3.2) and 

3) 
,; = A:/go(x*) i = 1, .. . ,N. (3.3) 
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Of these three conditions, the first two are satisfied at each iteration. The third 
condition is not satisfied. Instead, one has: 

(3.4) 

The updating formula is given by Equation (2.9): 

A~k+I) = A~k)gi(x(k)) i = l, ... ,N. 

Thus, Equation (3.4) can be written as follows: 

(3.5) 

Equation (3.5) with (3.3)). 

Lemma 7 The Lagrange multipliers generated by the algorithm are bounded from 
above 

A~k) < 1 Vk > 1 . 

Proof. It follows from Equations (2.8) and (2.9) that 

(3.6) 

s 
< L:(.BCi?1<1'+1>(aiiA~k)li.6+I ::; (A~k)).61<.6+l) 

j=l 

(see Equation (2.2)). 

Thus, if A~o) = 1 then A~k) $ 1 i = 1, ... , NVk. Q.E.D. o 

Lemma 8 x(o) is a feasible solution of Q( Ci). 

Proof. 

Q.E.D.D 

Lemma 9 The multipliers generated by the algorithm, _x(k), are bounded from be
low. 
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Proof. It follows from Equations (2.1) and (2.8) that 

(i) 
(k) [ f3Cs-N+i ] 

1
/(.0+l) Vk 

::r;S-N+i - (k) 
..\; ai,(S-N+i) 

(ii) 

Thus, 

(k+l) _ f3Cs-N+i < 
[ ]

1/(.0+1) 

XS-N+i - ..\ (k+1) . . -
f3Cs-N+i 

[ ]

1/(.0+1) 

and 

Therefore, 

i a,(S-N+•) 

(k+l) 
XS-N+i < 

(k) -
::r;S-N+i 

[ ]

1/(.0+1) 
1 

(k} 
ai,(S-N+i)X S-N+i 

. (k+l) [ (k) ].8/.0+1 
ai,(S-N+i)XS-N+i < ai,(S-N+i)XS-N+i 

However, from Lemma 8, it follows that 

ai.(S-N+i)x~2N+i 5 9i(X(O)) < 1 

and therefore, 
(i) Vk 

(ii) Vk. 

Q.E.D.o 

The algorithm generates a sequence {..\k}~0 . It follows from Lemmas 7 and 
9 that there exists a converging subsequence. However, it was not ossible in 
general, to prove convergence if ak is fixed and set equal to 1. But, if the sequence 
converges it converges to the unique minimum of Q(CR). It was possible to prove 
local convergence, i.e., there exists an f > 0 such that for ..\0 : II.X* - .\0 11 < <: 

the algorithm converges. The proof is based on Ostrowski's Theorem, Ortega and 
Rheinholdt [13, page 145] and is simple but tedious and therefore not included in 
the paper. 

A somewhat different view of the method is obtained by evaluating the La
grangian dual (in contrast to (GD)(Cf)). This dual is concave and unconstrained, 
in the sense that a maximum exists in the strictly positive quadrant. It is given 
by: 

D(Cl): max.C(..\) D. ma.xL(x(..\) ..\) = max{(f31/(.0+1) + {3-.0(.0+1))· 
.>.>0 .>.>O ' >.>O 

(3.7) 
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This unconstrained dual was obtained after substituting x(.A), Equation (2.8), into 
Equation (3.1), and performing several algebraic manipulations. 

The algorithm may be viewed as an unconstrained a3cent method in the dual 
space, (3. 7), without line searches. For this, observe: 

8£(-A)/8-A; = g,(x(.A))- 1 i = 1, ... , N . 

Given a point _A(k), the next point _A(k+I) is determined by: 

_A(k+I) _ _A(k) + a(k)d(k) , (compare with Equation (2.9)) 

where: (i) d(k) = A(k)VT £(_A(k)) , _A(k) 

and ( ii) a(k) = 1. 

(3.8) 

(3.9) 

(3.10) 

The matrix A( k) is a diagonal matrix whose elements are .A~k), and a (k) is the 
step size. The vector d(k) is an ascent direction, but does not. coincide with the 
gradient: 

'V£(.A<">), _A(k))d(k) > OVk. 

If the algorithm is modified, a(k) is not kept constant (see Equations (2.9),(3.10)) 
and is given by: 

(3.12) 

using Equation (2.9a) instead of Equation (2.9b ). Then the algorithm generates a 
monotonic increasing sequence {£(.Ak)}k'=o that converges to the unique maximum 
of the dual, (3. 7), and the algorithm converges. In this case the rate of convergence 
is at least Q linear, Ortega [14); the proofs of the last two statements are omitted. 

Several hundreds of problems have been solved. The coefficients lj were ran
domly chosen from the interval (0, 100]. The non-zero elements ai:i of the coefficient 
matrix were chosen similarly from the interval (0, 50]. The numerical results con
firmed that the algorithm is simple and efficient and that the rate of convergence is 
at least linear. Since the algorithm always converged, we have used the unmodified 
algorithm thus eliminating the one-dimensional searches, Equation (3.12), there
fore reducing the number of function evaluations. Thus, when viewed as a dual 
ascent method, it is probably superior to a Quasi-Newton approach. 

The numerical results are shown in Figures 2 and 3, where 
(i) N is the number of constraints. 

(ii) S is the number of variables. 

(iii) fk = max15i5N 11- g,(xk)l 

The rate of convergence can be calculated from these experiments. From the 
figures, it follows that the number of iterations, k is a linear function of log e, i.e., 

k = a + b log10 ek , 

where k is the iteration number, a and b are given constants. Observe that b < 0. 
Let: 
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Fig. 2: The dependence of the number of iterations on log E and on S, for 

fixed number of constraints (N = 60). 
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Fig. 3: The dependence of the number of iterations on log e and on N, for a 

fixed number of constraints (S = 100). 
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(i) -a/b = log10 eo 

(ii) 1/b = log10 E E = 101/b < 1 

Thus, 

and 
f.k = Eek-t so that f.k/ ek-1 = E < 1 . 

Thus, it was found numerically that the rate of convergence is Q-linear and may 
be Q-superlinear, Ortega and Rheinholdt [13]. These experiments confirmed the 
theoretical results. 
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