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Reliability work occupies an increasingly important place in engineering practice. Al­
though the details differ depending on whether mechanical, electrical, chemical, or 
other systems are under analysis, the reliability concepts and the mathematical 
foundations cut across the specific fields of application. Over the past 50 years thou­
sands of papers and dozens of books on mathematical models of reliability have 
been published. A comprehensive survey alone on the current developments in the 
mathematical theory of reliability would fill a voluminous book. Based on importance 
both for theory and application and taking into account the interests of the author, 
current investigations in four important branches of reliability theory are considered: 
coherent systems, stochastic networks, software reliability, and maintenance theory. 

1. INTRODUCTION 
No other branch of engineering science, with exception of computer- and environ-

mental technology, has developed and advanced as substantially during the past 40 

years as reliability engineering. This is mainly due to using high risk systems as nuc­

lear power stations, to man's step into the space, and to the development of highly 

sensitive weapon systems. But even less spectacular modern systems of industrial 

production and of transportation and communication technology are usually so com­

plex that their reliability prediction and preservation is not possible without using 

scientific methods. Hence it is not surprising that the rapid development of reliability 

engineering has given a 

*) Invited plenary lecture at the Annual Conference of the German Statistical Society and the Stocha­
stic Society within the German Mathematical Association, Wittenberg (Germany), May 1997. 
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decisive impetus to the phenomenal development of the mathematical theory of re­

liability during the past four decades. 

According to the IEC document [2], reliability is defined as "the capability of a pro­

duct, a system, or a service to perform its expected job under specified conditions of 

use over an intended period of time". For the sake of simplicity, this paper refers 

only to the reliability of systems or their components (subsystems). In reliability 

theory, the intended time period is called mission time. If the system is no longer ca­

pable of performing its job during its mission time, a system failure has occured. 

The concept of a system failure in this rather general sense is basic for reliability in­

vestigations. In particular, the lEG-reliability definition allows to derive special, ma­

thematically well-defined criteria, called reliability criteria. The most important ones 

are: 

1) Survival probability: This is the probability that there is no failure within a speci­

fied time interval [0, t]. 

2) Availability: The point availability is the probability A(t) that at a given time point t 

the system is capable of performing its job. The stationary availability is defined by 

A= lim A(t). 
t-wJ 

Thus, A is the fraction of time with respect to an infinite mission time in which the sy­

stem is capable of doing its job. 

Reliability theory deals with the measurement, prediction, preservation and optimiza­

tion of the reliability of technical systems. 

Hereby reliability refers to one or more reliability criteria which are most appropriate 

and important for the mission of the system under consideration. The main prob­

lems the mathematical theory of reliability deals with are: 

1) Investigation of the mutual relationship between the reliability criteria of a system 

and its subsystems (components). 

2) Modeling the failure and aging behaviour of systems (components). 

3) Statistical estimation of reliability criteria. 

4) Development, investigation and optimization of measures for the preservation 

and restoration, respectively, of a fixed reliability level (maintenance theory). 

Recent developments deal with software reliability and reliability of man-machine­

systems. This contribution cannot give a full survey on all new trends and develop-

http://orion.journals.ac.za/



 

21 

ments in the mathematical theory of reliability or cite all relevant literature. (Even 

the excellent volume MISRA [1] which comprises more than 700 pages is not com­

plete.) Taking into account the interests of the author, here a selection is presented 

based on its importance both for theory and application. 

2. BINARY COHERENT SYSTEMS 
Let us consider a system S consisting of the components e1,e2, ... ,en. The two 

possible states of the system and its components are available and not available. 

Let us further introduce the (0 ,1 )-indicator variables for the states of the system and 

its components zs and z1 , z2 , ... , zn in the following way: 

z = { 1 if S is available . 
s 0 otherwise ' 

z· = { 1 if ei is available . 
1 0 otherwise 

The dependence of zs on the zi is given by the structure function cjl of the system: 

zs =cjl(z1,Z2·····zn). 

The system is called coherent if its structure function has the following properties: 

1) cjl(O,O, ... ,O) = 0. 

cjl( 1,1, ... ,1) = 1 . 

2) cjl is nondecreasing in each zi . 

3) For each i = 1, 2, ... , n there is a vector z = (z1,z2, ... ,zn) with the properties 

cjl(z1, ... , zi-1, 0, zi+1, ... , zn) = 0 . 

cjl(z1·····zi-1,1,zi+1·····zn) =1. 

