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ABSTRACT 
A common replacement policy for technical systems consists in replacing a system by a new 
one after its economic lifetime, i.e. at that moment when its long-run maintenance cost rate is 
minimal. However, the strict application of the economic lifetime does not take into account 
the individual deviations of maintenance cost rates of single systems from the average cost 
development. Hence, Beichelt [2] proposed the total repair cost limit replacement policy: the 
system is replaced by a new one as soon as its total repair cost reaches or exceeds a given 
level. He modelled the repair cost development by functions of the Wiener process with drift. 
Here the same policy is considered under the assumption that the one-dimensional probability 
distribution of the process describing the repair cost development is given. In the examples 
analysed, applying the total repair cost limit replacement policy instead of the economic life-
time leads to cost savings of between 4% and 30%. Finally, it is illustrated how to include the 
reliability aspect into the policy. 
 

1.   INTRODUCTION 

Only a few systems are required to operate without maintenance. They operate in environ-

ments such as outer space and high radiation fields, where carrying out maintenance is dan-

gerous, very expensive or simply not possible. Usually, systems are subjected to maintenance, 

both to preventive and corrective maintenance. In preventive maintenance, systems or their 

components are exchanged, inspections scheduled, lubricants applied and so on before a fail-

ure occurs. In this way, system reliability is preserved or increased by staving off aging ef-

fects caused by corrosion, wear, fatigue and other influences. In corrective maintenance, the 

consequences of system failures are removed by either repairs or replacements. The purpose 

of preventive maintenance is to reduce the costly and dangerous effects of sudden system 
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failures. On the other hand, preventive maintenance gives rise to costs as well. Hence, the 

problem is to find a cost optimal compromise between preventive and corrective maintenance. 

The main subject of the mathematical theory of maintenance is to contribute to the solution of 

this problem, globally and in numerous special situations. 

 

Probably the first cost-based approach towards maintenance optimisation consists in replacing 

a system by a new one after its economic lifetime, i.e. at that moment, when its long-run total 

maintenance cost rate (including replacement cost) is minimal (Clapham [4]; Eilon, King, 

Hutchinson [5]). However, the strict application of the economic lifetime does not take into 

account individual deviations of maintenance cost rates of systems from the average cost de-

velopment. Hence, the repair cost limit replacement policy has been proposed: A system is 

replaced after failure by a new one if the corresponding repair cost exceeds a certain level. 

Otherwise, a minimal repair is carried out. By definition, a minimal repair does not affect the 

failure rate of the system, but enables the system to continue its work. (For a survey and dis-

cussion, see Beichelt [1]) Thus, even if the total repair cost rate might justify a replacement, 

the decision to repair or to replace a system depends only on the cost of a single repair. 

Hence, further cost savings seem to be possible if the whole history of the repair process is 

taken into account. This leads to the following replacement policy: 

 

Policy 1 The system is replaced as soon as its total repair cost reaches or exceeds a given 

level c. 

 

In comparison with the repair cost limit replacement policy, policy 1 has two major advan-

tages: 

1) Applying policy 1 does not require information on the underlying lifetime distribution of 

the system. 

2) Apart from the pure repair cost, costs due to continuous monitoring, servicing, stock keep-

ing, personnel cost, loan repayment (including interest rates) etc. can be taken into account.  

 

Hence, from the modelling point of view and with respect to its practical implementation, pol-

icy 1 is definitely superior to both the economic lifetime approach and the repair cost limit 

replacement policy. Therefore, in view of its simple structure, and the fact that maintenance 

cost data are usually available, policy 1 seems to be a suitable basic strategy for planning cost-

optimal replacement cycles of complex, wear-subjected technical systems such as trucks, 
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cranes, caterpillars, belt conveyors etc. and for determining cost-optimal overhaul cycles of 

whole industrial plants. For obvious reasons, it makes sense to call policy 1 a total repair cost 

limit replacement policy if the term repair cost includes all maintenance costs apart from re-

placement costs. Policy 1 was introduced in Beichelt [2]. There repair cost developments are 

modelled by functions of the Wiener process with drift. This approach allows to generate de-

sired trends of the underlying cost process {C(t), t��`�ZLWK�C(t) being the total repair cost in 

[0, t]. Moreover, the expected first passage times of {C(t), t��`��QHHGHG�IRU�HVWDEOLVhing the 

long-run total maintenance cost rate under policy 1, can easily be determined. The main result 

proved in that paper is that applying policy 1 instead of the common economic lifetime ap-

proach leads to substantial cost savings. An, at least formal, disadvantage of the Wiener proc-

ess assumption is that the sample paths of the corresponding cost process {C(t), t��`�ZLOO�Ge-

crease in some time intervals, even if functions are chosen in such a way that the trend func-

tion of the process {C(t), t��`� 
          M(t)=E(C(t)),   t��� 
is fast increasing in t. (However, simulation studies indicate that the sample paths of processes 

