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Degeneracy can cause enormous problems when solving large scale lir !ar programr. .• ing 
problems. This is not only because there is a possibility that the problem can cycle, but 
also because a large number of iterations can be executed that do not improve the objec­
tive. 

In this article a procedure which utilizes derived reduced costs is discussed. The de­
rived reduced cost of a non-basic variable is defined in such a way that it makes the 
introduction of the non-basic variable into the basis unattractive if such a decision fails 
to improve the objective. The procedure deliberately strives to combat degeneracy 
using derived reduced costs, but it also utilizes the advantageous properties of the clas­
sical gradient methods. 

Results achieved with the method are also reported. 

1. Paper read at the Joint Annual Conference of the South African Statistical Society and the 
Operations Research Society of South Africa, November 1989, WITS. 
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1. INTRODUCTION 

The solution of any programming problem consists of the following two choices for 

moving from one extreme point to another: the direction which is taken, and the length 

of the step. In linear programming problems the direction of movement is determined 

by the choice of the pivot column, while the length of the step is influenced by both the 

choice of the pivot column and pivot row. 

Two useful techniques to select the pivot row are those of Wolfe [19] and Wolfe and 

Cutler [20]. Ryan [16] stresses that the problem of degeneracy cannot be ignored and 

demonstrates how, by simply applying Wolfe's [19] algorithm, the number of pivots on 

a degenerate point can be drastically reduced. Wolfe and Cutler [20] have also sug­

gested that should the selection of a pivot row be at issue, the pivot row should be 

selected such that the pivot is as large as possible. This promotes numerical stability. 

The purpose of most anti-degeneracy procedures (row selection procedures) is purely to 

prevent the problem from cycling. These procedures do not take performance into 

account at all. (See also Charnes [3] and Dantzig, Orden and Wolfe [5]). 

Column selection procedures, on the other hand, can ensure good performance, but 

usually do not take into account the presence of degeneracy. (Harris [9] and Crowder 

and Hattingh [4]). Other column selection procedures that prevent the problem from 

cycling and which are practical to implement are those of Bland [2] and Gill [7]. 

Examples of a few anti-degeneracy techniques (column selection procedures) that do 

take performance into account are those of Welman [18], Janse van Vuuren [11] and 

Nel [15]. It is, however, a cause for concern to realise that, in practice, few if any 

anti-degeneracy techniques are implemented in computer programs. Degeneracy, 

nevertheless, remains a topical subject for research purposes. 1 

Research is continuously undertaken to discover whether alternative methods exist for 

the solving of linear programming problems. Amongst those techniques which have 

l. During 1990 an article by Gal [6] was published in ORlON that examines degeneracy in general 
by means of the theory of graphs. This theory has not yet been examined fully and constitutes a 
new field of research. 
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been developed are those by Khachiyan [13] and Karmakar [12]. The expectation was 

that these methods could lead to the development of techniques that were as efficient as 

the simplex method, if not more so. The debate (see Kozlov [14]) concerning the effec­

tiveness of these methods is still continuing and the methods are not yet being imple­

mented in linear programming packages on a large scale. Kozlov [ 14] criticises Kar­

markar's method as follows: "Because no one has been able to duplicate Karmakar's 

results in solving real problems, many in the scientific community remain skeptical" 

and he adds: "Much of the controversy seems to stem from Karmarkar' sand Bell 

Labs' refusal to provide precise details of the algorithm's implementation". 

The above-mentioned techniques are still, therefore, in a developmental phase and it 

cannot yet be proved that they perform better than simplex related techniques. The 

latter remain the most important techniques for the solution of large scale linear pro­

gramming problems. It is for this reason that simplex related techniques and their 

refinements are still being examined. 

The purpose of this study is to develop techniques which will counter the effect of 

degeneracy by reducing the number of iterations and solution time. The technique 

employs the principle of derived reduced costs. 

In the second paragraph derived reduced costs are discussed according to the method 

proposed by Welman [ 18]. In the third paragraph a modification to the method is 

proposed. Results and conclusions are extrapolated from the modified method. The 

final conclusions are arrivec at and recommendations are made in the fourth paragraph. 

