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Abstract

In this paper we solve (approximately) the problem of finding the minimum number
of colours with which the vertices of a complete, balanced, multipartite graph G may
be coloured such that the maximum degrees of all colour class induced subgraphs are
at most some specified integer d ∈ N. The minimum number of colours in such a
colouring is referred to as the ∆(d)–chromatic number of G. The problem of finding
the ∆(d)–chromatic number of a complete, balanced, multipartite graph has its roots
in an open graph theoretic characterisation problem and has applications conforming
to the generic scenario where users of a system are in conflict if they require access
to some shared resource. These conflicts are represented by edges in a so–called
resource access graph, where vertices represent the users. An efficient resource access
schedule is an assignment of the users to a minimum number of groups (modelled by
means of colour classes) where some threshold d of conflict may be tolerated in each
group. If different colours are associated with different time periods in the schedule,
then the minimum number of groupings in an optimal resource access schedule for
the above set of users is given by the ∆(d)–chromatic number of the resource access
graph. A complete balanced multipartite resource access graph represents a situation
of maximum conflict between members of different user groups of the system, but
where no conflict occurs between members of the same user group (perhaps due to an
allocation of diverse duties to the group members).
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1 Introduction

A colouring of a simple graph G is an assignment of colours to the vertices of G, one
colour to a vertex, according to some rule R. A colouring may therefore be thought of
as a partition (induced by the rule R) of the vertex set of G into a number of subsets,
called colour classes, such that each vertex of a particular colour class receives the same
colour. For example, in the classical graph colouring problem the rule R is that the colour
classes should be independent sets (i.e. no two vertices in the same colour class should
be adjacent). The smallest number of colours for which a classical colouring exists for a
graph G is called the (classical) chromatic number of G, denoted by χ(G). The problem
of determining χ(G) for a general graph G is NP–hard [6, pp. 287–288], has been the
focus of a large body of work [2, 3, 13, 16, 19] and has numerous applications. Perhaps
the most prevalent operational research applications of this problem occur in timetabling
and scheduling endeavours [9]. Storage problems in supply chains may also be resolved by
means of graph colouring models [9, 12]. Graph colouring applications in the information
technology sector include the so–called register allocation problem where the objective is to
assign (program) variables to a limited number of computer registers (hardware devices)
during execution [12, 15, 20], and the problem of testing printed electronic circuit boards
for unintended short circuits (caused by stray soldering lines) [20].

In this paper we consider a different colouring rule R, namely that the maximum degrees
of all colour class induced subgraphs should be bounded from above by some specified
integer, and we seek the minimum number of colour classes satisfying this requirement.
We make this definition more precise and also outline an application of this colouring
problem in the following section. This is followed by our main objective, namely seeking
solutions to the above colouring problem for specifically the class of complete balanced
multipartite graphs (because this class of graphs seems to play a central role in an open
graph theoretic characterisation problem and because the particular colouring problem
has natural applications when considering this graph class). In §3 a normalised colouring
procedure according to our rule R is described. This colouring strategy is then used in
§4 to determine an ideal colouring procedure according to our rule R, where fractions of
vertices may be coloured. In the remainder of §4 this idealized situation is corrected by
discretising the fractions of vertices that should be coloured. We conclude the paper in
§5 with a summary of what has been achieved, as well as an indication of possible future
work and open problems.

2 The notion of a ∆–colouring

If x colours are used in a colouring of a graph G, then the colouring is referred to as an
x–colouring of G. We take the colouring rule R to be the requirement that the induced
subgraph of each colour class should have a maximum degree not exceeding some specified
d ∈ N and we refer to an x–colouring of a graph G satisfying this requirement as a ∆(d, x)–
colouring of G. The smallest value of x for which a ∆(d, x)–colouring of a graph G exists
(for some fixed value of d) is called the ∆(d)–chromatic number of G, denoted by χ∆

d (G),
and such an optimal colouring is called a χ∆

d –colouring of G.
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The parameter χ∆
d (G) admits the classical chromatic number as special case, in the sense

that χ∆
0 (G) = χ(G), and the problem of finding the ∆(d)–chromatic number of a graph was

first considered independently and almost simultaneously by Andrews and Jacobson [1],
Harary and Jones [14] and Cowen et al. [7] during the mid 1980s. Since then a substantial
amount of work has been done on this parameter. For instance, the classical chromatic
number of a graph G may be bounded in terms of the ∆(d)–chromatic number of G. More
specifically, Andrews and Jacobson [1] showed that

χ∆
d (G) ≤ χ(G) ≤ (d + 1)χ∆

d (G). (1)

Furthermore, Frick [10] and Lovász [17] established the bounds⌈
ω(G)
d + 1

⌉
≤ χ∆

d (G) ≤ min
{⌈

v(G)
d + 1

⌉
,

⌈
∆(G) + 1

d + 1

⌉}
(2)

on the ∆(d)–chromatic number of a graph G, where ω(G), v(G) and ∆(G) denote re-
spectively the clique number, the order and the maximum degree of G [6, pp 3, 16 &
284].

Cowen et al. [7] focussed on graphs embedded on various surfaces and gave a complete
characterization of all d, x ∈ N for which ∆(d, x)–colourings exist for every planar and
every outerplanar graph.

The ∆(d)–chromatic numbers of a number of simple graph classes are summarised in the
following theorem, the proof of which is omitted due to the simplicity of the underlying
arguments [18, Chapter 4].

Theorem 1 Suppose d ∈ N0 and m,n ∈ N. Let Tn, Cn, Kn and Km,n denote respectively
a tree, a cycle, a complete graph of order n and a complete bipartite graph with partite
sets of cardinalities m and n [6, pp 25, 27 & 62]. Then

(a) χ∆
d (Tn) =

{
1 if d ≥ ∆(Tn),
2 if d < ∆(Tn).

(b) χ∆
d (Cn) =


1 if d ≥ 2,
2 if d = 0 and n is even, or if d = 1,
3 if d = 0 and n is odd .

