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Abstract

Suppose that at most r units of some commodity may be positioned at any vertex
of a graph G = (V, E) while at least s (> r) units must be present in the vicinity (i.e.
closed neighbourhood) of each vertex. Suppose that the function f: V — {0,...,r},
whose values are the numbers of units stationed at vertices, satisfies the above require-
ment. Then f is called an s-dominating r-function. We present an algorithm which
finds the minimum number of units required in such a function and a function which
attains this minimum, for any tree.
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1 Introduction

We are concerned with situations in which units of some commodity are to be placed
at nodes of a network which may be modelled by a simple undirected n-vertex graph
G = (V,E). Units positioned at a vertex v may be used in the vicinity of v, i.e. in
the closed neighbourhood N[v] of v, which consists of v and all vertices adjacent to v. For
various reasons (e.g. economy, space constraints, environmental issues) at most r units may
be located at each vertex v, while at least s units may be required in its vicinity. Specific
practical examples of these situations are distributions of guards, parking places, retail
items, cash registers or hospital beds among the nodes of some network. The minimum
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number of units which must be distributed throughout the entire network so as to satisfy
the above constraints, is obviously an important parameter.

Formally, positive integers r, s (r < s) are given. An r-function of G is a function f : V
{0,...,7}. Forv eV, let f[v] = Eyenpy)f(u). The r-function f is said to be s-dominating
if, for each v € V, f[v] > s. The weight |f| of an r-function f is defined by |f| = Xyev f(v).

The (r, s)-domination number of G, denoted by v (r, s; G), is the minimum weight of an
s-dominating r-function of G. The study of (r, s)-domination was initiated in [2]. In the
special case r = s = 1, v (r, s; G) is the well-studied domination number (G) [6]. A linear
algorithm for v(7') was given in [3]. Other recently studied special cases are r = s = k
(called {k}-domination [1, 4]) and r =1, s = k (termed k-tuple domination [1, 5, 7]).

We present an efficient algorithm here for computing v (r, s; T) and a function attaining
the minimum, for any tree 7.
2 Theoretical justification for the algorithm

We begin with a simple property of integers. Let 0 < r < s < 2r and let P be the set of
all ordered pairs (a,b) of non-negative integers satisfying

0<a<m, (1)
0<b<s (2)
and 0<b—a<nr. (3)

Lemma 1 If (z;,y;) € P for each i = 1,...,k, M = max;(y; — x;), ¥ = Elexi, y =
max{M,s — X} and x = max{M,y — r}, then (x,y) € P.

Proof: By hypothesis and the definitions of z, y, M and X,

0<M<r<s
and s—% <s.

Therefore

0<y<s, (5)
i.e. (x,y) satisfies (2). Also,

x>M>0. (6)

There are now two cases.

Case 1 z = M. By (4) and (6), (z,y) satisfies (1). If y = M, then (3) is satisfied and so
(x,y) € P. If y =s— X, then y > M so that y — 2 > 0. Moreover, x = M implies that
M>y—r,iey—M=y—z <rand (3) is satisfied. Again (z,y) € P and Case 1 is
complete.
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Case 2 = =y —r. In this case, using (5), z =y —r < s —r < r. Hence, using (6), (x,y)
satisfies (1). Also, y — z = r and so (3) holds. Therefore (z,y) € P as required. [

In order that the r-function f satisfies f[v] > s for a leaf v of a tree, it is necessary that
s < 2r. Hence the preceding lemma is applicable to our situation.

The algorithm, in fact, solves a more general problem than the one stated in the intro-
duction. Let £(T') be the set of leaves of T" and let h be any function from £(T) to P.
Suppose that for u € L(T'), h(u) = (2y,yn). Our procedure will calculate p(T,h), the
minimum weight of an r-function f satisfying

flu) =2 = (ue L(T)), (7)
flul =y (we L(D)) (8)
and f[v] > s (veV —L(T)). (9)

It also finds an r-function of minimum weight satisfying (7), (8) and (9), which will be
called a u(T, h)-function.