2. DERIVED REDUCED COSTS 

2.1 THE RATIONALE OF DERIVED REDUCED COSTS 

Degeneracy occurs when at least one of the basic variables is zero. When the minimum 

ratio is computed to select the variable that must leave the basis, a degenerate pivot row 

is selected when the entry in the pivot column corresponding to that row is positive. 

This results in a degenerate step with no improvement in the objective. 

When no positive entries exist in a pivot column opposite a zero on the right hand side 

the pivot row is selected such that the corresponding value on the right hand side in the 
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pivot row is positive. An improvement in the value of the objective function will result. 

The method discussed in this article deliberately attempts to select the pivot column 

with as few as possible positive entries opposite the zeroes on the right hand side. The 

ideal is to select a column for which there are no positive entries in the column opposite 

zeroes on the right hand side, so that the value of the objective function will improve. 

The method can be summarised as follows (the normal notation which is used in Hadley 

[8] and others is used here): 

1 . 
Let x~. = ; With o > 0 and very small and 

vi 0 +X. 

x8 i the i-th component of the present basic feasible solution, i = 1, 2, ... , m. 

If we denote the x11i as a vector ! 6, we define the derived reduced cost associated with 

column j as: 

(c. - z.)* 
J J 

= c.- c Ts-'a + x Ts-'a. 
J -B ""1 -6 1 

= c. - z. + x.TB-1a (for minimization). 
J J -v J 

The minimum of (c.- zY for the j for which 
J J 

is used to determine the index of the pivot column k. 

The pivot row, row r, is determined by using the normal minimum ratio test, that is 

e - XBr - m;n { XBi' y > Q· t' - } 2 m} - - - ... -, ik , - ' ' ••• ' , 
y rit 1 yik 

where Yrk is element r of ~k = s-•~. 
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The following example is used to illustrate the use of derived reduced costs. 

The first table (Thble 2.1) of Beale's problem [1], which cycles if it is solved by means 

of the simplex method, is as follows: 

£s xl x2 x3 x4 xs x6 x7 b 

1 -1 
xs 0 - -60 --

4 25 
9 1 0 0 0 

1 -1' 
1 0 0 X.c, 0 -90 3 0 

~ :>U 

x7 0 0 0 1 0 0 0 1 1 

-3 -1 
cj - z, - 150 -- 6 0 0 0 

) 4 50 

Table 2.1 

Columns ~1 and~ are candidates for the pivot column. Furthermore, 

. 1 1 1 
xT-[ . ·--] 
- 6 - T' T ' 1 + o 

and 

If o = 0,001 (for example), then (c1 - z1f = 749.25 and (c3 - z3f = -59.021. 

The third column of Thble 2.1 will then become basic in the next step. As there are 

only negative entries in the thir~ column opposite the zeroes on the right hand side, ! 6 

causes the pivot row to be selected as the row for which x8 i =FO, that is the third row. 

Degeneracy is eliminated in the next step. 

The role played by !
6 

in the selection of the pivot column is substantiated as follows: 

Let I = { i I XBi = 0}. 
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If x8i = 0, then x6i -
1 1 

- -- = - is a large positive number. 
0 + XBi 0 

Thus, for a non-basic column j, ~B-1~ is large positive if a yij > 0 exists for i e I. 

Therefore, (ci- z/• = ci- ~8Ts-•~ + ~}s-•~ has a high positive value and makes the 

selection of column j as pivot column unattractive. 

If yii < 0 and x8 i = 0, the term yijxcSi makes a large negative contribution to the value 

of (c. - z.)\ and it increases the attractiveness of the column as pivot column. Should 
J J 

both negative and positive entries occur in the columns opposite the zeroes on the right 

hand side, the column where the number of negative entries predominate will be select­

ed. 

3. DOUBLE BLOCK DERIVED REDUCED COSTS (DBDRC) 

3.1 INTRODUCTION 

Many experiments have been undertaken using derived reduced costs in various forms. 

