
71 

ORiON, Vol. 7, No. 2, pp. 71-94 ISSN 0259-191-X 

AIRLINE SEAT INVENTORY CONTROL 1 

BENEFITING FROM CURRENCY DIFFERENTIALS TO ENHANCE 
REVENUES 

C. E. Love*, W. W. Bird**, R. J. Horsfa.llf & J. Kingwi!Jt 

ABSTRACT 

* Visiting Professor, Graduate School of Business 
University of Cape Town, Rondebosch, 7700 

Faculty of Business Administration 
Simon Fraser University, Burnaby, Canada 

** Civil Engineering Department 
University of Stellenbosch, Stellenbosch, 7600 

f MBA Candidate, Graduate School of Business 
University of Ca.pe Town, Rondebosch, 7700 

:j: Civil Engineering Department, 
University of Cape Town, Rondebosch, 7700 

The purpose of this paper is to develop an airline seat inventory control model which 
will capitalize on currency differentials that exist between city pairs. The approach 
taken here is to maximize Expected Marginal Seat Revenues as proposed by Belohaha 
for non-nested fare classes. The basic Expected Marginal Seat Revenue model is 
extended to explicitly include the effects of overbooking. Data from the South African 
Airways return flight between CapcTown and London is utilized to demonstrate the 
rnodel. 

1 This research is supported by NSERC Grant # 1228. Tl1e aut.hor would like to thank an anony
mous referee for many useful comments on an earlier draft of this paper. 

http://orion.journals.ac.za/



72 

1. Introduction 

In the post-deregulation airline environment, all carriers have struggled to contain 

costs in the face of strong downward pressure on airline fares. Many carriers have 

also been successful in developing increasingly sophisticated revenue control and yield 

management techniques. Essentially these techniques have focused on improving air

line revenues by monitoring and adjusting the balance between passenger demand and 

the supply of available seats. For a comprehensive review of the yield management 

problem refer to Belobaba [2]. 

\Vhile the fare charged is an important aspect of yield management, for the most 

n. given fare structure. The major problem is that of determining booking policies 

for the various classes that will generate the maximum revenue on each flight. 

Another important aspect of seat inventory control is to determine an optimal level 

of overbooking for each class on the flight. Overbooking targets are set to achieve 

t.he opt.ima.l balance between the benefits of load factor improvements and the cost 

to the carriers of denied hoardings in the event that the number of "no-shows" is less 

tha.n anticipated. If it is properly controlled, an overbooking policy can benefit both 

the airline and its customers (Shlifer [11]); carrier profitabiJity is enhanced and at 

the same time, more of the real customer demand can be satisfied. 

In this research we wish to look at the utilization of yield management, and more 

specifically, the scat inventory control problem when a significant currency differential 

exists between city pairs. That is, if the rights to the airline scat can he purchased 

on ci ther end of the city pair, it may be advantageous for a carrier to restrict seat 

sales at one point in order to gain from (expected) sales at the other point. V•le see 

that we have two classes of customers; a high fare class originating out of one city 

and a second low fare class originating out of the second city. 

The literature has addressed the scat inventory control problem essentially from two 

different frameworks. The first approach has been to allocate the seats into two 

separate or non-nested groups. The control problem is to determine a rationing 

scheme to allocate the available seats on the aircraft. The second approach has 

been to treat the separate classes in a nested fashion. A nested seat sale would give 
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precmptive rights to one of the two cities for any seats available. With a high fare 

city and a low fare cit,y this would presumably mean that any available seat could he 

sold to the high fare city. However, in order to ensure that not all the seats arc sold 

to high fare customers, the control problem is to establish a reservation limit for the 

high fare customers. In this way, yield from the flight can be maximized. A good 

overview for these two strategies can be found in Belobaba [2). 

In this research, we model the problem as a two-class non-nested case. In approach

ing the problem in this manner, we can incorporate both the inherent eo-variability 

of demand between the two cities and determine an optimal level of overbooking 

for each flight.. While some valuable work has been done in ~.na.lyzing n~stcd class 

structures (see Brumelle {5) and [6]), the scenarios being ana.lyzed arc too restrictive 

for use in this situation. Specifically, the basic structure of the nested scat sale is 

restricted to non-correlated demands in the various classes. Work done on correlated 

demand in nested structures requires that (beginning with the lowest class) sales in 

each class must be successively closed off prior to the sales in any higher classes. 