(c) χ∆
d (Kn) = dn/(d + 1)e .

(d) χ∆
d (Km,n) =

{
1 if d ≥ max{m,n},
2 otherwise.

�

In this paper we are interested in determining the ∆(d)–chromatic number for the class
of complete balanced multipartite graphs. The reason for our interest in this graph class
follows from an attempted characterisation of the sequence {χ∆

d (G) : d ∈ N0} for a general
graph G, i.e. to determine which integral sequences are, in fact, ∆(d)–chromatic.

Our interest in determining the ∆(d)–chromatic number for the class of complete balanced
multipartite graphs also stems from a scheduling application where users of a computer
system are in conflict if they require access to one or more of the same data files [8]. These
conflicts are represented by edges in a so–called file access graph, where vertices represent
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the users. An efficient access schedule is an assignment of the users to a minimum number
of groups (modelled by means of colour classes) where some threshold of conflict may be
tolerated in each group. For example, users may find the slowdown incurred by the retrieval
of data simultaneous with, say two, other (conflicting) users of the system acceptable, but
the slowdown caused by more than two other (conflicting) users unacceptable. If different
colours are associated with different time periods in the schedule, the file access schedule
for the above set of users, may be found by means of a ∆(2, x)–colouring of the file
access graph. A complete, balanced, multipartite file access graph represents a situation
of maximum conflict between members of different user groups of the computer system,
but where no conflict occurs between members of the same user group (perhaps due to an
allocation of diverse duties to the group members).

Let Kk×n denote a complete balanced multipartite graph consisting of k partite sets,
each of cardinality n (see, for example, Figure 1 for graphical representations of the two
complete, balanced multipartite graphs K2×3 and K3×2).

partite set 2

partite set 1

(a) K2×3

partite set 2

partite set 1

partite set 3

(b) K3×2

Figure 1: Graphical representations of two complete balanced multipartite graphs.

Consider the sequence of ∆(d)–chromatic numbers for Kk×n as the colour class induced
maximum degree bound d is increased, starting from zero, that is χ∆

0 (Kk×n), χ∆
1 (Kk×n),

χ∆
2 (Kk×n), . . . Examples of such sequences are shown in Example 1.

Example 1 The sequences of ∆(d)–chromatic numbers for K4×4 and K4×8 are given
below.

d 0 1 2 3 4 5 6 7 8 9 10 11 12 13 . . . 23 24 . . .

χ∆
d (K4×4) 4 4 4 3 2 2 2 2 2 2 2 2 1 1 . . . 1 1 . . .

χ∆
d (K4×8) 4 4 4 4 4 4 3 3 2 2 2 2 2 2 . . . 2 1 . . .

Notice that the number of repetitions of each entry in the sequence of ∆(d)–chromatic
numbers for K4×8 are exactly double the number of repetitions in the sequence of ∆(d)–
chromatic numbers for K4×4. �

The structure of the sequences in the above example is typical, in the sense that χ∆
0 (Kk×n)

= χ(Kk×n) = k and the sequences are non–increasing, usually involving a large amount
of repetition and ending in an infinite tail of ones. To detemine the sequences in Example
1, one therefore only needs to know at which values of d the sequence values change.
Hence, it makes sense to invert the ∆(d)–chromatic problem by rather fixing the number
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of colours, x say, that may be used and then seeking to minimise the colour class induced
maximum degree (i.e. seeking the smallest value of d for which there exists a ∆(d, x)–
colouring of G, for some fixed value of x). Denote the answer to this inverted problem by
D∆

x (G) and call such an optimal colouring a D∆
x –colouring of G. Note that a χ∆

d –colouring
of G is not necessarily a D∆

x –colouring of G. The value of D∆
x (G) gives the position in

the maximum degree chromatic sequence where the number of colours x appears for the
first time. Hence, the first sequence in Example 1 may be captured by the three values
D∆

3 (K4×4) = 3, D∆
2 (K4×4) = 4 and D∆

1 (K4×4) = 12.

Returning to our file access application, if we use too many time slots (colours), the waiting
period for each user until the next time slot during which (s)he may retrieve data may be
too long, resulting in an unacceptable slowdown of the system. Therefore, one may also
decide to fix the number of available time slots and schedule the users in such a way that
the threshold of conflict per time slot is minimized. If x time slots are fixed for the file
access graph G, the solution to this minimisation problem is D∆

x (G).

It is possible to establish the following relationship between χ∆
d (G) and D∆

x (G), by noting
that if there exists a ∆(d, x)–colouring of G, for some fixed values d, x ∈ N, then the
inequalities χ∆

d (G) ≤ x and D∆
x (G) ≤ d both immediately follow.

Proposition 1 For any graph G,
(a) χ∆

d (G) ≤ x if and only if D∆
x (G) ≤ d,

(b) χ∆
d (G) = x if and only if D∆

x (G) ≤ d and D∆
x−1(G) > d,

(c) D∆
x (G) = d if and only if χ∆

d (G) ≤ x and χ∆
d−1(G) > x.

Proof: (a) Suppose χ∆
d (G) ≤ x for some graph G. Then there exists a ∆(d, x)–colouring

of G, implying that D∆
x (G) ≤ d. Conversely, suppose D∆

x (G) ≤ d. Then again there exists
a ∆(d, x)–colouring of G, implying that χ∆

d (G) ≤ x.

(b)–(c) These results follow from (a) and its contra–positive. �

For the ∆(d)–chromatic number of a graph G and its related inversion number, D∆
x (G),

the following growth properties hold.

Proposition 2 (Growth properties)
(a) 1 ≤ χ∆

d+1(G) ≤ χ∆
d (G) ≤ χ(G) for any graph G and any d ∈ N0.

(b) 0 ≤ D∆
x+1(G) ≤ D∆

x (G) ≤ ∆(G) for any graph G and any x ∈ N.