From the experiments it became clear that aspects such as multiple pricing and the use 

of gradient methods cannot be ignored. A method [15] was developed in which the 

influence of the gradient methods and the derived reduced costs can be controlled. 

The method is the following: a large multiple pricing block (size p) is selected by 

means of either the simplex or the partially normalized method [4] . Let the indices of 

For each of the columns with indices in J, the reduced costs d. = (c. - z.) and ~. = 
J J J J 

x}B-1a are calculated. Let Q = {~. 1 , T.2, ... , 1r. }. 
-v ~ J J JP 

From this large block a smaller block of size q is selected by choosing the columns that 

correspond with the q smallest values in Q. If q = 1, the problem reduces to single 

pricing, with a derived criterion for the choice of the pivot column. 

This second block is optimized entirely by means of the simplex method. The order in 

which the columns in the second block were selected was not subjected to experimenta-
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tion. It is assumed that the optimization of the second block occurs mainly in the main 

memory of the computer and that relatively few read and write activities, which are 

usually slow, take place at this stage. 

The purpose of Double Block Derived Reduced Costs (DBDRC) is the following: in 

the selection of the first block one ensures that the columns which are eventually used 

give profitable directions. Both the simplex and the partially normalized methods are 

gradient methods (Crowder and Hattingh [4]), and are therefore used to achieve "prof­

itable directions". In the selection of the second block, degeneracy is taken into ac­

count. Indeed, in the construction of this second block, care is taken to include 

columns that tend to improve the objective wherever possible. 

Experiments were conducted with various sizes of the second block. The more the size 

of the first block approximates that of the second, the more limited the effect of the 

derived reduced costs will be. 

3.2 IMPLEMENTATION OF THE METHOD 

The steps for the DBDRC method are as follows: 

Step 1 

Calculate a (feasible) solution by means of !
8 

= B-1Q. 

Step 2 

For every non-basic column j calculate 

d. = c. - z. and 
J J J 

with A.s defined as above. 
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Step 3 

If all c. - z. values ~ 0, (for minimization), stop, the solution is optimal, else go to step 
J J 

4. 

Step 4 

Select columns p 1 by means of the simplex or the partially normalized methods. The 

columns constitute a multiple pricing block. Note the corresponding indices of these 

columns, as well as the corresponding ,.. values, that is 

Q = {7r.t' 7r.2, ... , 1r. } . 
J J JP 

Step 5 

Select a smaller block with size q, using the smallest values in Q. 

Step 6 

Update all the columns of the second block. 

Step 7 

This block, then, constitutes the multiple pricing block, which is optimized by means of 

the simplex method. Pivot until the block selected in step 6 becomes optimal. 

Step 8 

Go to step 1. 

1. p = 20 was used in experimentation, and we assume that 20 columns constitute a sufficiently• 
"large" block. 
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Remark 

The method is very effective in terms of time for the following reason: the values of 1r. 
J 

= (x6TB-1)~ are calculated simultaneously with the values of zi = (c8TB-1 )~. The 

values of ?r. can be calculated without calculating the entries of the non-basic columns 
J 

(B·I~). 

3.3 EXPERIMENTAL RESULTS 

3.3.1 TEST PROBLEMS AND NafATION 

y means o 

ISRAEL are well-known problems in the literature. The following references suggest 

some examples where they were used: Gill [7]1, Crowder & Hattingh [4] and Kozlov 

[14]. 

On the surface it appears that only a few test problems were used for experimental 

purposes. However, to determine the effectiveness of the DBDRC method a large 

number of permutations were taken into account. To generate Thble 3.3, for example, 

a total of 364 runs were made which varied from 30 minutes to 3 hours per run. 

The dimensions of the test problems are the following: 

PROBLEM ROWS COLUMNS NON-ZERU ELEMENTS %DENSITY 

ADLITTLEl 57 138 424 5,4% 
ADLITTLE2 57 138 424 5,4% 
ISRAELl 175 316 2443 4,4% 
ISRAEL2 175 316 2443 4,4% 

Table 3.1 

The various values used for q are: 6, 8, 10, 12, 14, 16 and 18. 

