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A modification of Snyman 's interior feasible direction method [1] for linear program­

ming is proposed and the method is also extended to problems where the objective 

function is non-linear. The method attempts to identify the optimal bounding set 

of active constraints. In the modified algorithm the successive interior steps in the 

identifying cycle are no longer constrained to be in the plane of constant objective 

function value, but are computed to ensure improvement in the objective function 

for any non-zero step taken within the cycle. The method is also extended to non­

linear objective functions by allowing for line searches within the interior and along 

bounding hypersurfaces. A formal unified algorithm is presented and the method is 

illustrated by its successful application to a number of simple problems from different 

categories. 

http://orion.journals.ac.za/



91 

1 INTRODUCTION 

Recently Snyman [1] proposed and tested a new interior feasible direction method 

with constraint projections for linear programming. The method attempts to identify 

the optimal bounding set of active constraints by a sequence of steps taken through 

the interior of the feasible region. The new method appears to require rela tively few 

cycles for convergence compared to the well established simplex method. The number 

of computations per cycle is however higher so that it is outperformed although not 

overshadowed by the simplex method, when implemented on a sequential computing 

machine. In addition it has been shown that the new algorithm possesses significant 

parallel features compared to the highly sequential simplex method. The parR;llel fea­

tures arise from the fact that, in order to determine the interior step si?-e, the method 

computes the distance to each constraint surface whenever a step is to be taken. If 

many constraints are specified these computations, which arc independent of each 

other, may be done in parallel which should result in a significant reduction in over­

all computational time. This, together with the relatively few cycles required, should 

allow the new method to exploit the potential offerred by future parallel computing 

and therefore justifies further research into interior fea..c:;ible direction methods. In 

this paper the original interior method for linear progra.rruning is not only modified 

but also extended to problems where the objective function is non-linear. 

The modification refers to the way in which successive interior steps are taken per 

cycle to identify a potential optimal bounding set of active constraints. In the original 

algorithm, starting from an initial feasible interior point (determined by solving the 

auxilliary problem if not available) a step is taken in the direction of maximum 

improvement until an active constraint is encountered. At this point a sequence of 

interior searches in n-dimensional space is initiated until n bounding constraints are 

identified. The intersection of these constraint equatiO!fS yields a potential optimal 

point. A salient feature of the original interior algorithm is that all the interior search 

steps per cycle are taken in the plane of constant function value corresponding to 

the function value at the first encountered constraint. In the modified algorithm 

presented here the successive interior stt~ps per cycle are no longer constrained to 

be in the plane of constant function value but are indeed computed in a way to 

ensure, not only feasibility, but also improvement. in the objective function for any 

non-zero step taken within a cycle. In addition it turns out that the computation of 

the successive step directions arc less complicated than before. 

Here the method is also extended to apply to the case where the objective function is 

non-linear. In this case the optimum may also occur at a non-cxtremum point in the 

interior of the feasible region, on a hypcrsurface ddinf'd by a single bounding eon-
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straint or at the intersection of two or more constraints. Therefore the method must 

be adjusted to take into account information obtained by line searches performed 

along and in the direction of the interior steps. It should also allow for projection 

onto a constraint surface should the basic method persist in successively encountering 

the same constraint from interior restarts. 

The method proposed here differs fundamentally from the feasible direction method 

of Zoutendijk [2] and the gradient projection method of Rosen [3] which may be 

considered to be similar methods. Zoutendijk's method computes feasible directions 

on encountering one or more constraints by solving a linear programming subproblem. 

Details on how the computations are done may be found in Luenberger [4] and Gill 

et al [5]. The feasible directions in Zoutendijk's method are computed in a way which 

attempts to give maximum improvement subject to feasibility and therefore becomes 

an essentially boundary following technique. In Rosen's method a step is also taken 

until one or more constraints have been encountered. At this point the gradient 

is projected onto the bounding hypersurface and a boundary following trajectory 

is also subsequently pursued. In the method proposed here feasible directions are 

computed which, a.lthough resulting in improvement of the objective function, in fact 

attempts to move away from the currently encountered constraints i!l order to identify 

additional constraints that may be added to a potential optimal set of bounding 

constraints. Each basic cycle of the new method therefore consists of a sequence 

of interior steps. Further the feasible directions in this method are computed by 

simply solving a system of linear equations as opposed to the solution of a more 

complicated linear programming subproblem required by, for example, Zoutendijk's 

feasible direction method. 