If W 1,W2 , ... ,Ww are the path sets of the system and 

Ak= II zi; k = 1,2, ... ,w, 
iEWk 

then the structure function can be written in the form 

Zs=A1 v A2v ... vAw, 

where for any (0,1)-variables x and y 

x v y=x+y-xy. 

(1) 

In what follows, the zs and zi are assumed to be random variables. They refer to a 

fixed time point or to the stationary regime. Hence the availability of the system is 
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From the theoretical point of view, binary coherent systems are very well investiga­

ted. But the computational problems connected with calculating their availability be­

long to the class of NP-hard problems. This implies in particular that with increasing 

complexity of + the computation time to obtain Ps increases exponentially fast. 

Hence it has up to now been a challenge for reliability theoreticians to find computer 

algorithms which allow the exapt computation of the availability of complex coherent 

systems in a reasonable time span. 

The starting point for the approach considered here is formula (1). The basic aim 

consists in deducing from (1) a representation of the structure function in the form 

d 
cp(z1 ,z2 , ... ,Zn) = L DJ·, Di DJ· = 0 for i *- j; i, j= 1 ,2, .... d, (2) 

j=1 

where the Di are products of some zi and 1-zk. (2) is called an orthogonal sum 

representation of the structure function. The advantage of an orthogonal sum repre­

sentation is evident: the system availability can be obtained from 

d 
Ps = L E(Dj). 

j=1 

Assuming independence of the z1,z2, ... ,zn, the mathematical expectations E(Dj) 

are simply the products of the corresponding expectations of the zi and 1 - zk. 

{These are the known availabilities and nonavailabilities, respectively, of the corres-

. ponding components ei and ek.) 

Up till now there has been a competition amongst reliability theoreticians to con­

struct orthogonal sum representations of+ with comparatively low complexity, in par­

ticular with a small number of terms d. The first were ABRAHAM [3], and LOCKS 

[4], among others. The paper of ABRAHAM especially has initiated further re­

search: BEICHEL T/SPROSS [5], HEIDTMANN [6], VEERARAGHAVAN and TRI­

VEDI [7]. Important work has been done by the research group of J. KOHLAS in 

generalizing the approaches of ABRAHAM and HEIDTMANN to noncoherent binary 

and multivalued systems: BERTSCHY and MONNEY [8], KOHLAS [9], AN RIG and 

LEHMANN [10]. lt is interesting that their research was initiated by solving problems 

arising from the 'theory of artificial intelligence. Recent contributions to multivalued 

coherent systems gave BAXTER [11, 12], MAZARS [13], MENG [14] as well as 

ABOUAMMOH and AL-KADI [15]. 
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3. STOCHASTIC NETWORKS 

Network reliability analysis is required in many important engineering areas. Exam­

ples are communication networks, monitoring systems, transportation and electrical 

power distribution systems. In particular, computer communication networks have 

evolved to cope with the massive demand for transmission and processing of infor­

mation. Hence it has been imperative that effective tools be developed and refined 

for carrying out reliability analyse of complex networks. To simplify terminology, this 

section refers to communication networks. 

The basic topological structure of the network under consideration is assumed to be 

given by a connected graph without loops G = (V, E), where V is its node set and E 
its edge set. The nodes are interpreted as end users and the edges as links bet-

ween them. G becomes a random graph or a stochastic network G by assuming 

that its edges and nodes exist (are available) or do not exist (are not available} ac­

cording to a given probability distribution. Hence the state variables of the nodes 

and the edges are binary random variables. For convenience, in what follows it is 

assumed that the nodes are always available. The most important reliability criteria 

for stochastic networks are: 

1) Connectednes probability (overall reliability): this is the probability thateven if so­

me edges are not available the remaining graph is connected. 

2) Two-terminal reliability. this is the probability that - given two fixed nodes- there 

exists a path between these nodes consisting only of available edges. 