1. Gill acknowledges D.M. Gay for making available the test problems. He also refers to Gay's 
article 'Electronic mail distribution of linear programming test problems' in Mathematical 
Programming Society COAL Newsletter, 13, 10-12 (1985). 
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The thirteen values used for a are displayed in the following table: 

NUMBER VALUE OF 6 NUMBER VALUE OF 6 

1 0,9 
2 0,8 8 O, 1 X lo-2 

3 0,7 9 0,1 X 10-4 

4 0,6 10 0,1 X 10-6 

5 0,5 11 0,1 X 10-8 

6 0,1 12 0,1 X 10-lO 
7 0,01 13 0,1 X 10-12 

Table 3.2 

The entries in the tables that follow indicate the average number of major iterations 

relative to the simplex method without multiple pricing for each of the above-mentioned 

four problems. Averages for the DBDRC method for all values of a and for all values 

of q (the size of the second multiple pricing block) are also reported in the tables. 

The corresponding figures for the simplex method without the derived reduced costs are 

also produced in the tables. 

3.3.2 COMPARISONS WITH THE SIMPLEX METHOD WITH MULTIPLE 

PRICING 

The four test problems were solved with the DBDRC method. The first block with a 

size of p = 20 columns W?:S selected by means of the simplex method and the second 

block with q columns was selected according to the minimum of the "'r. values. The 
J 

result is found in Thble 3.3. In Thble 3.3 comparisons of the simplex method with. 

multiple pricing are made with the DBDRC method with corresponding block sizes. 
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METHOD: DBDRC (FIRST BLOCK SELECTED WITH SIMPLEX METHOD) 
NUMBER OF MAJOR ITERATIONS RELATIVE TO SIMPLEX WITHOUT MULTIPLE 
PRICING 

NUM= q AVG. AVG. 
BER 6 8 10 12 14 16 18 OBDRC SIMP 

1 ,264 ,244 ,232 ,216 ,230 , 174 ,170 ,219 X ,212 
2 ,244 ,245 ,209 ,196 ,223 ,174 ,170 ,209 ,212 
3 ,238 , 219 ,203 ,174 , 195 ,169 ,170 ,196 ,212 
4 ,270 ,208 ,180 ,187 ,188 , 168 ,170 , 196 ,212 
5 ,265 ,257 ,184 ,197 ,188 ,178 , 171 ,206 ,212 
6 ,284 ,225 ,219 ,189 , 177 ,163 ,175 ,204 ,212 
7 ,271 ,228 ,200 ,199 , 157 ,173 , 197 ,204 ,212 
8 ,264 ,247 ,197 ,200 ,156 ,173 , 187 ,203 ,212 
9 ,260 ,250 ,194 ,199 ,164 ,161 ,184 ,202 ,212 
,.. 

~ .... , ... ..., .... , ..... ..., f~JV , .......... , ... v .... , .... v ... , .......... , .... JV '"' ... "' 
11 ,263 ,228 ,190 ,185 ,163 ,161 ,184 ,196 ,212 
12 ,263 ,228 ,190 ,185 , 163 ,161 ,184 ,196 ,212 
13 ,268 ,224 , 190 ,189 ,163 , 172 ,182 ,198 X , 212 

AVG. 
DBDRC ,263 ,233 ,198 ,192 ,179 ,168 ,179 
SIMP ,302 ,268 ,206 ,206 ,176 ,164 ,163 

Table 3.3 

Duncan's [17] method of multiple comparisons is used to determine whether there are 

significant differences between the averages of the DBDRC method. The results are as 

follows: 

Q 1') 1 Jl 1 Q 1t:. ...,. - -- -
AVG. (DBDRC) , 263 ,233 ,198 ,192 ,179 , 179 ,168 

X------------------- X 

X-------X 

According to Duncan's method (a = 0,05) the DBDRC method with the size of the 

second block taken at 10, 12, 14, and 18 produces almost similar results, while the 

same method with block sizes of 14, 16 and 18 produces almost the same results. 