Proof: (a) The lower bound follows from the non–emptiness of the vertex set in the
definition of a simple graph and is attained when d ≥ ∆(G). The upper bound corresponds
to the special case where d = 0. Let χ∆

d (G) = x∗. Then any ∆(d, x∗)–colouring of a graph
G is also a ∆(d + 1, x∗)–colouring of G. Therefore χ∆

d+1(G) ≤ x∗.

(b) The upper bound is attained when x = 1. The lower bound is the smallest possi-
ble value that the maximum degree of a graph may have. Let D∆

x (G) = d∗. Then, for
any ∆(d∗, x)–colouring of a graph G, there exists a ∆(d∗, x + 1)–colouring of G. Hence
D∆

x+1(G) ≤ d∗. �
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3 Normalised k–partite colourings

The sequences in Example 1 are similar in the sense that the number of times that any
specific entry in the first sequence appears is double that in the second sequence. Therefore,
the sequence of numbers {D∆

x (•)}x=1,2,3,... for K4×8 is double the corresponding numbers
for K4×4 (e.g. D∆

3 (K4×4) = 3 and D∆
3 (K4×8) = 6). Graphical representations of D∆

3 –
colourings of K4×4 and K4×8 are shown in Figure 2(a) and (b); notice that the colouring
structures in Figures 2(a) and (b) are the same. From the figure it is clear that we are
solving essentially the same problem.

1

4
×4=1

3

4
×4=3

(a) D∆
3 (K4×4) = 3

3

4
×8=6

︷ ︸︸ ︷

1

4
×8=2

︷ ︸︸ ︷

(b) D∆
3 (K4×8) = 6

1

4
︷ ︸︸ ︷

3

4
︷ ︸︸ ︷

(c) α(3, 4) = 3/4

Figure 2: Graphical representations of D∆
3 –colourings of (a) K4×4 and (b) K4×8 with the

same colouring pattern. The dots in each row of (a) and (b) represent the vertices of a partite set

of K4×n, while a colour class is represented by means of a rectangular frame. In (c) a similarly

structured normalised ∆( 3
4 , 3) 4–partite colouring is given where the partite sets are viewed as line

segments of unit length.

It therefore makes sense to view the problem of determining D∆
x (Kk×n) in a continuous

setting where each partite set is replaced by a line segment of unit length; hence disregard-
ing the actual number of vertices in each partite set. In such a continuous setting colour
classes originally comprising discrete entities (graph vertices) are replaced by collections of
(continuous) line subsegments, called normalised colour classes, representing the original
colour classes in a normalised sense. In this continuous setting the notion of a colour
class induced maximum degree is replaced by that of a normalised colour class induced
maximum degree — the sum total of the lengths of all subsegments in a normalised colour
class, except for the shortest subsegment in that class. If the lengths of all subsegments
in a normalised colour class are the same, we shall refer to this length as the normalised
width of the normalised colour class. If x colours are used and if the largest normalised
colour class induced maximum degree is d̃ ∈ R, then the resulting colouring is referred to
as a normalised ∆(d̃, x) k–partite colouring. A graphical representation of a normalised
∆(3

4 , 3) 4–partite colouring is shown in Figure 2(c).

Let α(x, k) denote the smallest value of d̃ for which a normalised ∆(d̃, x) k–partite colour-
ing exists; such an optimal colouring is called a normalised k–partite D∆

x –colouring. We
shall show in the following section how an upper bound on α(x, k) may be used to produce
a ∆(d, x)–colouring of Kk×n for any n ∈ N via a discretisation process, where d is related
to n and d̃ in a manner that will be specified. However, in this section our focus will be
on the continuous problem of determining α(x, k). This seems to be a hard problem that
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has only been solved approximately. The following general bounds on α(x, k) are known
[5, Proposition 2].

Proposition 3 k/x− 1 ≤ α(x, k) ≤ dk/xe − 1. �

From the above proposition it is clear that α(x, k) = k/x− 1 when x|k; this is Case 1 in
Table 1. However, based on the divisibility properties of k by x, a further three cases arise,
as shown in Table 1; the results for Cases 2–4 in the table were proved in [5, Theorem 2].
Here we merely capture the essence of the four cases listed in Table 1.

s = 0 0 < s < dk
xe − 1 s = dk

xe − 1

Case 1 Case 2

Case 3
x′ = 0

(Trivial) (Balancing)

(Reduction)α(x, k) = k
x − 1 α(x, k) =

(k − 1)(dk
xe − 1)

dk
xex− 2

α(x, k) ≤ α(x− 1, k − s)Case 4

x′ > 0
(Composition)

α(x, k) ≤ 1
1

α(x−x′,k) + 1
α(x′,k)

Table 1: Values of and upper bounds on α(x, k), depending on the values of s ≡ k (mod dk
xe)

and x′ = x−
⌈
k/dk

xe
⌉
.

For all four cases we start by forming dk/dk/xee normalised colour classes, each comprising
dk/xe full partite sets, except possibly for the last utilised colour class, which comprises
s ≡ k (mod dk/xe) full partite sets if x|/k (in the case where x|k, all colour classes comprise
the same number of partite sets). Upon completion of this partition of the partite sets,
x′ = x− dk/dk/xee colours remain unutilised. The values of s and x′ are used as decision
variables to distinguish between the cases in Table 1 in our recursive normalised ∆(d̃, x)
k–partite colouring strategy given in pseudo–code as Algorithm α(x, k), which outputs an
upper bound α(x, k) on α(x, k).

Algorithm α(x, k)

Input: x, k ∈ N.
Output: An upper bound on α(x, k).

1. if x | k then output k
x − 1

2. x′ ← x−
⌈
k/dk

xe
⌉
, s← k (mod dk

xe)
3.1 if s = dk

xe − 1 then output α(x− 1, k − s)
3.2 else if x′ > 0 then output 1/( 1

α(x−x′,k) + 1
α(x′,k))

3.3 else output (k−1)(d k
x
e−1)

d k
x
ex−2
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It should be clear from the pseudo–code listing that Algorithm α(x, k) functions directly
according to the classification of cases in Table 1. We describe the colouring substrategy
and hence motivate the values of α(x, k) attained in each case separately.