With respect to these two reliability criteria (and other more sophisticated ones), a 

stochastic network is a binary coherent system as introduced in section 2. Hence 

the connectedness probability as well as the two-terminal reliability can in principle 

be computed via the orthogonal sum representation of the corresponding structure 

function. But stochastic networks are examples of coherent systems which allow the 

construction of more efficient methods. Methods of this kind are above all decompo­

sition- and reduction approaches. All known algorithms for computing reliability cri­

teria of planar networks whose computation time increases only polynomially with in­

creasing network complexity, are based on such methods. Algorithms having this 

property are called polynomial algorithms. (However, reliability analysis of general 

networks remains principally an NP-hard problem.) 
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Decomposition Let G 1 =(V1,E1)andG2 =(V2,E2) be two edge-disjoint sub­

graphs of G with the property 

(3) 

A node set U with this property is called separating node set of G. An obvious ap­

proach is to carry out reliability analysis for G1 and G2 separately and to combine 

the results to obtain the desired reliability criterion of G. This approach was first ap­

plied in a heuristic way by ROSENTHAL [16] and ROSENTHAL and FRISQUE[17]. 

The first mathematically exact treatment was given by BElCH ELT and TITTMANN 

[18]. Their approach is based on methods of higher combinatorics, in particular on 

properties of the set n of all partitions of the separating node set: 

(A partition of U is a set of disjoint subsets, called blocks, of U whose union is U.) A 

partition 1tj is said to be a refinement of 1ti iff each block of 1tj can be obtained by 

splitting a block of 1ti. In ll a partial ordering ":>" is introduced in the following way: 

7ti::; 1tj iff 1tj is a refinement of 1ti. Thus, the partition lattice (ll, :>) is given. Let 1t 1 

be its smallest element. Then 7tJ consists only of a single block comprising all ele­

ments of U. Further, let Ui (Gj) be that node set (graph} arising from U (Gi) by 

fusing the nodes of each block of 1tj into one node. Let the matrix A= ((ajk)) be gi­

ven by 

{ 
1, if 1tj A1tk = 1t1 

aik = 0, else · 

Here 1tj A 1tk denotes the greatest partition satisfying both 1tj A 1tk::; 1tj and 

1tj A 1tk::; 1tk. Let RJ be the connectedness probability of GJ and 

Ri = (R~ ,Rk •... ,R~); i = 1, 2. 

Then the the following decomposition formula holds for the connectedness probabili­

ty R(G) of G: 

R(G) = (R1) T A-1 R2. 

Note that R 1 and R2 depend only on the stochastic subnetworks G 1 and G2. The 

"coupling" matrix A is independent of these subnetworks. lt depends only on the 

cardinality of the separating node set U. Similar formulas have been obtained for 

other reliability criteria. Moreover, these decomposition formulas allow the 
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construction of approximate algorithms for network reliability criteria which run in po­

lynomial time, see BLECHSCHMIDT and TITTMANN [19]. 

Reduction Network reduction is a powerful tool for reliability analysis of complex 

stochastic networks. 1t is characterized by simplifying the topological structure of the 

underlying network G by substituting a subgraph of G with a replacement graph to 

obtain a network H and the corresponding stochastic network H with known functio­

nal relationship between the relevant reliability criteria of G and H. The most popu­

lar method is to replace a "triangle" in a network by a "star" or vice versa ("triangle­

star-reduction"). The mathematically exact treatment of reduction methods became 

possible with the formalism of network decomposition as outlined above. The relia­

bility preserving network reduction involves 3 steps: 

1) Decomposition of G according to (3). 

2) Generation of a graph H by replacing G2 in G with a replacement graph H2 satis­

fying 

G1 n H2 = (U, 0). 

3) The stochastic network ii belonging to H has to be constructed in such a way 

that 

R(G) = h R(H). (4) 

h is called reduction constant. Its introduction is only of computational importance. 

From (4) follows that the reliability criteria R(Hf) of the stochastic networks i=if, 

which are constructed analogously to the Gf, have to satisfy the following system of 

(generally nonlinear) equations 

Rf = hR(Hf); j=1,2, ... ,b. (5) 

Here it is assumed that the Rf are known. They have to be computed by any availa­

ble method. The criteria R(Hf) in (5) are expressed in terms of the unknown availa­

bilities of the edges of the stochastic replacement structure Hf. The equation sy­

stem (5) has to be solved for these availabilities. Network decomposition and net­

work reduction are particularly efficient if they are applied successively. 

A comprehensive survey on reduction methods published up to 1990 was given by 

MISRA [20]. In 1987, KOHLAS [21] presented an excellent treatment of special re­

ductions, the so-called polynome-to-chain-reductions. The theoretical foundation of 

decomposition-reduction methods outlined here have been extended, summarized 
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and illustrated by many examples in BElCH ELT [22, 23]. However, important pro­

blems have still to be investigated in more detail, e.g. 