The same test was done on the averages for all values of q for each of the 13 cases to 

determine the influence of o. According to Duncan's test (a = 0,05) there is no signif­

icant difference in the 13 cases and therefore within the range of values of owe have 

chosen. It thus does not seem to matter what value is used. 
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The DBDRC method produces better results than the simplex method with correspond­

ing values for q = 6 (12,9% better), 8 (13, 1% better), 10 (3,9% better) and 12 (6,8% 

better). 

A TRU C'Total resource unit") [10] value was also printed by the computer for each 

run made, and the value is calculated as follows: 

TRU = ,005 x processor time consumed 

+ , 002 x drum page transfers 

+ ,002 x disc page transfers 

+ , 010 x files tore transfers 

+ ,001 x mainstore occupancy 

+ ,012 x spooled records. 

For example, a job for which processor time consumed = 2800, disc page transfers = 

370, and mainstore occupancy = 1500, will be charged 

(2800 x 0,005) + (370 x 0,002) + (1500 x 0,001) = 16 TRUs. 

The TRU value for each main pivot {fRU/number of major iterations) was calculated 

for each problem. The results for ISRAELI and ISRAEL2 are given separately, and 

were only calculated for the final 6 cases. It is impractical to determine the average 

TRU value/major iteration for all the test problems as the variation is too large. The 

results are only given for ISRAELI and ISRAEL2 as the test problems are relatively 

large and give a good indication of the behaviour of the method for large scale linear 

programming problems in general. 
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ISRAEL!: TRU/MAJOR ITERATIONS 

NUM= q AVG. AVG. 
BER 6 8 10 12 14 16 18 DBDRC SIMP 

8 60,5 59,3 64,0 64,4 67,4 94,5 113,2 74,7 X 83,5 
9 46,6 60,2 69,2 84,5 64,7 74,0 115,6 73,5 83,5 

10 56,8 56,7 55,9 73,9 86,2 85,5 107,0 74,6 83,5 
11 55,9 54,8 58,7 69,8 89,7 83,9 115,3 75,4 83,5 
12 53,9 53,2 58,9 69,7 86,8 82,0 110,3 73,5 83,5 
13 58,5 58,0 58,8 74,5 89,1 83,1 106,5 75,5 X 83,5 

AVG. 
DBDRC 55,4 57,0 60,9 72,8 80,6 83,8 111,3 

X X 

X X 

SIMP 50,5 70,4 105,1 96,2 95,9 82,5 83,9 

Table 3.4 

According to Duncan (a = 0,05), the average TRU value for each major iteration is 

indistinguishable for q = 6, 8 and 10. It is evident that the greater the number of 

columns in the second block, the more expensive the method becomes. There is no 

difference in the TRU values if the 6 cases are examined, which indicates that o does 

not exercise any significant influence on the TRU value. 

For q = 8 (19,0% less), 10 (42, 1% less), 12 (24,3% less) and 14 (16,0% less) the 

TRU value for each major iteration of the DBDRC method is less than the TRU value 

for each major iteration of the simplex method with corresponding values of q for 

ISRAELI. 
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ISRAEL2: TRU/MAJOR ITERATIONS 

NUM= q AVG. AVG. 
BER 6 8 10 12 14 16 18 DBDRC SIMP 

8 57,4 71,6 75,1 94,5 85,0 95,6 126,4 86,5 X 98,1 
9 67,7 82,7 79,8 105,3 85,2 120,8 112,8 93,5 98,1 

10 61,7 54,1 82,9 103,3 105,5 118,2 111,3 91,0 98,1 
11 62,5 56,4 90,5 97,5 91,1 110,7 111,1 88,5 98,1 
12 61,4 54,4 92,0 88,6 94,7 112,9 113,6 88,2 98,1 
13 58,2 54,7 88,6 96,8 102,3 110,5 114,9 89,4 X 98,1 

AVG. 
DBDRC 61,5 62,3 84,8 97,7 93,4 111,4 115,0 

61,5 62,3 84,8 93,4 97,7 111,4 115,0 
X X X X 

SIMP 54,6 73,5 77,7 105,0 118,0 134,3 123,7 

Table 3.5 

According to Duncan (a = 0,05) the average TRU value for each major iteration is 

indistinguishable for q = 6 and 8; 10 and 14; 14 and 12; 16 and 18. It is also very 

evident here that the greater the dimension of the second block the more expensive the 

method becomes. There is no difference in the TRU values if the 6 cases are exam­

ined, which indicates that ~ does not have a significant influence on the TRU value. 