Case 1 (Trivial) The case where x′ = 0 and s = 0 represents a terminating call of
Algorithm α(x, k). If this is also the first call (i.e. if x|k), then a colouring of the
form depicted in Figure 3(a) results. Otherwise a colouring of this structure will
be a subconstruction of the overall colouring strategy involving line subsegments of
normalised width y = α(x, k)/(dk/xe − 1), because in this case the degree α(x, k)
of each colour class is the normalised width y multiplied by the number of line
subsegments included per colour class (dk/xe), less one.

Case 2 (Balancing) In the case where x′ = 0 and 0 < s < dk/xe − 1 the normalised
maximum degree of the last colour class is sufficiently smaller than that of the other
colour classes to allow recolouring of a small proportion y′ of each of the line segments
of the other colour classes using the last colour, so as to increase the maximum degree
of the last colour class and decrease the maximum degree of the other colour classes.
The normalised width y′ is determined such that the maximum degree of the last
colour class is the same as the maximum degree of the other colour classes, i.e. such
that ys + (k − 1)y′ = α(x, k). If y is calculated as in Case 1 and substituted in this
expression, it follows that y′ = α(x, k)(dk/xe − s − 1)/((dk/xe − 1)(k − 1)). This
case is illustrated graphically in Figure 3(b), where the inverted, L–shaped frame at
the bottom represents the last colour class after balancing.

⌈

k

x

⌉

{

(a)

y
′

︷ ︸︸ ︷
y

︷ ︸︸ ︷

⌈
k

x

⌉
{

s

{

(b)

Figure 3: Graphical representation of the colouring approach in Algorithm α(x, k) for (a)

Case 1 and (b) Case 2, where a balancing operation is performed on the last colour class. As

before, the line segments represent normalised partite sets and colour classes are represented by

means of rectangular or inverted, L–shaped frames.

Case 3 (Reduction) In the case where s = dk/xe − 1 the last utilised colour class
comprises exactly one partite set fewer than the other colour classes, and hence it is
not possible to perform a balancing operation (as described in Case 2). In this case
the partite sets comprising the last utilised colour class do not form part of future
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calls of the algorithm. This is equivalent to reducing the problem of determining
α(x, k) for a smaller problem, namely with one colour fewer and with k − s partite
sets. Notice that if x′ = 0, the next recursive call of Algorithm α(x, k) will be
the trivial case (Case 1). However, if x′ > 0, then the next recursive call will
be a composition (Case 4 described below). This case is illustrated graphically in
conjunction with the case of composition in Figure 4.

Case 4 (Composition) If x′ > 0 and 0 ≤ s < dk
xe − 1, then we solve two problems

separately and combine the results obtained by means of the composition formula
given in Case 4 of Table 1. All partite sets are divided in two portions, one of length
u1 and one of length u2, such that u1 + u2 = 1. We then combine two normalised
∆(d̃, x) k–partite colouring strategies obtained by using respectively x′ and x − x′

colours on two collections of shorter k–partite sets — the values of u1 and u2 are
chosen so that u1α(x − x′, k) = u2α(x′, k). Note that the one problem (resulting
in the bound α(x− x′, k)) always terminates immediately either as the trivial or as
the balancing case. The other problem (resulting in the bound α(x′, k)) may call
any of the four sub–construction cases, and therefore may or may not terminate
immediately. This case is illustrated graphically in conjunction with the case of
reduction in Figure 4.

u1
︷ ︸︸ ︷

u2
︷ ︸︸ ︷

α(x− x′, k) α(x′, k)

s =
⌈

k

x

⌉
− 1 {

Figure 4: Graphical representation of the output of Algorithm α(x, k) if the first call is a

reduction call (Case 3) and the second call is a composition call (Case 4) for which both recursive

subcalls are terminating.

The progress of Algorithm α(x, k) may be captured by the construction of a so–called
progress tree in which vertices represent algorithm calls. All vertices in this binary tree
may be classified as one of three types, namely (a) a terminating vertex of degree 1 corre-
sponding to a Case 1 or 2 terminating call in Table 1, (b) a reduction vertex of degree 2
corresponding to a Case 3 non–terminating call and (c) a composition vertex of degree 3
corresponding to a Case 4 non–terminating call. These types of vertices are shown graph-
ically in Figure 5. Note that because the call α(x − x′, k) following a Case 4 algorithmic
call is necessarily a terminating call, the corresponding descendant of the composition ver-
tex will be a terminating vertex — our convention will be to place this descendant on the
left. Furthermore, the terminating vertices in the progress tree are numbered in increasing
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(a) Terminating vertex (b) Reduction vertex (c) Composition vertex

Figure 5: Graphical representations of the types of vertices in the progress tree of Algorithm

α(x, k).

order first from the top level in the tree downwards and from the left to the right within
each level.

Suppose a total of ` ∈ N terminating calls are made during the execution of Algorithm
α(x, k) and denote the values of x, x′, k and s during the j–th terminating call by xj , x′

j ,
kj and sj respectively (j = 1, . . . , `). Furthermore, let

aj =
⌈

kj

xj

⌉
− 1, j = 1, . . . , `. (3)

Then aj + 1 is the number of line subsegments in each colour class (except possibly for
the last colour class) during the j–th terminating call of Algorithm α(x, k). Finally, let
yj be the value of y at the j–th terminating call (as described in Cases 1 and 2), and if
the j–th terminating call is a Case 2 (balancing) call, then let y′j be the value of y′ during
that call. The working of Algorithm α(x, k) is illustrated by means of a simple example.

Example 2 Suppose we seek a normalised 11–partite D∆
10–colouring. The values of the

variables x, k, s and x′ during each recursive call of Algorithm α(x, k) are given in Fig-
ure 6.