This is because in nested two-class structures we are determining only one control 

limit with the higher class having a prcemptive right to all the available unsold seats. 

This is obviously a highly unrealistic assumption for our two city scat sale problem. 

Using a non-nested analysis, since we are solving for both control limits simultane

ously and the preemptive right does not exist, the structure can be disa.ggrcgatcd 

into two separate decisions. As noted by Belobaba [3), repeated solution of the non

nested model as each available scat is demanded yields the same result as the nested 

model. Consequently, even assuming that an airline wished to structure their seats 

in a nested fashion, the non-nested model being employed here will yield good re

sults. Notwithstanding, a good deal of work remains to be done on analyzing nested 

structures more thoroughly. 

The layout. of this paper is as follows. In Section 2 we detail the Expected Marginal 

Scat. Revenue (EMSR) model for the non-nestco two class case of interest in this 

situation. In Section 3 we apply the EMSR model to the case of point-of-sale control. 

In Section 4 we extend the analysis t.o include the opportunity for overbooking at 

bot.h points of sale. Finally in Section 5 we present examples of the optimal scat 

inventory control using data from t.he CapeTown/London sector of South African 

Airways. 
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2. Expected Marginal Seat Revenue Model (EMSR) 

The origin of this model was the two class model proposed by Littlewood [10] which 

categorized pa.c;sengers as high yield or low yield. In the model it was recognized 

that acceptance of a. low yield passenger resulting in a subsequent rejection of a high 

yield passenger meant that the airline lost revenue. This model required that low 

yield passengers be accepted only if the certain revenue exceeded the expected 

revenue of a potential high yield passenger. Belobaba made the distinction between 

nested and non-nested and developed a model which would incorporate proba.bilistic 

demand and multiple fare classes on a single leg flight. 

The probability density function for the total number of requests for reservations, r; 

received by the airline in fare class i by the close of booking for a particular flight 

is defined as p;( ri). This probability function can be obtained from historical data 

for the same or similar flights. The cumulative probability that all requests for a 

particular fare class will be accepted can then be defined as a continuous function of 

the number of seats S; allocated to the class: 

P;(S;) 

P!(S;) 

- P,.[r; ~ S;] = hS; p;(r;)dri and 

- P,.fri > Si] = r= p;(r;)dr; ls, 

(1) 

If we define a booking in class i as b;, then the expected number of bookings in class 

i, given a scat allocation S;, is therefore 

(2) 

It is easy to see that the probability that any given request in class i will be refused 

is defined as 

PRR; 1 
_ b;(S;) 

r; 

where r; is the mean demand in class i. 

(3) 
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This probability is to be distinguished from Pf( Si) which is the probability that the 

fare class will be sold out and at least one fare request will be refused. 

The aim of the model is to maximize the total expected revenue over all classes. The 

contribution to the total revenue from each class is given by 

(4) 

where fi is the average fare received from passengers in class i. It. follows that the 

total for a multidass situation is 

(5) 

At the optimal point, the expected marginal seat revenue for each class defined is as 

(6) 

will be equal across all classes. In the case of a two class situation 

(7) 

for the optimal values of S1 and S2 . 

Equation (7) implies that 

P'(St) h 
P'(S2) .ft. 

The interpretation here is clear. The optimal allocation of seats across the two classes 

is such that the ratio of the probabilit,ies of denied boarding in the two classes equals 

the reciprocal of the fares of the two classes. That is, the marginal opportunity cost 

of a denied scat must be the same across the two classes. 
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The relationships between Si, Ri and C are shown schcmatically in Figure 1 for the 

two class case. The base represents the capacity C, and the seat allocations S1 and 

s2 have their origins on the right and left hand sides of the base respectively. As SI 

and hence R 1 increase, so the respective values S2 and R2 decrease. The upper part 

of the figure shows the demand curves with r 1 and r 2 coincident with S1 and S2 • 