2 PROBLEM STATEMENT AND FUNDAMENTAL METHOD 

Consider the optimization problem: 

minirnize f ( :t) 

subject to the linear constraints 

a i • ,., - b· < 0 ; - 1 2 rn ..., . - ' . - ' ' ... , (2.1) 

where x and ai are column vectors in Rn, biER and · denotes the scalar product. In 
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this formulation any simple bound on the variables, if specified, are included in the 

general linear constraints. The availability of an initial feasible point :r1 is a .. c;sumcd. 

The optimal solution is denoted by :r'". 

To simplify the introduction to the basic algorithm assume that the objective function 

is linear, i.e. f(:r) = c · :r. Moving from :r1 in the direction of steepest descent the 

first constraint surface say ai · x - bi = 0, is met at x 2
• Feasibility as well as descent 

may now be ensured by computing a direction for the next step which lies within the 

feasible 'wedge' defined by constraint plane ai · x - bj = 0 a.nd the plane of constant 

function value V J · x = c · x = c · x 2 through the point x 2
• A suitable choice would 

be a direction which points away halfway between the two respective planes. This 

direction may be computed as follows. The unit vector orthogonal to the Constant 

function plane and pointing in the direction of descent is given by p 1 = ~~~~ and 

the unit vector orthogonal to the constraint plane and pointing in the direction of 

feasibility is p
2 

= ll:,~1 • 

The required direction q2 is then given by a linear combination of p 1 and p 2
: 

(2.2) 

such that 

2 1 2 2 r q · p =q · p =u (2.3) 

for some arbitrarily chosen o > 0. The choice o = 1 may be made. Condition {2.3) 

.together with (2.2) reduces to: 

[ ~::: ::~ ~:: : ::; l [ :: l [ : l (2.4) 

Substitution of the solution of (2.4) into (2.2) gtves the required feasible descent 

direction (in the simple initial step the a's are equal a 1 = cr2 , hut this is not generally 

the case for more than two bounding planes). Moving now away from x 2 in the new 

descent direction a second constraint will be encountered at x 3
, say ak · x - bk = 0, 

unless the problem is unbounded . If a non zero step is takf'n it will result in a. decrease 

in .f( :r) as well as moving away from the first encountered constraint plane. At :v3 
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the next feasible descent direction may be determined as follows. The plane of the 

first encountered constraint is translated to .v3 and it is now required that the new 

direction l for the next feasible step at .v3 be computed to lie within the feasible 

cone defined by the plane of the current encountered constraint at .v3
, a" · .v- bk = 0, 

the plane of the first constraint moved to .v3 and the plane of constant function value 

at .v3
• Again it is required that l point away equally from the three planes defining 

the cone, i.e. the linear combination 

(2.5) 

· h 3 -ak · h 1 h Wtt p = nakll, IS C OSCU SUC l t at 

(2.6) 

which may be de.not.ed more concisely by 

P 3 3 3 a = e (2.7) 

where e3 = [1, 1, lf. 

This procedure ensures not only a descent direction but also prevents any previously 

encountered constraint being met again. Continuing in this way a sequence of n 

boundary points .v2
, .v3

, ... , .vn+t on n different bounding constraints may be identified 

by successively solving 

P ro/= er , r = 1,2, ... ,n (2.8) 

and determining the nearest boundary point zr+t moving from the point .vr in the 

direction 

,. 
qr = :Lajp·j (2.9) 

j=l 
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The normalised search direction is denoted by 

(2.10) 

It is assumed for the moment that pr is non-singular. It will be singular if the p1 's are 

linear dependent in which case the complication may be dealt with by terminating 

the cycle, and restarting the next cycle from the center of the simplex defined by the 

boundary points z 2
, z 3

, ••• , zr in a way similar to that described in reference [1]. 