{C(t), t��`�PRGHOOHG� LQ� WKLV�ZD\� VKRZ� D� TXLWH� UHDOLVWLF� EHKDYLRXU��� 7KLV� Saper pursues the 

same goal as Beichelt [2], namely to show that, from the cost point of view, policy 1 is supe-

rior to the economic lifetime approach. However, it is based on a more adequate theoretical 

framework. It makes explicit use of the fact that the sample paths of the process {C(t), t��`�
are non-decreasing. Hence, given the one-dimensional probability distribution of the process 

{C(t), t��`�� LWV� ILUVW-passage time distribution is given as well. Two models of one-

dimensional probability distributions are analysed. They indicate the superiority of policy 1 to 

the economic lifetime approach. (Note that cost comparisons between policy 1 and the repair 

cost limit policy make little sense since the latter assumes knowledge of the underlying life-

time distribution of the system.) The example distributions (Weibull distribution and a related 

one) are chosen such that simple explicit formulas for both the repair cost trend function and 

the expected first passage time exist. Less tractable distributions require the use of numerical 

methods. For practical applications it is important to point out that, given a set of empirical 

repair cost data, this paper provides the theoretical basis for determining optimal total repair 

cost limit replacement policies by simulation. Finally it has to be mentioned that the repair 

cost processes {C(t), t��`� FRQVLGHUHG� LQ� WKLV� Saper need not be stochastic processes in the 

strictly mathematical sense. Apart from the problem of its existence, a stochastic process is 

usually not fully characterized by its one-dimensional probability distribution and the fact that 

it has non-decreasing sample paths. 
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Assumptions 

1) The planning horizon is infinite. 

2) Replacements and other maintenance actions take only negligibly small times. 

3) The lengths of replacement cycles (times between two neighbouring replacements) are in-

dependent, identically distributed random variables with finite expectation. 

4) C(t) does not involve replacement costs. 

 

2.   C0ST CRITERIA 

To determine the long-run total maintenance cost per unit time under policy 1, we need the 

first passage time L(c) of the process {C(t), t��`��C(0)=0, with respect to a fixed, but arbitrary 

positive level c: 

    })(,inf{)( ctCtcL >=  

Since the sample paths of {C(t), t��`�DUH�QRQ-decreasing, 

    P(C(t)≤ c)=P(L(c)>t)   for any c>0 and t>0                                          (1) 

Hence, if ))(()( xtCPxFt ≤=  denotes the probability distribution function of C(t), then the 

expected value of L(c) is 

    ∫
∞

=
0

)())(( dtcFcLE t                                                                                 (2) 

By the elementary renewal theorem, using assumptions 1 to 4, the long-run total maintenance 

cost rate under policy 1 is easily seen to be 

    
))((

)(
cLE
ca

cK
+= , 

where a, the cost of a replacement, is assumed to be constant. Note that a+c is the total main-

tenance cost within a replacement cycle and E(L(c)) is the mean cycle length. The problem 

consists in finding a maintenance cost limit c=c* which is optimal with respect to K(c). In 

what follows, policy 1 is compared with policy 2. Such a comparison makes sense, since poli-

cies 1 and 2 have the same cost input and do not require information on the probability distri-

bution of the system lifetime. Moreover, policy 2 is a very common replacement strategy. 

 

Policy 2  The system is replaced by an equivalent new one after τ time units. 

 

The corresponding long-run total maintenance cost rate is 
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and the optimal replacement interval τ=τ* satisfies equation K(τ)=dM(τ)/dτ. The time span 

given by τ* is called the economic lifetime of the system. 

Obviously, it only makes sense to consider probability distributions of C(t) with properties 

1) 01)(0 ≥= xallforxF  

2) ∞=
∞→

ttM
t

/)(lim  

Property 2 guarantees a sufficiently fast growth of the repair cost trend function M(t)=E(C(t)). 

Otherwise, at least with respect to policy 2, no replacement at all is the cost-optimal behav-

iour. 

 

3.   DISCUSSION OF SPECIAL CASES 

Example 1  For any positive t, let the probability distribution function of C(t) be given by  
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(Weibull distribution). The corresponding probability density is 
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Policy 1  According to (1), the probability distribution function of the first passage time L(c) 

is 

    ∫=>
c

t dxxftcLP
0

)())((  

Hence, the expected value of L(c) is given by 

    ∫ ∫ ∫ ∫
∞ ∞

==
0 0 0 0

)()())((
c c

tt dtdxxfdxdtxfcLE                                                      (3) 

Changing the order of integration is allowed since the integrand is a continuous function for 

all x≥0, t>0 and bounded at t=0. Integration yields 

    α/1
1))(( ckcLE =  

with 
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Hence, the corresponding total maintenance cost rate is 

    α/1
1

1
)(

c
ca

k
cK

+=                                                                                      (4) 

The optimal limit c* and the corresponding total maintenance cost rate are 
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Policy 2  The total expected repair cost is 

    ∫
∞

==
0 2)())(( αtkdxxfxtCE t                                                                     (6) 

with 

    
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Hence, when applying the constant replacement interval τ, the total maintenance cost rate be-

comes 

    1
2)( −+= ατ

τ
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a
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The corresponding optimal values of τ and K(τ) are 
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Comparison of policies 1 and 2  The inequality K(c*)<K(τ*) is easily seen to be equivalent 

to 

    
α

βαβ 

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Note that ( )[ ]ααβ/11−Γ is an increasing function in α, α >1. For α = 1, the right-hand side 

of inequality (8) becomes 
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The function xxxf sin/)( =  assumes its infimum in (0, π] at x=0. Moreover, it is 1)0( =+f . 