For q = 8 (15,2% less), 12 (7,0% less), 14 (20,8% less), 16 (17,1% less) and 18 

(7,0% less) the TRU value for each major iteration is less for the DBDRC method than 

the TRU value for each major iteration of the simplex method with corresportding 

values of q for ISRAEL2. 

3.3.3 CONCLUSIONS FOR THE SIMPLEX METHOD 

Tables 3.4 and 3.5 are included to give an indication of the "costs" associated with the 

sizes of the second block. These blocks clearly indicate that it is not cost effective to 

select a "too large" dimension for the second block. Table 3.3 indicates that the 

number of iterations do decrease as the size of the second block increases but the costs 

also increase dramatically! 

Figures 3.1 and 3.2 clearly indicate for ISRAELI and ISRAEL2, jointly, the relation­

ship between the number of major iterations, TRU value and the size of the multiple 
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pricing block. The bigger the second block the fewer the number of major iterations 

and the more expensive the method becomes. 

ISRAEL 1 & ISRAEL2 DBDf=iC 

100 -----,--- --·----,-- -----, 

I 
· I 
I 

7000 

90 / 
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~ 70 a: 5000 .< 
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(5 / '" .-

~ / 
........ _ ...... / ,, ---60 

""' : 4000 .. 

50 -

L_~_j__ ________ ..t._ ____ - -·--- ---

40 3000 
5 10 15 20 5 10 20 

q q 

Figure 3.1 Figure 3.2 

Finding the point of equilibrium, the point where the method is still relatively cheap 

and the number of major iterations are relatively low, is important. 

The DBDRC method with q = 10 and o = 0,1 x 10-6 is recommended as the method 

which gives the best results in terms of iterations anc time. The reason i-' the follow­

ing: the average number of major iterations foro = 0,1 x 10·6 for all values of q is 

the smallest, and it appears that the average number of major iterations stabilises from 

this value of o and smaller. The average time for each major iteration is almost the 

same for q = 6, 8 and 10 and this group provides the best results. From this group, q 

= 10 has the minimum number of average major iterations. 

3.3.4 THE PARTIALLY NORMALIZED METHOD 

A complete description of the partially normalized method can be found in [4], as dis­

cussed by Crowder and Hattingh. For the purposes of this study the first block was 

selected with a size of 20 columns by means of the partially normalized method and the 

number of rows included was set at '6 throughout. The second block was selected 
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according to the q smallest values of "~"j ( = x
6
TB-1 ~)- The result is reflected in Thble 

3.6. Experiments were conducted where the "~"· values were divided by the norm, but 
J 

poorer results were obtained and these are not reported here. 

In Table 3. 6 comparisons of the partially normalized method are made with the 

DBDRC method with corresponding block sizes. 

METHOD: DBDRC (FIRST BLOCK SELECTED WITH PARTIALLY NORMALIZED METHOD) 
NUMBER OF MAJOR ITERATIONS RELATIVE TO SIMPLEX WITHOUT MULTIPLE PRICING 

NUM= q AVG. AVG. 
BER 6 8 10 12 14 16 18 DBDRC NORM 

1 ,305 ,243 ,236 ,211 ,201 ,177 ,158 ,219 X ,204 
2 ,341 ,249 ,250 ,200 ,192 ,181 ,158 ,224 ,204 
3 ,284 ,300 ,225 1 192 ,180 ,163 ,158 ,215 ,204 
4 ,311 ,225 ,225 ,208 ,181 ,177 ,165 ,213 ,204 
5 ,315 ,257 ,210 ,207 ,212 ,163 1111 ,219 ,204 
6 ,306 ,247 ,220 ,183 ,232 ,171 ,182 1220 ,204 
7 ,269 ,275 ,237 ,212 ,170 1174 ,157 ,213 ,204 
8 ,269 ,279 ,220 ,202 ,169 , 182 , 170 ,213 ,204 
9 ,278 ,280 ,227 ,205 ,167 1186 , 172 ,216 ,204 