The intersection Z
11 of then identified bounding constraints, obtained by solving the 

linear system 

A~ =b (2.11) 

corresponding to the identified constraints all being active, represents a potential 

optimal vertex of the feasible region. The whole procedure, starting at ~1 and ending 

with the computation of Z 11 is referred to as a cycle. 

With Z 11 computed it is first determined whether f(zv) < f(zn+t). If not then restart 

the next cycle with z 1 := zn+t. Otherwise test for feasibility. If not feasible then 

also restart next cycle with z 1 := zn+t. If neither the above occurs, then z 11 may 

be tested for optimality by applying the Kuhn-Tucker conditions and calculating 

the corresponding Lagrange multipliers as described by Snyman [lJ. If not optimal 

a non enforced constraint can be identified by its corresponding negative Lagrange 

multiplier and simply dropped from the constraint set at the start of the next cycle. 

Alternatively a new feasible starting point, with improved function value, may readily 

be computed by the method described by Snyman [1] and used as starting point for 

the next cycle. 

The above outlines the new modified interior method for linear programming. The 

most important change is that the new method allows for descent at each step within 

a cycle whereas in Snyman's original algorithm all the interior steps per cycle were 

performed in the plane of constant function value. 
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3 EXTENSION TO NON-LINEAR OBJECTIVE FUNCTIONS 

The method for linear programming may be extended to the case where the objective 

function f( z) is a continuously differentiable non-linear function. Here of course the 

optimum may no longer necessarily coincide with a vertex of the feasible region. The 

major changes required to extend the method to this case are now outlined. 

The first step from the interior is, as before, in the direction of steepest descent 

-V J( :~: 1 ), but on encountering the first constraint at z 2 the orthogonal direction p 1 

is recomputed: 

(3.1) 

The argument embodied in equations (2.2) to (2.9) as regards the computation of 

search directions at the boundary points still apply, except that the feasible cone is 

now defined by the encountered constraint planes and the tangent hyperplane to the 

objective function of the current boundary point. Since the tangent hyperplane is 

defined by the gradient of the non-linear objective function at the boundary point it 

means that p 1 has to be recomputed at each boundary point before determining the 

a's by solving (2.8) to give the next search direction. 

The second change is due to the fact that during each interior step the objective 
function may attain a minimum before a constraint surface is encountered. This 

necessitates that a line search be carried out along the direction sr for each step r. 

Should the minimum occur within the interior sa at z t 

terminated and the next cycle started with z 1 := z. This procedure ensures that 

descent is achieved from cycle to cycle. It may happen that after restart the same 

constraint surface, as that immediately before in the previous cycle, is met. If this 

happens successively a sequence of boundary points will be generated on the same 

constraint surface which will seriously slow down convergence. Thus the decision is 

made that should the same bounding constraint be met at the first step of the next 

cycle, then the gradient of the objective function will be projected on this constraint 

surface by the computation of the appropriate projection matrix [3]. A Fletcher­

Reeves conjugate gradient procedure [4) is then initiated within this constraint plane. 

It is then possible that the procedure may rapidly converge to an optimum point in 

the constraint plane without encountering any other constraint. However, should 

another constraint. be met before convergence of the conjugate gradient procedure, 

say at the point zb, then the gradient projection routine is terminated and the next 
cycle started with z 1 

:= :vb. 
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One final heuristic adjustment is made during the final step within a cycle when the 

progress of the algorithm is such that it is likely that the optimum may occur at or 

near a vertex. In this step if a minimum occurs in the interior the cycle is terminated 

but the final nearest constraint that would have been met is recorded to complete a 

set of n bounding constraints for which the intersection vertex zv may be computed. 

The next cycle is started in the normal way but should this cycle terminate at a 

constraint surface in the projection routine then for the subsequent cycle the first 

search direction is chosen as 

(3.2) 

if f(zv) < f(z 1
). Of course if the complete cycle is executed without any interior 

termination then z v is computed as for the linear case. Further progress is then 

determined according to feasibility and optimality tests as described for the linear 

case in section 2. 