3. Extension of the EMSR model to include point-of-sale control 

The specific problem under investigation here is the Cape Town/London sector, flown 

by South African Airlines. Except for a small percentage, passengers travelling on 

this sector do so on return air tickets. Since First and Business fare classes are not 

restricted in their length of stay or time of travel, it is reasonable to assume that, 

given the high frequency of flights, passengers leaving from either Cape Town or 

London return to their point of departure in some distributed fashion, beginning 

a.t. some t-ime after their time of departure. That is, for a flight departing from 

Cape Town for London, t.here will be claims on seats from these same passengers 

for the return leg of the flight (London to Cape Town). We assume here that an 

eq11ilibrium is established such that seat sales from either sale point effectively result 

in a contemporaneous claim on a return scat. This assumption is substantiated by 

peak seasonal demand dat.a on flights on this sector. (Horsfall [7]). Consequently, 

thi~ allows us to approximate each flight, whichever its point of departure, as being 

mn.de up of customers from two points of sales. 

Our problem is to determine how many customers from each sale point to allow on the 

usmg c a .a rom 

sector, it is evident from the fare breakdown that there exists an incentive to capture 

the benefits from differential exchange rates in making the booking decision. Within 

any travel class, in terms of revenue generation, there are two non-nested fare classes; 

one for each sale point. It is non-nested since, by virtue of our assumption regarding 

the contemporaneous nature of the sales, neither sale point has a claim on the seats 

of the oth~r sale point (Belobaba [2], Brumelle (5]). Hence, it is only necessary to 

apportion the seats available in the travel class between the two sale points such that 

the total revenues (for the class) are maximized. 

In our numerical examples below, we consider examples from both First class and 

from Business class travel. We are less confident about the use of this model in the 

Economy class. This is because the First and Business class can reasonably be mod-
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a. Demand Densities and Spill 

-------Capacity-------

p.(r.) 
l l 

Requests 

----s2 _____ -_-- sl ___ _ 
Rmax 

Revenue 
(S) 

Seats 

b. Expected Revenues 

Figure 1: Optimal seat allotment 

Soi1rce: Belobaba [3], page 106 
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e1led as separate (non-nested) buckets. Each of these two classes has a separate cabin 

space allocated to it. In the non-nested structure, we can determine the rationing 

scheme for the seats to be allocated to each city. In addition, given cabin limitations, 

it is easy to determine the effect of overbooking on the class. 

In contrast, modern airline seat management places economy seats within a nested 

structure (Brumelle [5)). Reservation limits are placed on these higher classes to avoid 

early, uneconomic consumption of the higher revenue First and Business class seats. 

The use of the non-nested approach will certainly generate approximate solutions 

to the Economy class situation, but much more work needs to be done on the two

city nested case. Note that none of these models explicitly treat the upgrading 

phenomenon prevalent in the airline industry. Here seats reserved for higher classes 

are {\given back" to satisfy unfilled lower class demand. Typically this happens 

close to flight time when it is discovered that higher class reservations will not all 

be taken up while some lower lass demand will be left unsatisfied. To the extent 

that airlines utilize a scat inventory model, however, the upgrading problem with or 

without nesting can be treated by rerunning the model at various points in time as 

new demand information is obtained. 

Define the expected revenues for travel class j as: 

(8) 

where the subscripts 1 and 2 refer to the two separate fare classes i.e. either London 

or Cape Town generated revenue. Since we will only be considering one travel class 

a.t a time, the superscript denoting the travel class will be dropped for the remainder 

of this discussion. For fares of !I and h in fare classes 1 and 2 respectively, the 

expected revenue for the travel class can be expressed as 

(9) 

We will concentrate on the first term on the right hand side of the above equation, 

namely R1 • This term is represents the expected number of reservations, r 1 in fare 

class 1 given the number of seats, S1 allocated to the fare class multiplied by the fare. 

In expanded form, this revenue is 
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(10) 

Assuming normally distributed demands and letting 

Zt 

we can write (10) as 

(11) 

where the transformation, 

is applied to the limits of the integral. 

Integrating (11 ), it is easy to establish that 

where <I> is the standard normal distribution function and ljJ is the standard normal 

density function. 