1) Computer-aided construction of suitable replacement graphs. 

2) Solvability of reduction equations. 

3) Optimal choice of separating node sets. 

4) Developing software. 

Foi many yeais netwoiks weie investigated only undei the flow aspect (flow net-

works). The obvious and important step of considering networks both under the flow 

and the reliability aspect has been done by ROGER [24], LIN ET AL. [25], and 

JENTSCH [26]. 

4. SOFTWARE RELIABILITY 

Nowadays computers are used in many vital areas where failures could imply cata­

strophic or at least costly consequences, e.g. in process control systems of space 

flights, nuclear power plants, air traffic systems, or ballistic missile defence systems. 

In view the recent progress in hardware technology, the main cause for computer 

system failures are due to software deficiencies. Hence in the past 20 years there 

has been a considerable effort in improving what has been called software reliability. 

The now generally accepted definition of software reliability was given by MUSA and 

OKUMOTO [27]: Software reliability is the probability of failure-free operation of a 

computer program in a specified enviroment for a specified period of time. (The ana­

logy to the definition of hardware reliability is obvious.) The problems for engineers 

and statisticians resulting from the investigation of software reliability are (see BAR­

LOW and SINGPURWALLA [28]): 

1) Quantification and measurement of software reliability. 

2) Assessment of the changes in software reliability over time. 

3) Analysis of software failure data. 

4) Decision of whether to continue or stop testing a software. 

Problems of software reliability differ from hardware reliability problems mainly for 

four reasons: 1) The cause of software failures is human error. 2) Once all failures 

are removed, the software is absolutely reliable and will continue to be so. 3) There 

is no process which generates failures during the application (!) of a software. 4) A 
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software lifecycle consists of 3 main phases which are accessible to mathematical 

modeling: the testing and debugging phase, the validation phase, and the operatio­

nal phase. (For the time being no promising approaches exist for modeling the 

maintenance phase.) Three early models are frequently used as benchmarks 

against which to compare more recent ones: these are the models of JELINSKY 

and MORANDA [29], LITTLEWOOD and VERALL [30], GOEL and OKUMOTO [31]. 

Jeiinsky-Moranda Modei it is assumed that 1) failures are uniformly distributed 

over the software and 2) the software is executed in a uniform (but random) fashion. 

These assumptions imply that the software failure rate at any given time point is pro­

portional to the number of faults in the software at that time point. Thus, if N is the 

original number of faults in the software, the time to the first failure is exponentially 

distributed with parameter J.N. After the first fault is detected and eliminated, the fai­

lure rate drops to A.(N-1) and so on. Hence the time ti between the (i-1)th and i th 

failure is exponentially distributed with parameter A.(N-i). Based on the ti, the total 

number of failures N can be estimated by the likelihood function: 
n 

L(t1, t2 •... , tn) =IT (N- i + 1) A. exp [-(N- i + 1)A. ti]. 
i=1 

Littlewood-Veraii-Model This model takes into account that attempts at removing 

faults from software may not be successful and may even lead to an increase in the 

number of faults. LITTLEWOOD and VERALL therefore describe the failure rate of 

a software by a stochastic process. Of course, its trend function is assumed to be 

decreasing. 

Goei-Okumoto-Model Let M(t) be the number of faults found in [0, t]. {M(t), t;::: 0} is 

assumed to be an inhomogeneous Poisson process with trend function m(t). lt is 

assumed that the mean number of faults found in the interval [t, t+At] is proportional 

to the mean number of faults still present in the software at tirne point t (this as­

sumption is well-known from the theory of population growth): 

m(t +At)- m(t) =a (N- m(t))At. 

This implies the differential equation 

~~ m(t) = a (N - m(t)) 

with the boundary conditions m(O) = 0 and m(oo) =N. Its solution is 

m(t) = N(1 -e-at). 
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Models for the test phase The models outlined so far do not explicitly take into ac­

count the life phases of a software. However, models especially created for the test 

phase are most important for increasing and predicting software reliability. A typical 

model of this kind was introduced by DOWNS [32] and extended by DOWNS and 

GARRONE [33]. According to the situation in the test phase, this model assumes: 

1) Software testing is restricted to the execution of a sequence of logical paths 

through the software. 