Without stating and proving any formal convergence theorems it should be clear 

from the constructive nature of the algorithm that, in the absence of degeneracy, 

the above minimization procedure should guarantee descent from cycle to cycle until 

a local optimum is reached. The formal algorithm that follows, routinely identifies 

and discards non-active constraints at a candidate optimal vertex and restarts with a 

smaller working set of constraints. One may therefore expect that degeneracy should 

not pose a serious problem. Degeneracy may of course also be dealt with here by 

the application of the lexicographic method as is sometimes done when applying the 

simplex method. 

The minimization procedures for linear and non-linear objective functions outlined 

in sections 2 and 3 respectively may now be unified in a formal algorithm. 

4 FORMAL UNIFIED INTERIOR ALGORITHM 

Step 1 

Given feasible interior point :e 1 and e > 0 an arbitrarily chosen small mm1ber: 

set type := L for linear objective function and 

set type := N for non-linear case; 

set initial counters: i := 0 , k := 0; 

set flags: flag j := 0 , j = 1, 2, 3 
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Step 2 

Set cycle number i := i + 1 

compute p
1 =-V f(z1)/IIV f(z1 )11 

if flag 2 = 1 and flag 3 = 1 then 
compute f(zv) 
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if f(zv) < f(z 1
) then set 8

1 = (zv- z 1)/llzv- z 111 
else set s 1 = p 1 

endif 

set flag 2 = 0 and flag 3 = 0 

endif 

Step 3 

For k = 2 to n + 1 do: 

* COMPUTE DISTANCES FROM zk-
1 TO CONSTRAINT PLANES * 

3.1 for j = 1 to m determine -\: 
A (bi i k-t)/( i k-t) i= -a·z a·s 

3.2 if type =N then 

* DO LINE SEARCH * 
determine ll such that 

f( k-1 + k-1) . !( k-1 + \ k-1) z ps = mm z /\8 

if p < 0 set p. := oo,\ 

endif 

3.3 *DETERMINE NEAREST CONSTRAINT PLANE IN DIRECTION sk-
1* 

determine At. = m~n { Ai IAi ~ 0 and ai · 8k-t > 0} 
J 

(Should a tie occur for the minimum, choose anyone of them arbitrarily as At.) 

3.4 if p < At then 
k k-l k-l set z := z + ps 

if k = 2 go to Step 5 

if k = n + 1 then 

set flag 2 = 1 

add al and bl to active set Az =band solve for zv 
if zv feasible test for optimality as in Step 4; 

if optimal then stop (zv = z*) 
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end if 

end if 

set flag 1:=1 and go to Step 2. 

else 
k k-1 \ k-l d set :c := :c + "'es an· 
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add associated coefficients al and b1 to active set Ax = b, set l" = e. 
endif 

3.5 if k = n + 1 go to Step 4. 

3.6 if flag 1 = 1 and f.= R' then go to Step 5 (Project.ion routine) 

else set flag 1 := 0 and flag 2 := 0. 

end if 

3.7 * COMPUTE NE\V SEARCH DIRECTION * 

compute pk = -ae/lla"il 
if type= N then set p

1 
:= -Vf(:ck)/IIV.f(:ck)ll 

end if 

1 . kk k k k k] solve t 1e lmear system P a = e and set q := Lj=t nip 
k k kll sets := q /llq 

3.8 Continue iteration (next /..~) 

Step 4 * BOUNDING SET Ax = b COMPLETE * 

Solve the linear system Ax = b to give :c1
', 

if .f(xv) > .f(xn+l) or ;;c" not feasible then 
1 n+t set ;;c : = ;;c 

go t.o Step 2 (start new cycle) 

end if 

*TEST :c
1

' FOR OPTI!\·1ALITY * 

Solve linear systcm AT,\+ V.f(x") = o for Lagrange multipliers,\ 

if ,\ ~ o then stop (xv = x") 

else a non- enforced constraint. corresponding t.o a negative component of,\ 
i~> dropped from constraint set.. 
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Set :c 
1 