It is easily seen that any tree T' (of order n > 3) has a minimum weight s-dominating
r-function in which each leaf has value s — r. Hence

Y <7“, S;T> = M(Tv h*)7

where h*(u) = (s — r,s) for each w € £(T). Thus, running the algorithm using h = h*
solves our original problem.

The following concept is required for the procedure. Suppose that the tree T' (of order at
least 3) is rooted at w and that S(T') is the set of support vertices (i.e. vertices adjacent
to leaves) v such that the set C(v) of children of v satisfies C(v) C L(T). For v € S(T),
let 7" =T — C(v). Observe that

L(T') = (L(T) = C(v) U {v}
and that

S(T) =0 =T is a star with centre w.

We now present an informal overview of the algorithm, which has two principal parts. Full
details, theorems proving correctness and a formal statement of the procedure will follow.

Step 1 sequentially assigns a label (i.e. an element of P) to each vertex of T'— w. Initially
each v € L(T) is given the label h(u). Then a label for some v € S(T') is calculated from
the labels of C'(v), and C(v) is removed. The set of labels on £(T") is the function h’. The
calculation is performed in such a way that a simple equation relates u(T, h) and u(7",h').
We now replace (T, h) by (T’,h') and repeat the process. Iterations cease when S(T") = (),
at which time all vertices of T' — w are labelled.

For u € V(T') — {w}, let f(u) be the first coordinate of the label of u. A u(T, h)-function
is found from f by computing a value for f(w) and possibly changing some values of f on
C(w), as dictated by Step 2 of the algorithm.
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We now return to the formal description. The following two theorems show that the
algorithm (given in Section 3) for the calculation of (T, h) and the construction of a
w(T, h)-function, is correct.

For v € S(T), let C(v) = {u1,...,ur}, let h(w;) = (x;,y;) for i =1,...,k and let z, y, M
and ¥ be defined as in Lemma 1 (which proves that (z,y) € P). Recall that v is a leaf of
T' =T — C(v). Define b’ : L(T") — P by

h (v
hl

(u

(z,9)

)
) = h(u), ue L(T") —{v}.

Theorem 1 u(T,h) =X + u(T', ).

Proof: Let f’ be a u(T',h')-function and define f on V(T by

fug) = 2, i=1,....k
fu) = f'(u), we V(T)—C(v).

We show that f satisfies (7), (8) and (9). Since (x;,y;) € P, f satisfies (7). Moreover, for
alli=1,....k

fluil = flui) + f(v)

= flu) + f'(v)

> mi+x

> x+M

> xi+ (Yi — ) = yi,
so that f satisfies (8). Finally,

flol = fll+%

> y+X

> (s=X)+X=s,
so that f satisfies (9). Therefore

W0 < f] = ||+ 5 = (T, 1) + 5 (10)

Now let f be a u(T,h)-function and let f' = f|V(T"). It is immediate that f’ and 7"
satisfy (9). We show that they also satisfy (7) and (8).

Case 1 = = M. Suppose that f'(v) (= f(v)) <  and choose j so that M = y; — z;.
Then
flus] = i+ f(v)
< T + M
= zi+(y —zj)
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This contradiction shows that f’(v) > z in this case.

Case 2 z = y—r. Inthiscase y—r > M. Therefore y > M and hence y = s—3.. Suppose
that f'(v) = f(v) <z =y —r. Then f(v) < (s —X) —7r. Now flv] =X+ f(v) + f(p(v))
(where p(v) is the parent of v), hence

flr] <X+ (s=X—7r)+r=s.
This contradiction shows that f/(v) > z and so (7) is satisfied in both cases.