2) The input data of the software is governed by an execution schedule specifying 

the probabilities with which different paths are selected for execution. 

3) The execution schedule is fixed in the intervals between software failures. 

Under these assumptions the test process is a sequence of Bernoulli trials: 

Result 0: The path tested contains a fault. 

Result 1: the path tested contains no fault. 

Notation 

r number of paths which are tested independently of each other per unit time. 

Z random number of paths which have to be tested to find the first fault. 

p probability of finding no fault per unit time. 

p 11r is the probability that a given path is faultless. Therefore, Z is geometrically dis­

tributed with parameter p 1/r. Thus, 

E(Z)=~. 
1-p r 

If T denotes the random time to detecting a fault, then 

E(T) = 1 
r(1-p 1/r). 

Providing faults are uniformly distributed over a path, the time between the detection 

of two faults is exponentially distributed with parameter A.= -In p. Within this model, 

DOWNS and GARRONE also consider the possibility that a fault may affect several 

paths. The number of affected paths is usually unknown. Consider a software with 

N faults and M ~aths. Let a fault affect k paths with probability Pk, k = 1, 2, ... , M. 

To adapt a model to this situation let us next assume that the software is faultless. 

N faults are allocated independently of each other to a random number X of paths 

each, where X is distributed according to P(X = k) = Pk; k = 0,1 , ... Then it can easi­

ly be seen that the probability of any path being faultless is given by 
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p = ( 1 - E~) r "" 1 - N ~X) . 

If the faults are assumed to be uniformly distributed over a path, the time between 

the detection of two faults is again exponentially distributed with parameter A.= -In p. 

A similar model was considered by YAMADA, HISHATINANI and OSAKI [34]. A 

neural networks approach for predicting software faults during the test phase is pre­

sented by KHOSHGOFTAAR and SZABO [35]. Imperfect debugging during the test 

phase is taken into account by FAKHRE-ZAKERI and STUD [36]. Finally, YANG 

and CHAO [37] propose stopping rules for software testing. 

5. MAINTENANCE THEORY 

Few systems are designed to operate without maintenance. These work in environ­

ments where access is impossible or at least very difficult, for example in outer spa­

ce or high-radiation fields. Usually systems are subjected to maintenance, both to 

preventive maintenance and corrective maintenance. In preventive maintenance, 

components are exchanged, lubricants applied, adjustments made and so on before 

failures occur. In this way the system reliability is preserved or increased by staving 

off aging effects. Corrective maintenance is performed on failures. The mathemati­

cal theory of maintenance provides tools for efficient organization of preventive and 

corrective maintenance measures. 

Let F(t), F(t), and A.(t) be the failure probability, the survival probability and the failu­

re rate of the system. If X denotes the random time to the first failure (lifetime) of the 

system, then F(t) = P(X ~ t) is the distribution function and f(t) = F1(t) is the probabili­

ty density of X, and the failure rate is given by 

A.(t) = f(t) I F\t). 

To have an aging system, A.(t) is assumed to be nondecreasing. (Otherwise preven­

tive maintenance would make no sense.) 

Renewal theory deals with the most simple model of corrective maintenance: On 

failure the system is replaced by an identical new one. The corresponding mainte­

nance action is called replacement or renewal of the system. (After a replacement 

the system is "as good as new".) Another basic maintenance action is the minimal 

repair. A minimal repair does not affect the failure rate of the system, i.e. its failure 
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rate on repair has the same value as immediately before the failure. (After a mini­

mal repair the system is "as bad as old".) More exactly, if a system failure occuring 

at system age x is removed by a minimal repair, then the "residual lifetime" of the 

system has the distribution function 

F (t)= F(t+x)-F(x) 
x 1- F(x) · 

Maintenance policies considered until the seventies scheduled replacements and 

minimal repairs in an arbitrary manner, i.e. without taking into account the character 

of the failure causing a maintenance action (BARLOW and PROSCHAN [38, 39]. A 

breakthrough came with the paper of BElCH ELT [40] (see also BEICHEL T and FI­

SCHER [41, 42]). Here two types of system failures were introduced: 

Type 1-failures: can be removed by minimal repair. 

Type 2-failures: have to be removed by replacement. 