: = a:: 
11 

and go to Step 2 (new cycle) 

endif 

Step 5 * PROJECTION ROUTINE * 

5.1 * COMPUTE PROJECTION MATRIX* 

If k = 2 then P :=I 

else 

p ·= [I- atTa'J . at.at 
endif 

1 k set y := x 

5.2 * START CONJUGATE GRADIENT PROCEDURE * 

set s1 
:= -PV f(y

1
) and s0 := lls1ll2 

5.3 for k = 1 to n - 1 do: 

5.3.1 for j = 1 torn determine ,\1: 

>.1 = (bi- a 1 · yk)/(ai · sk) 

5.3.2 determine Jl such that 
k k) . k k 

!(y + 11.s = m~n f(y +AS ) 
tf 11 < 0, set Jt := oo 

{ 
. k } 5.3.3 determine >.r, =j ~~re >.11\ ~ 0 and , a 3 

• s > 0 

5.3.4 if )..L < Jl. then 

if flag 2 = 1, set flat 3 := 1 
k k set x := y + >.Ls 

set flag 1 := 0 and go to Step 1; 

else continue to 5.3.5. 

end if 

5.3.6 continue (next conjugate gradient iteration) 
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5.4 Set y 1 := y" and go to 5.1 

5 EXAMPLE PROBLEMS AND RESULTS 

The application of the unified method is now illustrated by its application to a number 

of simple problems from different ca.tagories. In the following the different example 

problems are stated in standard form together with the initial feasible point :v1
. For 

every problem the progress of the algorithm is reflected by table~ entries in which 

for each cycle and step number k or projection step denoted by P, a/ is tabulated 

together with f(x"'). The corresponding constraint number is also indicatc<:l if x"' lies 

on a constraint surface. If the minimum xk occurs in the interior it. is indicated by a. 

* and if it occurs on a constraint hyperplane a # is appC'nded. Finally the' optimal 

point :v* and function value f(x*) is given as well as t.he ad.nal tobtl numher of st<'ps 

(TNS) taken. 

Example 1 A pure LP problem 

subject to 

g 1(:c) = -x1 + x 2 - 2x3 :S -5 

g2 (x) = -2x 1 - 3.r.2 + x 3 :S -4 

93(x) = -xt :::; 0 

gix) = -:rz $ 0 

9s(x) = -.r-3 $ 0 

1 T 
X = (3; 3;3) 

cycle l: k 
~;1 

k 
x2 

0 1 3 3 

1 2 2,5 2,5 

k 
:r :~ 

3 

2,5 

1 3 2,2129 0,8267 2,9060 

1 4 3,4554 0 2,1277 

f(x*) = 3,8 TNS = 3 

f(xk) const.raint 

9 -

7,5 1 

5,9456 2 

5,5831 4 
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Figure 1 gives a visual representation of the progress of the algorithm in Example 1. 

Figure 1: Progress of algorithm in Example 1 

Example 2 A quadratic programming (QP) problem with solution at a vertex 

. . . !( ) 2 2 2 nummlze ~ = :r 1 + x 2 + .1:3 

subject to 

9t ( ~) = 2:r 1 + :r2 :S 5 

gix) = x 1 + x3 :=; 2 

g3 (x) = -x1 S -1 

g4 (x) = -x2 ::; -2 

g5(x) = -x3 S: 0 

1 T 
X = (1, 2; 2, 2; 0, 5) 

http://orion.journals.ac.za/



 

103 

cycle k k k k f(zk) const.raint x1 x2 :r:l 

0 1 1,2 2,2 0,5 6,5300 -

1 2 1,0909 2 0,4545 5,3967 4 

1 3 1,0000 2,0269 0,4167 5,2820 3 

1 4 1,0139 2,0408 0,2390 5,2500 * 
nearest constraint for k = 4 is constraint 5 

TNS=3 

Example 3 A QP problem with solution on a constraint surface 

minimize f(z) = x~ + 3x~ + 1,5:r3 

subject to 

g 1(z) = -2x1 - x2 - x3 :::; -20 

g2(z) = -x1 - x3 :::; -10 

g3 (z) = -x1 :::; 0 

g4 (z) = -x2 :::; 0 

g5(z) = -x3 :::; 0 

1 1' 
z = (6;6;6) 

cycle k k 
Xt 

k 
x2 

0 1 6 6 

1 2 5,220 3,659 

1 3 6,598 1,906 

2 2 5,848 1,255 

2 Pl 5,324 0,000 

3 2 5,087 0,557 

4 2 4,905 0,497 

4 P1 3,431 1,356 

4 P2 ~] 1,500 0,250 

k 
:r.3 

6 

5,920 

7,135 

7,04!) 