<I> can be evaluated by means of a numerical method such as that proposed by 

Abramowitz and Stegun [lJ. The remainder of the terms can be computed explicitly. 

The same argument leads to the revenue R2 derived from fare class 2 nnd hence the 

total revenue for the travel class can be computed. Substituting (11) and the equiv

alent result for R2 into equation (9) and using the fact that with no overbooking 

allowed SI = c - s2, optimal conditions can be found by solving: 

- 0. (13) 
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The solution of (13) yields the result: 

(14) 

which is a simple restatement of equation (7). Consequently it is easy to see that a 

simple line search on S1 (or S2 ) will determine the optimum values of S1 (and S2 ) in 

the overbooking situation. 

4. The Overbooking Proble1n 

The major benefit achieved by increasing the seat allocation in each fare class is that 

the overall load factor increases (i.e. the average number of passengers per flight) and 

hence the expected revenue. The drawback is that with the increased seat allocation, 

there is the possibility of having to reject passengers resulting in a loss of the fare for 

the flight plus additional expenses associated with denied boarding. In the data we 

supply below, it is evident that these additional expenses are non-trivial. 

In considering the overbooking problem here, we do not include the possibility of post

purchase cancellations as in Shlifer [11) or Brumelle [6]. That is, in our analysis we 

assume that a scat once booked is also confirmed, whereas in Shlifer (11] and Brumelle 

[6] the assumption is that one is dealing with a two stage process; customers first 

book and then elect to confirm or cancel (as a Bernoulli process). Our cancellation 

process is implicit in the variance of the demand estimates and our sole concern is with 

an attempt to increase the load factor balanced against the possibility of additional 

overbooking charges when we have overfilled the travel class. In our approach, we 

could accommodate post-purchase cancellations in a more explicit manner either by 

scaling down the real demand by some percentage or by reducing the overbooking 

charges in an e(1uivalcnt way. The net effect would be to overbook more in order to 

adjust for the fact that not all customers will actually show up. 

The impact of the expected lost revenue from overbooking is not trivial, as the costs 

associated with denied boarding depend on the relative overbooking costs at the 

two departure sites (in our case, London overbooking charges are significantly higher 

than Cape Town). We will consider two approaches to this problem. In the first and 

simpler case, it is assumed that the overbooking costs in both Cape Town and London 

are the same. This automatically leads to the model favouring London seats since 
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they generate the most revenue. This is clearly a shortcoming, since the overbooking 

costs associated with denied boarding in London are much higher. The second model 

attempts to address this shortcoming by apportioning the overbooked seats to the 

t.wo sale points on some rational basis. 

Modcll 

In order to describe the model, it is necessary to define some additional terms. Let 

B 1 and B 2 be the booking limits for fare classes 1 and 2 respectively. The sum 

of the limits exceeds the capacity of the travel class by· the extent of overbooking 

allowed. Mathematically these relationships are expressed as B = B 1 + B 2 and 

B = C + sover, where sover is the number of overbooked seats. Hence expected 

revenues R 1 for city 1 can be computed directly using B 1 in place of S1 in e<pta.t.ion 

(12); and likewise a comparable calculation yields R 2 • Since B 1 and B 2 will in general 

be larger than S1 and S2 respectively, total revenues will increase. 

To determine the total expected number of rejected seats the two demand distribu

tions need to be summed. The total demand distribution can thus be represented by 

N(f.t3 , a 3 ), where the mean and standard deviations are computed as follows: 

(15) 

and 

(16) 

where p12 is the correlation coefficient between the demand of fare class 1 and fare 

class 2. 