A total of four calls of Algorithm α(x, k) are made, two of which are terminal, as may be
seen in Figure 6. We conclude that α(10, 11) ≤ α(10, 11) = 1/(1 + 1/(9/5)) = 9/14. A
graphical representation of a normalised ∆(d̃, 10) 11–partite colouring achieving this bound
is shown in Figure 7. �

We believe Algorithm α(x, k) produces good upper bounds. These bounds are, in fact,
exact when only one recursive call is made. However, the upper bound produced by the
algorithm is not optimal in general — there are rare cases where it is possible to improve
slightly upon the construction produced by the algorithm, as illustrated in the following
example.

Example 3 Suppose we seek a normalised 19–partite D∆
9 –colouring. The construction

produced by Algorithm α(x, k), which results in the bound α(9, 19) ≤ α(9, 19) = (α(7, 19)−1

+ α(2, 19)−1)−1 = (19/36 + 1/9)−1 = 36/23, is shown in Figure 8(a). However, an
alternative normalised ∆(d̃, 9) 19–partite colouring corresponding to the bound α(9, 19) ≤
α(7, 15) = (α(5, 15)−1 + α(2, 15)−1)−1 = (1/2 + 1/7)−1 = 14/9 is shown in Figure 8(b).
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︷ ︸︸ ︷

Call 3 : α(5, 10)
x′

1 = 5− d10d10
5 ee = 0

s1 = 10 (mod d10
5 e) = 0

Trivial case : α(5, 10) = 1







Call 2 : α(9, 10)
x′ = 9− d10d10

9 ee = 4

s = 10 (mod d10
9 e) = 0

Composition case :

α(9, 10) ≤ 1/
(

1
α(5,10) + 1

α(4,10))

)







Call 1 : α(10, 11)
x′ = 10− d11d11

10ee = 4

s = 11 (mod d11
10e) = 1

Reduction case : α(10, 11) ≤ α(9, 10)

︷ ︸︸ ︷

Call 4 : α(4, 10)
x′

2 = 4− d10d10
4 ee = 0

s2 = 10 (mod d10
4 e) = 1

Balancing case : α(4, 10) = 9
5

Figure 6: The progress tree of Algorithm α(x, k) for Example 2 where we seek a normalised

11–partite D∆
10–colouring.

y
′

2=
1

28
︷ ︸︸ ︷

}

a2 + 1 = 3

y2=
9

28
︷ ︸︸ ︷

} s2 = 1

y1=
9

14
︷ ︸︸ ︷

a1 + 1 = 2

{

Figure 7: Graphical representation of a normalised ∆(d̃, 10) 11–partite colouring with a nor-

malised colour class induced maximum degree of α(10, 11) = 9/14.

The latter colouring represents an improvement of 2/207 over the upper bound on α(9, 19)
established by the colouring produced by Algorithm α(x, k). �

As is evident from the above example, it is sometimes more beneficial to perform a “double
reduction” instead of performing a balancing operation as dictated by Algorithm α(x, k).
It is not clear exactly when this scenario occurs, but the smallest value of k for which this
phenomenon occurs is (x, k) = (9, 19). Other known cases are (7, 22), (10, 22) and (12, 25).

In [5, Theorem 4] Algorithm α(x, k) was shown to exhibit a worse–case time complexity
of O(log log x).
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y1=
18

23
︷ ︸︸ ︷

y
′

1=
1

23
︷ ︸︸ ︷

y2=
4

23
︷ ︸︸ ︷

a1 + 1 = 3













a2 + 1 = 10

(a)

7

9
︷ ︸︸ ︷

2

9
︷ ︸︸ ︷

(b)

Figure 8: A graphical representation of one of the rare cases, where x = 9 and k = 19, for

which the colouring approach in Algorithm α(x, k) may be improved upon sligthly. In (a) the

colouring corresponding to Algorithm α(x, k) is given with α(9, 19) = 36/23. A different colouring

construction where a “double reduction” is made instead of a balancing subconstruction, is given

in (b) resulting in the bound α(9, 19) ≤ 14/9.
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4 Discrete colourings for Kk×n

In this section our objective is to establish an upper bound D
∆
x (Kk×n) on D∆

x (Kk×n)
for various values of n in terms of the upper bound α(x, k) on α(x, k) determined in the
previous section. Note that, if yjn and y′jn are integers for all j = 1, . . . , `, then we may
of course take α(x, k)n as an upper bound on D∆

x (Kk×n), as illustrated by means of a
numerical example below. However, in other cases the (continuous) colouring strategy of
the previous section has to be discretised in order to avoid the situation where fractions
of vertices are coloured. In cases where fractions of vertices are coloured we refer to the
colouring as an ideal ∆(d, x)–colouring with an ideal colour class induced maximum degree.

Example 4 In Example 2 we sought a normalised 11–partite D∆
10–colouring. The bound

α(10, 11) = 9/14 was determined by means of Algorithm α(x, k). It may be verified that
y1 = 9/14, y2 = 9/28 and y′2 = 1/28 in this case.

(a) Suppose n = 28. Then y1n = 18, y2n = 9 and y′2n = 1 are integral. Thus,
D

∆
10(K11×28) = α(10, 11)n = 18 is an appropriate upper bound on D∆

10(K11×28), as wit-
nessed by the ∆(18, 10)–colouring of K11×28 shown graphically in Figure 9.

a1 + 1 = 2

{ }

a2 + 1 = 3

y2n=9
︷ ︸︸ ︷

y1n=18
︷ ︸︸ ︷

y
′

2
n = 1

Figure 9: Graphical representation of a ∆(18, 10)–colouring of K11×28.