Hence, inequality (8) holds for all α, β > 1 so that policy 1 is superior to the economic life-

time approach. In particular, if 1.1 ≤ α ≤ 5 and β=2, then average cost savings of between 

31% and 4.2% are achieved by applying the optimal cost limit c* instead of the economic life-

time τ*. 

Example 2  For any nonnegative t, let the probability distribution function of C(t) be given by 
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Policy 1  Using (3), the expected value of L(c) is seen to be 

    α/1
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where  
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Hence, the total maintenance cost rate again has structure (4) so that the optimal values of c 

and K(c) are given by (5) with 1k  given by (9). 

Policy 2  The expected maintenance cost is 

    αtktCE 2))(( = , 

where 
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With 2k  given by (10), the optimal values of τ and K(τ) are again given by (7). 

Comparison of policies 1 and 2  The inequality K(c*)<K(τ*) is equivalent to 
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Analogously to example 1, it can be shown that this inequality holds for all α≥1, β≥1, so that 

policy 1 is again superior to policy 2. In particular, if 1≤ α ≤5 and β=2, then average cost sav-

ings between 33% and 6.2% are achieved when applying policy 1 instead of policy 2. 
 

4.   COMBINED AGE-TOTAL REPAIR COST LIMIT REPLACEMENT POLICY 

Scheduling replacements on the basis of a total repair cost limit does not take into account, at 

least not explicitly, reliability requirements imposed on the system. There are several possi-

bilities for including the reliability aspect into the model. A simple way consists in limiting 

the length of a replacement cycle by a constant τ. By suitably choosing τ severe breakdowns 

of the system can be avoided with a given probability. This leads to the following replacement 

policy. 

 

Policy 3  The system is replaced as soon as the total repair cost reaches level c or after τ time 

units, whichever occurs first. 

 

Note that, notwithstanding a formal analogy from the modelling point of view, this policy 

strongly deviates from the common life-time based “age replacement policy”. 

Following policy 3, the probability distribution function of the cycle length, 

    Y = min (L(c), τ), 

is, with the notation introduced in the previous sections, 
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so that 
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In view of assumptions 1 to 3 of section 1, the long-run maintenance cost rate has structure 
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Hence, the long-run total maintenance cost rate becomes 

http://orion.journals.ac.za/



75 

  

    
∫

∫++
= τ

ττ

τ
0

0

)(

)()(
),(

dtcF

dxxFcFca
cK

t

c

 

Since τ arises from meeting specific reliability requirements, it is a fixed parameter. Gener-

ally, numerical methods have to be applied to minimize K(c,τ) with respect to c 

 

5.   CONCLUSIONS 

The stochastic models for the repair cost development analysed in in this paper as well as 

some more models not discussed here (Beichelt [3]), give strong arguments in favour of 

scheduling replacements on the basis of total repair cost limits instead of the economic life-

time. However, much more theoretical and experimental work, in particular Monte-Carlo-

simulation, needs to be done to get a deeper insight into the relationship between policies 1 

and 2. By including the age replacement concept into the total repair cost limit replacement 

policy, reliability requirements can be taken into account. 
 

REFERENCES 

[1] Beichelt, F. (1993). “A Unifying Treatment of Replacement Policies with Minimal Re-

pair”, Naval Research Logistics, Vol. 40, No. 1, pp. 51-67. 

[2] Beichelt, F. (1997). “Total Repair Cost Limit Replacement Policies”, ORiON, Vol. 13, 

No 1/2, pp 37-44. 

[3] Beichelt, F. (2000). “A Replacement Policy Based on Cost Restrictions”, Lecture at the 

2nd Int. Conf. On Mathematical Methods in Reliability Theory, Bordeaux, 3rd-7th July, 

2000. 

[4] Clapham, J. C. R. (1957), “Economic life of equipment”, Operations Research Quar-

terly, Vol. 8, No. 2, pp. 181-190. 

[5] Eilon, S.; King, J. R.; Hutchinson, D. E. (1966), “A study in equipment replacement”, 

Operations Research Quarterly, Vol. 17, No. 1, pp. 59-71. 
 

ACKNOWLEDGEMENT 

The author is grateful to a referee and the Editor for many valuable comments on the original 

draft of the paper. 

http://orion.journals.ac.za/