Hence, failures with minor consequences will be removed by minimal repairs and 

failures causing severe damage to the system by replacements. Probabilities p(t) 

and 1 - p(t) are given that a failure occuring at time t is of type 2 or type 1, respecti­

vely. Applying only corrective maintenance, i.e. maintenance according to the failu­

re type, and denoting by cm the expected cost of a minimal repair and by cr the ex­

pected cost of a replacement, the expected long-run total maintenance cost per unit 

time is in case of p = p(t) given by 

1-p 
-pCm+Cr 

K = ""oo!C.._ __ _ (6) 

f [F(t)]Pdt 
0 

This criterion serves as a benchmark against which to compare more sophisticated 

maintenance policies. 

As a by-product, the 2-type-failure model allows the mathematically exact treatment 

of the so-called repair-limit-replacement-policy. Under this policy a system will be re­

placed if the repair cost exceeds a given limit L. Otherwise a minimal repair is car­

ried out. Hence, the two failure types specified above are now generated by the 

random repair cost C. Let R(x) be the distribution function of C. Then p = 1 - R(L). 
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Substituting this p in (6) yields the expected total maintenance cost rate per unit 

time: 
L 

1 I ---- R(x)dx+cr-L 
R(L) o 

K(L) = --;:;00::-----::----

J [F(t) t<L)dt 
0 

The significance of the paper BElCH ELT [40] only became then obvious when the 

same results were published some years later by BROWN and PROSCHAN [43] for 

constant p and by BLOCK, BORGES and SAVITS [44] for time-dependent p, see al­

so BElCH ELT [45], BElCH ELT and FRANKEN [46]. 

Repairs of general degree Replacements and minimal repairs are extreme cases 

in quantifying the effect of maintenance actions on the system. (However, it also ma­

kes sense to allow maintenance actions making a system "better than new".) Ana­

tural generalization of the two-type-failure model is to consider repairs for which the 

effect on the system reliability is "between the effects of minimal repairs and repla­

cements". To characterize such repairs of general degree let us consider the 

sequence 

t1,t2·····ti···· 

of failure times of a system. A repair occuring at time ti has the degree oi given by 

A.(tj - 0) - A.(tj + 0) 
0

i = A.(ti - 0) - A.(O) . 
(7) 

In general, 0 :s: oi :s: 1. Minimal repairs and replacements are characterized by oi = 0 

and oi = 1 , respectively. Hence the failure rate of the system after the i th repair is 

A.(ti + 0) = A.(ti- 0) - oi [A.(ti- 0)- A.(O)] ; i = 1, 2, ... 

To quantify the effect of repairs on system reliability, KIJIMA [47] introduced the con­

cept of the virtual age of a system, which attracted more attention of researchers 

than criterion (7). The idea of the virtual age approach is that after a repair following 

a failure the system is "younger" than immediately before the repair. More exactly, 

the residual lifetime of a system after a repair is stochastically greater than its resi­

dual lifetime immediately before the failure inducing this repair .. (Thus, the virtual 

age of a technical system corresponds to the biological age of a human being.) lt is 

not the calender age of a system that is the decisive characteristic of its reliability, 
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Fig. 1 Qualitative behaviour of the failure rate in case of repairs with general 
degree of repair 

but its virtual age. This corresponds to the obvious fact that a well-maintained sy­

stem is more reliable than a poorly maintained one. 

Let Y(t) be the virtual age of a system having the calendar time age t. Immediately 

before the i th faiiure takes piace at caiender time ti, the system has the virtual age 

where 

Assuming 0:::: gi:::: 1, KIJIMA proposed two models for the virtual age process 

{Y(t), 12! 0} : 

Model 1: The virtual age of the system after the i th repair is 

Y(ti + 0) = Y(ti-1 + 0) +(1- gi) Mi. 

Therefore, the i th repair can oniy remove those damages arising in [ti-1 , tj]. 

Model 2: The virtual age of the system after the i th repair is 

Y(ti + 0) = (1- gi) Y(ti- 0). 

Thus, repairs can principally remove all preceding damages to the system. If 

gi = 0 (gj = 1) 

only minimal repairs (replacements) are carried out. 

Repairs of general degree have up to now been the subject of international research 

and will surely also continue being so for some years; see e.g. GUO and LOVE [48]. 

MAKIS and JARDINE [49], LIU, MAKIS and JARDINE [50]. 
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