To establish (8), firstly assume that y = M. Then f'[v] > f'(v) > x > M = y by (6).
Secondly, let y = s — ¥ and suppose, to the contrary, that f'[v] < y. Then

flol = fl+2
< y+2
= (s—=X)+X=s,
a contradiction which shows that f/[v] > y in this case.
The above implies that f’ and 7" satisfy (7), (8) and (9). Hence
wTh) < |ffl=1fl-2=uT,h) - X (11)
The result now follows from (10) and (11). |

Let S be a star with centre w, let £(S) = {u,...,ur} where k > 2, let h(u;) = (24, v:)
fori=1,...,k, and let M, 3 be defined as above.

Theorem 2 u(S,h) = max{M + X, s}.

Proof: If M + X > s, then it is easily seen that the function f defined by
f(ul) = Xy, ’L'Zl,...,k‘
flw) = M

is a (S, h)-function with |f| = M + X. If M + ¥ < s, then a p(S, h)-function g is found
as follows. Set g(w) = M and choose g(u1),...,g(ug) so that

;i < glu;) <, izl,...,k‘}

and  glw] =3 g(u;) + M =s. (12)

It remains to establish that choices are available to satisfy (12). Let g(u;) = x; + «; for
i=1,...,k. Then (12) requires that

o; <r—uz; and Z(xi—i—ai)%—M:s. (13)

)

To satisfy (13) we require that
Zai:s—M—E and Zaigkr—ﬁ,
i i

1.e. s < M + kr. But this last inequality is true, because £ > 2 and s < 2r. [ |
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3 The algorithm

The following procedure calculates p = p(7, h) and constructs a p(7, h)-function z : V' +—
{0,...,7}. Steps 1 and 2 are justified by Theorems 1 and 2 respectively.

Algorithm TREEDOM (r, s)
Input: 7, s, T (order n > 3), root w ¢ L(T), h

Step O (initialize) p <« 0
(Label each v € L(T)) (z(u),y(u)) < h(u)

Step 1 (successively label vertices of V — L(T") — {w})

While T is not a star
Do  Pick support vertex v with C(v) = {ui,...,ux} € L(T)

M — max;(y(u;) — x(u;))
Lo D w(ug)
y(v) «— max{M,s—X}
z(v) «— max{M,y(v)—r}
poo— ptX
T «— T-C(v)

od

(At this stage w is the only unlabelled vertex, T is a star with centre w, C(w) =

{u17 cee ,Uk}-)
Step 2

M  — max;(y(u;) — z(u;))

If (M +X<s) then
increase the x(u;)s as necessary so that each z(u;) <r and ¥+ M = s. (14)

poo— pu+X+M

Output: function z and p
Stop.

We have omitted the obvious details of (14). The algorithm may be implemented in O(n?)
time and it is likely that suitable data structures and possible refinements could provide
a linear algorithm. We leave this question for future consideration.
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Figure 1: Computation of v (3,5;T).
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Figure 2: Computation of v (3,5;T).
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4 Examples

We conclude with two examples in which the algorithm is used to find v (3,5) for two
small trees.

Example 1 Let T' = Ty be the tree (rooted at w) depicted in Figure 1(a). Initially each
leaf u is labelled with h*(u) = (2,5). The edges of the subtrees T, T» and T3 produced
by the successive iterations of Step 1 are depicted by means of black lines, with deleted
vertices and edges in grey, in Figure 1(b), (c) and (d). For each i = 0, 1,2, the vertex v;
will receive the next label and C(v;) will be deleted. The computed label for v; is shown
in T;41. In Step 2 z(w) is set to 3. This value together with the first coordinates of the
labels of V(T') — {w} forms the 3-function with weight v (3,5;7") depicted in Figure 1(e).

O

Example 2 Let T be the path P; rooted at the central vertex w. When the algorithm is
used as in Example 1, the labels at the termination of Step 1 are depicted in Figure 2(a)
and Step 2 sets z(w) to 2. In this case the first coordinates of the labels and z(w) do not
3-dominate w and Step 2 increases the first coordinates of C'(w) accordingly. A solution
is given in Figure 2(b). O
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