9,352 

9,719 

9,692 

11,783 

16,750 

f(xk) constraint 

153,000 -

76,252 1 

65,133 * 
49,496 1 

42,373 4 

41,386 * 
39,342 1 

34,958 1# 

27,563 1# 

@ The value of the squared norm of t.he projected gradi<>nt a.t termination is 

10- 15 
871 = . 
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TNS=8 
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=27,563 

Figure 2 depicts the progress of the algorithm in Example 3. 

x, 

Figure 2: Progress of algorithm in Example 3 

Exa1nple 4 A general non-linear problem with solution at a vertex [6]. 

subject to 

g1(z) = x 1 + 2x2 + 2x3 < 72 

9i( ~) = -xi-t :=;; 0 , i = 2, 3, 4 
g5(z) = x 1 :=;; 20 

g6(z) = x2 ::; 11 

g7(z) = x3 ::; 42 
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X = {10; 10; 10)T 

cycle k k k k f(~l) constraint Xt x2 x3 

0 1 10 10 10 -1000 -

1 2 11 11 11 -1331 6 

1 3 17,351 6,351 17,361 -1911,9 * 
2 2 18,207 8,690 18,207 -2880,5 1 

2 3 18,998 10,751 14,762 -3015,1 * 
3 2 19,139 11,000 14,943 -3145,9 6 

3 3 19,567 10,726 15,491 -3251,1 1 

3 4 20,000 10,693 15,258 -3263,1 5 

f(x•) = -3300 TNS=7 

Exan1ple 5 A general non-linear problcru with solution on a constraint surface. 

minin1ize f(x) =xi+ 3x; + 1,5yfx; 

subject to 

g1(z) = -2x1 - x2 - x3 < -20 

g2(x) == -x1 - x3 < -10 

93(x) = -xl < 0 

g4 (x) = -x2 < 0 

g5(x) = -x3 < 0 
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cycle k k k k J(xk) constraint .1: t x2 x3 

0 1 6 6 6 147,67 -

1 2 5,204 3,612 5,980 69,89 1 

1 3 6,645 1,760 7,465 57,55 * 
2 2 5,752 1,050 7,447 40,48 1 

2 PI 4,492 0 11,015 25,16 3 

3 2 4,492 0 11,015 25,16 1 

3 3 4,224 0,597 11,576 24,02 * 
4 2 3,971 0,490 11,569 21,59 1 

4 PI 0,602 0,987 17,810 9,61 1# 
4 P2 @ 0,166 0,029 19,640 6,68 1# 

@ The value of the squared norm of the projected gradient at termination is sn = 
4.10-5

. 

• T x = (0, 166; 0, 029; 19, 640) , f(x*) = 6, 68 

TNS=9 

6 CONCLUSION 

The claim tha.t the proposed new interior feasible direction method represents a uni­

fkd method has been demonstrated by its application to simple example problems of 

different types. Although the simple examples are presente9 with the main objective 

of illustrating the principles involved, the practical performance of the method on 

these problems also demonstrate a robust and economic behaviour. In all cases con­

vergence was obt.ained in a few steps. In Example 4, for instance, convergence was 

obtained in 7 steps with 49 function and 49 constraint evaluations. This performance 

should be seen in comparison to the performance, on the same problem, of some more 

well kuown multiplier and penalt.y methods, that require many more function and 

constraint cvaluat.ions as reported by Hock and Schitt.kowski [6]. 

The obvious versatility of the int.crior approach embodied in the unified algorithm 

presented here, and its encouraging performance on the simple test problems justifies 

further future effort. in developing a general purpose code for solving large problems 

where the parallelism inherent in the algorithm may be exploited. 
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