10 ,276 ,285 ,210 ,207 ,171 ,178 , 172 ,214 ,204 
11 ,276 ,285 ,210 ,207 , 171 ,178 , 172 ,214 ,204 
12 ,276 ,285 ,210 ,207 ,171 ,178 ,172 ,214 ,204 
13 ,287 ,285 ,210 ,207 ,171 ,165 ,167 ,213 X ,204 

AVG. 
DBDRC ,292 ,269 ,222 ,204 ,184 ,175 ,167 

X X 
X---X 

X X 

NORM ,268 ,262 ,188 ,205 ,161 ,173 ,174 

Table 3.6 

According to Duncan 's method (a = 0,05), q = 10 and 12; 12 and 14, and 14, 16 and 

18 produce similar results. There is no difference in the average number of main 

pivots with regard to the 13 cases. 

It appears that not much success is achieved with the DBDRC method in conjunction 

with the partially normalized method, especially not in cases where the size of the 

second block is relatively small. 
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3.4 FINAL COMPARISONS 

In Thble 3. 7 the following methods are compared: 

(i) the simplex method with multiple pricing with a block size of q; 

(ii) the DBDRC method where the simplex method with multiple pricing of 20 was 

used to select the first block, and a second block with a size of q was selected 

for which the 1r. values were a minimum and o = 0,1 x 10-6 ; 
J 

(iii) the partially normalized method with multiple pricing with a block size of q, and 

the number of rows considered of 6, and 

(iv) the DBDRC method where the first block was selected by means of the partially 

normalized method with multiple pricing of 20 and the second block was select­

ed with a size of q for which the 1r. values were a minimum and o = 0, I x ro-6 . 
J 

SUMMARY OF RESULTS 
q 

METHOD 6 8 10 12 14 16 18 AVG. 

( i) SIMPLEX ,302 ,268 ,206 ,206 ,176 ,164 ,163 ,212 
( ii) SIMP/DBDRC ,263 ,226 . , 190 ,185 ,163 , 161 ,184 ,196 
(iii)PAR. NORM ,268 ,262 ,188 ,205 ,161 ,173 ,174 ,204 
(iv) NORM/DBDRC ,276 ,285 ,210 ,207 ,171 ,178 ,172 ,214 

Table 3.7 

The average results for the DBDRC method (o = 0,1 x 10-6
) are even better than the 

average results of the partially normalized method (3,9%). 

3.4 GRAPHS 

Graphs are drawn after each major iteration of the rate at which the value of the objec­

tive function decreases (minimization is involved here). This is done to demonstrate 

the influence of derived reduced costs on the number of major iterations and the value 

of the objective function for a specific problem. 

Figures 3.3 and 3.4 are examples representative of the graphs resulting from experi­

mentation. 
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Discussion 

The value of the objective function initially decreases faster for the DBDRC method, 

but later the decrease in the value of the objective function is less, which results in 

longer "tails". 

The tendency initially to rapidly decrease the value of the objective function is a very 

important characteristic of the variations of derived reduced costs. This characteristic 

can be usefully employed in the solution of problems which are highly degenerate as the 

number of zeroes on the right hand side are already reduced considerably early in the 

solution process. 

Long "tails,. may also arise from situations where, at a certain stage, all pivot columns 

have at least one positive entry corresponding to a zero on the right hand side. In such 

a case, a pivot leading to degeneracy is inevitable. 

In the past a number of experiments have been conducted with the occurrence of long 

"tails" and great success has been achieved by, amongst others, Harris [9] and Crowder 

and Hattingh [4]. Relatively speaking, there is not much literature available concerning 

the initial rapid decline in the value of the objective function. This study reveals that 

much promise resides in this field. One of the possibilities is to commence the solving 

process by means of the DBDRC method, and as soon as the decline in the objective 

function is no longer exceptionally high, to switch lo a method (Crowder and Hattingh 

[4] or Harris [9], for example) that ensures that an optimal solution is arrived at fairly 

rapidly. 