(b) Suppose now n = 14. Then y1n = 9, y2n = 9/2 and y′2n = 1/2 are not all integral.
Thus, an upper bound on D∆

10(K11×14) remains to be determined. However, a graphical
representation of an ideal ∆(9, 10)–colouring of K11×14 may be found in Figure 10. �

The values of y2n and y′2n in Example 4(b) are not integral; hence fractions of vertices
may be found in some colour classes if the graph were to be coloured according to the
colour structure shown in Figure 10. When the colouring is discretised, α(x, k)n may
not necessarily be an upper bound on D∆

x (Kk×n). One possible strategy to determine
an upper bound on D∆

x (Kk×n) would be to successively attempt achieving colour class
induced maximum degrees dα(x, k)ne, dα(x, k)ne+ 1, dα(x, k)ne+ 2, . . . using x colours,
until a value D is found for which no colour class induced maximum degree exceeds D.
In the remainder of this section we shall show that if a value of dα(x, k)ne for D does not
suffice, D = dα(x, k)ne + 1 will certainly suffice. However, D = dα(x, k)ne seems to be
sufficient in most cases.
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y2n=4
1

2
︷ ︸︸ ︷

}

a2 + 1 = 3
a1 + 1 = 2

{

y1n=9
︷ ︸︸ ︷

y
′

2
n =

1

2

Figure 10: Graphical representation of an ideal ∆(9, 10)-colouring of K11×14.

In a bid to formalise the discretisation process we introduce some terminology and nota-
tion. We use the normalised width yj and scale it with a factor n to arrive at the ideal
width yjn (where fractional vertex colouring is allowed). However, if we discretise the
ideal colour class induced maximum degree, α(x, k)n, to D, we potentially increase the
ideal width associated with the degree of that colour class. We call this width the ideal
width associated with degree D. Let zj represent the integer part of the ideal width asso-
ciated with degree D. We may then add tj vertices (at most one vertex per partite set) to
each colour class formed during the j–th terminating call of Algorithm α(x, k) such that
D = ajzj +tj , giving us the desired maximum degree for the colour class. See Figure 11(a)
for a graphical illustration of the meaning of the parameters zj and tj . If balancing occurs,
we denote the value of zj for the last colour class by z′j . The parameter t′j has a similar
definition, as illustrated in Figure 11(b).

tj
.
.
.

.

.

.

.

.

.
.
.
.

.

.

.

.

.

.
.
.
.

· · ·

· · ·

· · ·

· · ·

· · ·

zj
︷ ︸︸ ︷

aj + 1







(a) Trivial case

· · ·

· · ·

· · ·

· · ·

· · ·

.

.

.

.

.

.

sj






· · ·

· · ·

.

.

.

z
′

j
︷ ︸︸ ︷

· · ·

.

.

.

t
′

j

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

(b) Balancing case

Figure 11: Graphical representation of the discretisation process.

It is easy to verify that zj = bD/ajc. Furthermore, tj = D − ajbD/ajc. (Note that tj
cannot have the value aj .) Let Wj denote the average discretised width of each colour class
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at the j–th terminating call of Algorithm α(x, k). Then Wj = bD/ajc + tj/(aj + 1) =
(bD/ajc + D)/(aj + 1) is an approximation of the ideal width D/aj associated with the
degree D. Let ẽj denote the error in this approximation. It is easy to see that this error
is at most 1/(aj + 1), i.e.

0 ≤ D

aj
−Wj︸ ︷︷ ︸
ẽj

≤ 1
aj + 1

. (4)

Let ej denote the error incurred when we discretise the colour classes with ideal width
yjn, i.e. yjn = Wj + ej .

Similarly, for the last colour class formed during the j–th terminating call of Algorithm
α(x, k) in the case where balancing is performed, hereafter referred to as a balancing
colour class (see Figure 11(b)), we have z′j = b(D − sjbD/ajc)/(kj − 1)c and t′j = D −
(zjsj + z′j(kj − 1)). Following the same procedure as for the case above, we obtain the
approximation

W ′
j =

⌊
D − sjbD/ajc

kj − 1

⌋
+

t′j
kj

=

⌊
D−sjbD/ajc

kj−1

⌋
+ D − sjbD/ajc

kj

for the ideal width (D − sjbD/ajc)/(kj − 1) of the balancing colour class associated with
the degree D− sjzj . (Note that we subtract the vertices in the balancing class associated
with the width yjn.) In this case the error ẽ′j involved in the approximation satisfies

0 ≤ D − sjbD/ajc
kj − 1

−W ′
j︸ ︷︷ ︸

ẽ′j

≤ 1
kj

. (5)

Finally, let e′j be the error incurred when we discretise the balancing colour class with
ideal width y′jn, i.e. y′jn = W ′

j + e′j . Note W ′
j = e′j = y′j = 0 if there is no balancing during

the j–th terminating call of Algorithm α(x, k).

The following growth property of the sequence a1, . . . , a` computed in (3), for which a
proof may be found in [5, Lemma 5], is used in Theorem 2.

Lemma 1 The sequence (aj)`
j=1 generated in (3) satisfies the recursive relationship aj+1 ≥

aj(aj + 1), for all j = 1, . . . , `− 1. �

The results above may now be used to establish bounds on D∆
x (Kk×n).

Theorem 2 dα(x, k)ne ≤ D
∆
x (Kk×n) ≤ dα(x, k)ne+ 1.

Proof: The lower bound follows from the fact that α(x, k) is directly proportional to the
length of the partite sets, i.e. if the length of the partite sets is changed by a factor n,
then α(x, k) also changes by a factor n.

Let D = dα(x, k)ne+ 1 and let Wj and W ′
j be defined as before. To prove that all colour

classes have degree at most D, it is required to show that
∑`

j=1(Wj + W ′
j) ≥ n. However,
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j=1(Wj + W ′

j) =
∑`

j=1(yjn− ej + y′jn− e′j) = n−
∑`

j=1(ej + e′j). So, to complete the
proof, it need only be shown that

∑`
j=1(ej + e′j) ≤ 0.

To achieve this goal, it is first shown that ej ≤ 1/(aj + 1)− 1/aj . The difference between
the ideal width and the ideal width associated with degree D, is yjn − D/aj = yjn −
(dajyjne + 1)/aj ≤ yjn − (ajyjn + 1)/aj = −1/aj . If this inequality is added to (4) the
result is ej = yjn−Wj ≤ 1/(aj + 1)− 1/aj , as desired.