We express the normal probability density function for the sum of the demands as 

p(1·3). If the revenue lost from a single rejected seat is /3, the total revenue expected 

to be lost is therefore 

(17) 
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This lost revenue is clearly zero for B s; C. The net expected revenue can thus be 

rcwri t ten as 

(18) 

which is a function of B 1, B 2 and C. Using equations (12) and (17) and defining 

~~ = (B1- fJt)/ut, 6 = (B2 -1t2)/u2 and (3 = (B -p3)ju3 we can rewrite (18) as: 

Ut 0'1 

+ /2{/.t2[«P((2)- <I>( _P2 
)) - o-2(t/>(6) -t/>(- /-'2 

)) + Bz[l- «P(6)]} 
0"2 0"2 

h{J-LJ[«P(6 ) _ cp(c -1t3)] _ o-3 [4>(6 ) -t/>(c- P3)J 
0"3 O'J 

+B[l -<I>( (3] - C[1 - <I>( C - l-'3 
)]} 

O'J 

From this it is straightforward to establish, for any given level B of overbooking 

(20) 

Note that the optimality condition given by equation (20) is the same as that pre

sented in equation (14) This follows from the fact that the overbooking cost for a 

given B is independent of the seat allocation. 

It is easy to conduct a gradient search using the optimality conditions in (20) to 

determine the optimum booking levels B1 and B 2 for each level of overbooking B. 

To obtain the optimum level of overbooking, a simple line search will suffice: 

• Step a: Choose a total level B. 

• Step b: Conduct, a. gradient search to find optimal partition of B into B 1 and 

B2. Use equation (19) to evaluate this allocation. 

• Step c: Choose another booking level B. If our line search exhausts all values 

of B stop otherwise return to step b. 
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Model£ 

In reality, a denied booking in one sit.e results in a greater loss of revenue than in the 

other site (in our case London being the more expensive). 

Once again we have the booking limits B 1 and B 2 yielding a total booking level 

B( = B1 + B 2 ). To evaluate the overbooking charge we must separate R3 into two 

costs, R31 and R32 • R31 represents the cost of overbooking of customers in city 1 

who are then denied boarding. R32 is the equivalent overbooking cost for customers 

booked in city 2. We denote the lost revenue for each seat in the fare classes by h. 
and f~· Multiplying these revenues by the expected number of denied hoardings for 

the respective fare classes yields the total expected lost revenue, R3 . 

Consistent with equation (17), denote the expected number of denied bookings to 

be: 

(21) 

We define /31 as the probability that a random customer on either leg of the flight 

was booked in city 1. From equat.ion (2) this is, 

(22) 

Since, if we must remove customers from the flight and customers on the return flight 

will have preemptive right to a scat, the proportion of denied hoardings (over book

ings) that will take place in city 1 is {31 and the proportion that will take place in 

city 2 is {32 • To keep flights from being overloaded, customers must be denied flying 

out of the two cities in proportions {31 a.nd {32 respectively. Hence the total expected 

cost of overbooking can be computed as 

(23) 
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Substituting (23) into (18) it follows that 

dR 

-{ (bt(l- <!J((2)] + b2{l- <l>(~t)])(h, - hJ }E(db) 
[bl + b2}2 

0 

(24) 

which allows us to determine the optimum booking levels B 1 and B 2 in the presence 

of differential overbooking charges in the two cities. Note that we are making these 

booking limit decisions, B 1 and B 2, in advance of flight time. In this way, we are 

balancing off the expected revenues of bookings in the two cities against the expected 

costs of having too many customers showing up fox· a flight. The assumption is that 

customers flying their return leg have a prcemptive right to a seat. Only outbound 

customers may be denied a. seat. This does not preclude, however, a returning cus

tomer voluntarily accepting the offer to be "bumped". 

5. The CapeTown/London Return Sector for South African Airways 

Pa.ro.mctcr Estima,tion 

Our application of these models is applied to the Cape Town/London sector flown by 

Sont.h African Airways 2 . The method used for estimating the means and standard 

deviations follows the approach adopted by Bocing Commercial Aircraft Company 

( Spa.rham [12]). Normal probability paper is used to plot historical flight data. Ca

pacity used (on the vertical axis) is plotted against frequency of flights using no more 

tha.n this capacity (on the horizontal axis). If the data follows a normal distribution, 

then the plot would follow a straight line except for the upper end where the curve 

would bend down bccaufle of flights flown on which cabin capacity was reached. The 

data used in the examples used in this paper exhibited this behaviour. 