4. CONCLUSIONS 

The DBDRC method produces, generally speaking, good results in terms of the number 

of iterations and in terms of time. The reason for this is the fact that the method 

employs the good characteristics of gradient directions and that degeneracy is, to a 

large extent, counteracted early in the solution process. 

This method can be employed with success in the solution of large scale linear pro­

grams,· especially when the problems are highly degenerate. 

http://orion.journals.ac.za/



88 

Biblio&rap.b.y 

[1] E. M.L. BEALE, Mathematical programming in practice, John Wiley, New 

York, ( 1968). 

[2] R.G. BLAND, New finite pivoting rules for the simplex method, Mathematics 
of operations research, 2(2), 103 - 107 (1977). 

[3] A. CHARNES, Optimality and degeneracy in linear programming, Econometri­
ca, 20, 160- 172 (1952). 

(4] H. CROWDER en J.M. HATTINGH, Partially normalized pivot selection in 

linear programming, Mathematical programming study, 4, 12 - 25 (1975). 

[5] G.B. DANTZIG, A. ORDEN, P WOLFE, The generalized simplex method for 

minimizing a linear form under linear inequality constraints, Pacific journal of 

mathematics, 5(2), 183- 195 (1955). 

[6] T. GAL, Degeneracy problems in mathematical programming and degeneracy 

graphs, Orion, 6(1), 3- 36 (1990). 

[7] P.E. GILL, W. MURRAY, M.A. SAUNDERS, M.H. WRJGHT, A practical 

anti-cycling procedure for linearly constrained optimization , Math4!matic, :/ 

programming, Series B, 45(3), 437- 474 (1989). 

[8] G. HADLEY, Linear programming, Addison Wesley, Massachusetts, (1978). 

[9] P.J.M. HARRIS, Pivot selection methods of the devex LP code, Mathematical 

programming study, 4, 39 - 57 (1975). 

[10] ICL, Accounting, Charging and budgeting, R00l35/03, International Computers 

Limited, 1985. 

[11] J. H. JANSE VAN VUUREN, Die invloed wat kolomseleksieprosedures op 

ontaarding en die werkverrigting van lineere programmeringsalgoritmes het, 

http://orion.journals.ac.za/



89 

Dissertation (M.Sc.)- PU for CHE, Potchefstroom (1981). 

[12] N. KARMARKAR, A new polynomial-time algorithm for linear programming, 

Combinatorica, 4(4), 373- 389 (1984). 

[13] L. KHACHIYAN, A polynomial algorithm in linear programming, Dvkl. akad. 

nauk SSSR, 224, 1093- 1096 (1979). (English translation in Soviet math. dokl., 

20, 191 -194 (1979)). 

[14] A. KOZLOV, The Karmarkar algorithm, is it for real?, Siam News, 18(6), 1-

14 (1985). 

[15] J.H. NEL, Bydraes tot ry- en kolomseleksieprosedures vir ontaarde lineere 

programme, Thesis (D.SC.)- PU for CHE, Potchefstroom (1986). 

[16] D.M. RYAN, M.R. OSBORNE, On the solution of highly degenerate linear 

programmes, Mathematical programming, 41(3), 385- 392 (1988). 

[17] R.G.D. STEEL, J.H. TORRIE, Principles and procedures of statistics, second 

edition, McGraw-Hill, 187- 188, Auckland, (1981). 

[18] P. du B. WELMAN, Contributions to the theory and implementation of column 

selection and methods for systematic column generation for linear programming. 

Thesis (D.Sc.)- PU for CHE, Potchefstroom (197')). 

[19] P. WOLFE, A technique for resolving degeneracy in linear programming, (in 

Recent advances in mathematical programming, Graves, R.L. & Wolfe, P. eds) 

McGraw-Hill, New York (1963). 

[20] P. WOLFE, L. CUTLER, Experiments in linear programming (in Recent 

advances in mathematical programming, Graves, R.L. & Wolfe, P. eds) 

McGraw-Hill, New York (1963). 

http://orion.journals.ac.za/