Next, the inequality e′j ≤ 1/k` ≤ 1/(2(a` + 1)) is proved. The first inequaltiy follows
from (5). The second inequality follows from the fact that at least three colour classes are
required when balancing occurs. (If x = 2, the number of partite sets in each colour class
will differ by at most 1). Thus,

∑`
j=1(ej + e′j) ≤

∑`
j=1(1/(aj + 1)− 1/aj + 1/(2(a` + 1))).

For ` ≥ 2 it is not difficult to verify that the above expression is negative, as desired. (The
identity 1/aj−1/(aj +1) = 1/(aj(aj +1)) and Lemma 1 may be used.) More care is needed
for the case ` = 1. It is sufficient to show that W1 + W ′

1 ≥ n for the case where there
is only one balancing terminating call, since without balancing, e1 ≤ 0 and the theorem
holds. In the remainder of the proof, all subscripts are omitted for the sake of convenience,
since they are all 1. Note that W ′ = (b(D − sn)/(k − s− 1)c+ D − sn)/(k − s), because
the discretisation of the last s partite sets is not required. Thus,

W + W ′ =

⌊
D
a

⌋
+ D

a + 1
+

⌊
D−sn
k−s−1

⌋
+ D − sn

k − s
≥ n

must be shown to hold true. Writing k−s as (x−1)(a+1) and multiplying with (x−1)(a+1)
we obtain (after simplification)⌊

D

a

⌋
(x− 1) +

⌊
D − sn

k − s− 1

⌋
+ Dx ≥ kn. (6)

Because all x colour classes have normalised colour class induced maximum degree α(x, k)
in the normalised ∆(d̃, x) k–partite colouring, α(x, k) may be writen as α(x, k) = (k −
y(x− 1)− y′)/x or yn(x− 1) + y′n + α(x, k)nx = kn. Substituting this into (6), we need
to prove that(⌊

D

a

⌋
− yn

)
(x− 1) +

⌊
D − sn

k − s− 1

⌋
− y′n + (D − α(x, k)n)x ≥ 0. (7)

As before, D/a− yn ≥ 1/a. Therefore, bD/ac− yn > −1. It is also known that α(x, k) =
y′(k − s − 1) + s = ay, so that ((ay − s)n)/(k − s − 1) = y′n. This implies that (D −
sn)/(k − s − 1) > y′n or b(D − sn)/(k − s − 1)c − y′n > −1. Also, D − α(x, k)n ≥ 1.
Substituting these three inequalities into (7) it follows that(⌊

D

a

⌋
− yn

)
(x−1)+

⌊
D − sn

k − s− 1

⌋
−y′n+(D−α(x, k)n)x ≥ (−1)(x−1)+(−1)+(1)x = 0

which completes the proof. �

The algorithm presented next (which should be thought of as a follow–up to Algorithm
α(x, k) of §3), is capable of determining whether D∆

x (Kk×n) ≤ dα(x, k)ne, or whether the
upper bound in Theorem 2 is required.
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Algorithm D
∆
x (Kk×n)

Input: The cardinality of each partite set, n, the upper bound, α(x, k), the sequences
k1, . . . , k` and s1, . . . , s` determined during the course of Algorithm α(x, k), as
well as the sequences a1, . . . , a`, y1, . . . , y` and y′1, . . . , y

′
`.

Output: An upper bound on D∆
x (Kk×n).

1. D ← dαne
2. if yjn, y′jn ∈ N for all j = 1, . . . , ` then return D, stop
3. for j = 1 to ` do
3.1 Wj ← (bD/ajc+ D)/(aj + 1)
3.2 if bD/ajc = 0 then Wj ←Wj + 1/(aj + 1)
3.3 if 0 < sj < aj then
3.3.1 W ′

j ← (b(D − bD/ajc)/(kj − 1)c+ D − sjbD/ajc)/kj

3.3.2 if b(D − bD/ajc)/(kj − 1)c = 0 then W ′
j ←W ′

j + 1/kj

3.4 else W ′
j ← 0

4. if
∑`

j=1(Wj + W ′
j) < n then D ← D + 1

5. return D

Algorithm D
∆
x (Kk×n) commences by setting D equal to dα(x, k)ne and then determines

the ideal widths yjn and y′jn for all j = 1, . . . , `. If all these ideal widths are integral, as
in Example 4(a), then no discretisation is required and the algorithm terminates, since a
good ∆(d, x)–colouring of Kk×n has been achieved. On the other hand, if any of the above
ideal widths is not integral, as in Example 4(b), discretisation is required, as is implicitly
achieved by computation of the average discretised widths, Wj and W ′

j , of the colour
classes in Step 3 of the algorithm. Note that if bD/ajc = 0, then tj should be incremented
by one more in order to obtain the same maximum degree D as that of the other colour
classes, because in this case each of the tj vertices is adjacent to D−1 vertices in the same
colour class. Similar arguments hold for t′j . These are reflected in Steps 3.2 and 3.3.2 of
the algorithm. If the sum of all the average discretised widths,

∑`
j=1(Wj + W ′

j), is less
than n, then all vertices cannot be coloured in such a way that the maximum degrees of
all the colour class induced subgraphs are smaller than or equal to dα(x, k)ne. However,
in this case it follows from Theorem 2 that all vertices may indeed be coloured such that
all the colour class induced maximum degrees are smaller than or equal to dα(x, k)ne+ 1.

Step 3 of Algorithm D
∆
x (Kk×n) is performed a total of ` times. Therefore Algorithm

D
∆
x (Kk×n) computes at most 2` average discretised widths Wj and W ′

j . Hence, Algo-

rithm D
∆
x (Kk×n) also has an O(log log x) worst–case time complexity, similar to that of

Algorithm α(x, k).