To estimate the unconstra.incd demand, a simple estimation technique is to utilize 

the 50th percentile (the median) as an estimate of the mean and to utilize the slope 

of the normal probability plot as an estimate of the standard deviation. This can be 

seen because between the 16th and the 50th percentiles would constitute 1 standard 

deviation. Hence z = 1 = (ft5oth- x 161h)/ u. From this it is clear that (J = JJ.soth- XJoth· 

Provided we use the best-fit regression to establish the slope of the normal proba-

2The authors wish to express their appreciation to the South African Airways and in part-icular to 
Louis du Plessis for many fruitful talks and [or supplying the sector data. 
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bility plot, we can determine our distribution parameters simply and quickly. This 

does, however, remain censored data (depending on the number of flights flown fully 

loaded). More efficient (lower variance) parameter estimates can be obtained via 

Maximum Likelihood Estimation (the details of which are available in Lawless (9]) 

for normally distributed censored data. Since it is not the intention of this paper to 

focus on parameter estimation, the simplified probability plot approach was utilized 

here. For an actual implementation of these algorithms, efficiency of estimation could 

become important, in which case the Maximum Likelihood approach should be used. 

Below we present the resuHs on several different scenarios using the above models. As 

mentioned, we have restricted our cases to First and Business Class travel where these 
' 

development is necessary to extend these models to economy class where nesting is 

now the dominant structure. In all the examples presented we ha.vc assumed that 

p12 = 0 and have briefly discussed the influence of covariance separately. 

Example 1: First Class travel with various levels of overbooking, Model 1. 

London - Cape Town Cape Town - London 

h = R 17035 !2 = R 10262 
Jlt = 22 /J.2 = 58 
O"t = 11 <J2 = 17, P12 = 0 
Overbooking cost, h = R 18885 

Table 1: Data for First Class wit,h Common Overbooking Charge 

The data and results for this example arc tabulated in Tables 1 & 2 respectively. The 

results are also graphed in Figure 2. The capacity of the cabin is 112. (Note that 

this is double the physical capacity of the First Class cabin since we arc booking the 

return flight simultaneously.) 

While we have limit,cd the sales to a maximum of 133 seats (i.e 19% overbooked) we 

ha.ve not reached a. revenue maximizing position. In this case R continues to increase 

and as can be seen from Figure 2, has still not reached an optimum at a 50% level of 

ov<~rbooking. Since this is First class, it is unlikely that even a 10% level would be 

acceptable, signalling that the implied overbooking cost used by the airline is higher 

than the real cost utilized here. 
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B R BJ Rt PRRt B2 R2 PRR2 R3 
112 949596.6 37 368920.9 .016 75 580675.7 .024 .0 
113 950128.4 37 368920.9 .016 76 582232.2 .022 1024.7 
114 950621.4 37 368920.9 .016 77 583651.3 .019 1950.7 
115 951140.2 38 370274.7 .012 77 583651.3 .019 2785.8 

. 
123 955142.5 41 373155.5 .004 82 588977.5 .010 6990.4 

. 

132 958572.1 44 374770.0 .000 88 592490.0 .005 8687.9 
133 958855.8 44 374770.0 .000 89 592863.7 .004 8777.8 

Table 2: Results for First Class with Common Overbooking Charge 

Our second level decision is how to allocate the seats between Cape Town sales and 

London sales. The optimum is obtained by solving equation (20). Since we do 

not have an revenue maximising number of seats, we have determined the optimum 

allocation of seats for the base case of 112 seats (i.e. no ovverbooking). We can see 

that for this case, 75 seats should be sold out of Cape Town and 37 seats should 

be sold out. of London. In this case the probabilities of arriving customers being 

rcfu~cd are respectively 1.6% and 2.4% in London and Cape Town. Wit.hout running 

a controlled case, it is obvious that any arbitrary allocation of seats between the 

two sale points must be inferior to those generated by the model (by virtue of the 

optimization). 

Example 2: First Clas.~ travel with various levels of overbooking, Model 2. 

London - Cape Town Cape Town - London 

!1 = R 17035 h = R 10262 
/-lt = 22 ll2 = 58 
O't = 11 0'2 = 17, P12 = 0 
Overbooking cost, /31 = R 18885 Overbooking cost, /32 = R 11662 

Table 3: Data for First Class with Separate Overbooking Charge 

Here we have a re-run of example 1, but in this instance model 2 has been used in 
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966.00.------.------..-----,.----~---r-------. 

964.00 
Separate ............. ~·······-· ···-···-·-·· 

- ----------i-----+----:-:---.c.:···~·-·-.----1----.............. 
, .... 

,.,·'' 
962. 00 ................................................................................. --····,-"·:... ............ ··········-···-- ·-.. ·-·-· ·;::::=·-.. .. .............. -...... ---· .. _. _,/ v------ Common 

~ ~ 960.00 ------·---------rT- --· --·---·--·------·------
a; -g 958.00 f----·-· r-/ / -----1 
.... (tJ 

E ~ 
~ _g 956.00 
-~ c 
~ 

952.00 - -; - ·- -..; 

950.00 [l'__ ___ - --·-
948.00+---~--~~--+----+---~----~ 

112 122 132 142 152 162 172 
No of bookings 

Figure 2: Results for First Class 

order to measure the effects of the differentiated overbooking charges. The data used 

for this example appear in Table 3. The results are tabulated in Table 4 and graphed 

in Figure 2. As in the previous example no optimum is reached. The expected 

revenues for different levels of overbooking are slightly higher as the aggregate cost 

of overbooking in this case is less than in the previous example. If we compare the 

scat allocations at the 10% level of overbooking (i.e. 123 seats), we see that both 

models allocate 41 seats to London and 82 to Cape Town. Even though the cost of 

an overbooked Cape Town scat is less, the likelihood of it occuring is much higher. 

Example 3: J (Business) Cla,,s travel, 01Jerbooking all01JJed, Model 1 

The capacity of this class is 176 in both legs. The data used in this example arc 

shown in Table 5. The expected revenues for various overbooking limits arc tabu

lated in Ta~le 6. and plotted in Figure 3 and it is evident that by using this model, 

the maximum will only be achieved at a very high overbooking level (pro~a.bly unac-
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B R Bt Rt PRR1 B2 R2 PRR2 R3+R1 
112 949596.6 37 368920.9 .016 75 580675.7 .024 .0 
113 950412.1 37 368920.9 .016 76 582232.2 .022 741.0 
114 951161.8 37 368920.9 .016 77 583651.3 .019 1410.3 
115 951911.1 38 370274.7 .012 77 583651.3 .019 2014.9 
. . 
. 

123 957077.6 41 373155.5 .004 82 588977.5 .010 5055.3 
. . 
. . 

132 960978.2 44 374770.0 .000 88 592490.0 .005 6281.8 
133 961287.2 44 374770.0 .000 89 592863.7 .004 6346.4 

Table 4: Results for First Class with Separate Overbooking Charge 

London ~ Cape Town Cape Town ~ London 
f1 = R. 9620 h = R 7280 
J-l·t = 49 /12 = 75 
<1t = 19 <12 = 33, Pt2 = 0 
Overbooking cost, h = R 11470 

Table 5: Data for Business Class with Common Overbooking Charge 

below, we choose a total scat capacity of 200 seats. This represents an overbooking 

level of 14%. Of these seats, 121 arc allocated to Cape Town and 79 are allocated to 

London with probabilities of arriving customers being refused respectively 1.5% and 

0.9%. Note from Figure 3 that the total revenue begins to flatten off at a level of 

overbooking of about 25%. 

Example 4: J ( B11.sincss) Class tr·avcl, overbooking allouJcd, M odcl 2 

Once again this example uses the data (see Table 7) of example 3, but in this instance 

ernploying Model 2. As in example 3, a maximum will only be reached at a very high 

level of overbooking. The results for increasing overbooking limits arc tabulated in 

Table 8 and graphcd in Figure 3. Comparing the seat allocations of the two models 
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B R Bt Rt PRRt B2 R2 PRR2 R3 
176 983771.6 70 459253.7 .026 106 524517.9 .039 .0 
177 984048.5 71 460494.1 .023 106 524517.9 .039 963.4 
178 984367.7 71 460494.1 .023 107 525754.8 .037 1881.3 
. . . 

. 
200 991709.0 79 467202.5 .009 121 538025.1 .015 13518.6 
. . 