Example 5 (Continuation of Example 4(b))

Recall that in Example 4(b) we sought to colour the graph K11×14 with 10 colours. The
values of the variables determined before were α(10, 11) = 9/14, k1 = 10, k2 = 10, s1 = 0,
s2 = 1, a1 = 1, a2 = 2, α(10, 11)n = 9, y1n = 9, y2n = 9/2 and y′2n = 1/2. Since some of
the yjn and y′jn values are not integral, the discretisation in Step 3 of Algorithm D

∆
x (Kk×n)
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must be performed. The values of the variables in Step 3 of Algorithm D
∆
x (Kk×n) are

determined as W1 = (9 + 9)/2 = 9, W ′
1 = 0, W2 = (4 + 9)/3 = 4.33 and W ′

2 = (0 + 9 −
4)/10 = 0.5. Since

∑2
j=1(Wj + W ′

j) = 9 + 4.33 + 0.5 = 13.83 < 14, Algorithm D
∆
x (Kk×n)

terminates with D
∆
10(K11×14) = 10. The colour classes of a good ∆(10, 10)–colouring of

K11×14 are shown graphically in Figure 12. �

t
′

2
= 6

colour class

z1 = 9

a1 + 1 = 2
{

t2 = 1

z2 = 4

Additionally
added to last

Figure 12: A graphical representation of the discretisation approach achieved in Algorithm

D
∆

x (Kk×n) for the graph K11×14 considered in Examples 4(b) and 5. The corresponding ideal

∆(9, 10)–colouring was represented graphically in Figure 10.

5 Concluding remarks

In this paper we determined a good upper bound on the value of the parameter D∆
x (Kk×n)

for the complete balanced multipartite graph Kk×n. In doing so, we obtained a good
∆(d, x)–colouring strategy for Kk×n, and hence a good approximation to the true value of
the ∆(d)–chromatic number, χ∆

d (Kk×n), for the class of complete balanced multipartite
graphs. These bounds find application in the problem of scheduling grouped access to some
shared resource in a way that (a) for a specific maximum toleration of conflict between
users in the same group, the number of groups are minimised, or (b) for a fix number of
groups, the threshold of conflict between users of the same group is minimised. For d = 0
or d = 1 (and k, n ≥ 2), χ∆

d (Kk×n) = k. Values of the ∆(d)–chromatic number of Kk×n

for other small values of d (2 ≤ d ≤ 7), where 3 ≤ k ≤ 10 and n ≥ 2, are presented in
Table 2.

Finally, the work reported in this paper forms part of an open graph colouring problem,
namely the characterisation of ∆–chromatic sequences for graphs, where the ∆–chromatic
sequence of a graph G consists of the values of χ∆

d (G) as d increases from zero. Frick &
Henning [11] provided necessary conditions for a sequence of positive integers to be the ∆–
chromatic sequence of some graph G, but no sufficient conditions are known to the present
authors. It transpires that an ability to determine the value of χ∆

d (Kk×n) is expected to
play a central role in establishing a sufficient condition for a sequence of positive integers
to be the ∆–chromatic sequence of a graph, as explained in [4, 18].
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n
2 3 4

3 2 3 3
4 2 4 4
5 3 5 5

k 6 3 5 6
7 4 6 7
8 4 7 8
9 5 8 9
10 5 9 10

(a) Values of χ∆
2 (Kk×n)

(3 ≤ k ≤ 10; n ≥ 2)

n
2 3 4 5 6 7 8

3 1 2 2 2 3 3 3
4 2 2 2 2 3 4 4
5 2 3 3 3 4 5 5

k 6 2 3 3 3 4 5 6
7 3 4 4 4 5 6 7
8 3 4 4 4 6 7 8
9 3 4 5 5 7 8 9
10 4 5 5 5 7 9 10

(d) Values of χ∆
5 (Kk×n)

(3 ≤ k ≤ 10; n ≥ 2)

n
2 3 4 5

3 2 2 3 3
4 2 2 3 4
5 3 3 4 5

k 6 3 3 5 6
7 4 4 6 7
8 4 4 6 8
9 5 5 7 9
10 5 5 8 10

(b) Values of χ∆
3 (Kk×n)

(3 ≤ k ≤ 10; n ≥ 2)

n
2 3 4 5 6 7 8 9 10

3 1 1 2 2 2 3 3 3 3
4 1 2 2 2 2 3 3 4 4
5 2 2 3 3 3 4 4 5 5

k 6 2 2 3 3 3 4 5 5 6
7 2 3 4 4 4 5 6 6 7
8 2 3 4 4 4 6 6 7 8
9 3 3 5 5 5 7 7 8 9
10 3 4 5 5 5 7 8 9 10

(e) Values of χ∆
6 (Kk×n)

(3 ≤ k ≤ 10; n ≥ 2)

n
2 3 4 5 6 7

3 1 2 2 3 3 3
4 2 2 2 3 4 4
5 2 3 3 4 5 5

k 6 2 3 3 5 5 6
7 3 4 4 6 6 7
8 3 4 4 6 7 8
9 3 5 5 7 8 9
10 4 5 5 7 9 10

(c) Values of χ∆
4 (Kk×n)

(3 ≤ k ≤ 10; n ≥ 2)

n
2 3 4 5 6 7 8 9 10 11

3 1 1 2 2 2 2 3 3 3 3
4 1 2 2 2 2 2 3 3 4 4
5 2 2 3 3 3 3 4 4 5 5

k 6 2 2 3 3 3 3 4 5 5 6
7 2 3 3 4 4 4 5 6 6 7
8 2 3 4 4 4 4 5 6 7 8
9 3 3 4 5 5 5 6 7 8 9
10 3 4 5 5 5 5 7 8 9 10

(f) Values of χ∆
7 (Kk×n)

(3 ≤ k ≤ 10; n ≥ 2)

Table 2: Values of χ∆
d (Kk×n), 3 ≤ k ≤ 10, n ≥ 2 for different values of d. Note that once

χ∆
d (Kk×n) = k for some n = n0 then χ∆

d (Kk×n) = k for all n ≥ n0.
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