. 
262 1000849.0 101 471494.4 .000 161 546607.6 -.001 17253.0 
263 1000879.3 101 471494.4 .000 162 546639.5 -.001 17254.6 
264 1000907.0 101 471494.4 .000 163 546668.7 -.001 17256.0 

Table 6: Results for Business Class with Common Overbooking Charge 

London - Cape Town Cape Town - London 
/. = R 9620 h = R 7280 
Ill = 49 J.l2 = 75 
17t = 19 172 = 33, P12 = 0 
Overbooking cost, /31 = R 11470 Overbooking cost, /32 = R7480 

Table 7: Data for Business Class with Separate Overbooking Charge 

at 200 seats booked, it is evident that model 2 favours Cape Town seats because of 

the lower overbooking charge. On the whole however, splitting the overbooking cost. 

has little effect in this case and the differences between model 1 and model 2 are 

not that significant. Once again the slightly lower loss of revenue from overbooking 

predicted by model 2 is due to the fact that the average overbooking cost per seat is 

lower. 

The influence of co11a.n:ance 

To measure the impact of covariance on the booking limits we have repeated Examples 

3 and 4, but with a range of correlation coefficients from -1 to +1. The results of 

these runs are gra.phed in Figures 4 and 5. It is dear that for positive correlation a 

distinct maximum is obtained wit.h the optimum level of overbooking falling off as 
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Figure 3: Results for Business Class 

One should note that the results obtained are for a particular pomt m tune. In 

reality, the seat allocation problem must be solved dynamically as the time to flight 

departure (in either direction) occurs. At any given time, the mean and variance of 

demand for service at both departure points must be estimated. What one observes 

is tlw.t the variability in demand reduces as one approaches the departure date. 

This is no doubt in part a reflection of the cancellation process in operation. The 

dor->er one gets to flight time, the less is the uncertainty that exists in the demand 

for service. Historically, flight specific data reflects this information in the form 

of reduced demand variance. In running the model, the smaller the assumed total 

variance in demand, the lower will be the optimal the level of overbooking (for any 

given mean demand for service). In this way, the model proposed here can be regarded 

as a mathematical interpretation of what currently occurs in practice. As flight time is 

approached an airline reduces the overbooking level. They do this obviously because 
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B R Bt Rt PRRt B2 R2 PRR2 R3+ R4 
176 983771.6 70 459253.7 .026 106 524517.9 .039 .0 
177 984249.9 71 460494.1 .023 106 524517.9 .039 762.1 
178 984761.2 71 460494.1 .023 107 525754.8 .037 1487.7 

. 

200 994547.7 78 466622.6 .010 122 538603.3 .014 10678.2 
. . 

. . . . 

262 1004480.3 101 471494.4 .000 161 546607.6 -.001 13621.7 
263 1004511.0 101 471494.4 .000 162 546639.5 -.001 13622.9 
264 1004539.2 101 471494.4 .000 163 546668.7 -.001 13623.9 

Table 8: Results for Business Class with Separate Overbooking Charge 

the likelihood of cancellation is becoming less. Hence, if they do overbook there is a 

high probability that they will incur the overbooking charge. 

6. Conclusions 

We have seen in this research that it is possible for an airline to manage its inventory 

of seats in such a way as to capitalize on currency differentials that exist between 

city pairs. While the overall gain is small on any given flight, it is the fact that an 

airline repeatedly flies such sectors that makes the optimization of value. The fad 

that only small improvements can be obtained on any one return flight is consistent 

with previous research in seat inventory management (Brumelle [6]) 

A good deal of work still needs to be done in this area. To begin with, further 

calibration of the model needs to be carried out in order to measure the impact on 

other sectors. Secondly the impact of one-way flights needs to be investigated. This 

would principally arise in this context, because passengers would fly only one leg of 

the sector, but elect to return on another airline. The fact that this has a small effect 

on the sector is what motivated the adopted approach. Finally, the issue of nesting 

needs to be addressed within the model. This is of course a complex modelling 

problem, but could potentially be of benefit particularly in the economy class. 
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Figure 4: Business Class with Common Overbooking Charge and Varying p12 
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