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ABSTRACT 
The structure function ϕ of a binary monotone system is assumed to be known and given in a 
disjunctive normal form, i.e. as the logical union of products of the indicator variables of the 
states of its subsystems. Based on this representation of ϕ, an improved Abraham algorithm is 
proposed for generating the disjoint sum form of ϕ. This form is the base for subsequent 
numerical reliability calculations. The approach is generalized to multivalued systems. 
Examples are discussed. 

 

1. INTRODUCTION 

We deal with a basic problem of reliability theory, namely with finding and analyzing 

algorithms for calculating reliability criteria of systems based on reliability criteria of its 

elements (subsystems). Even in the simple case of binary monotone systems with independent 

elements, these algorithms generally have running times which increase exponentially fast 

with the complexity of the system [5]. Within that limitation it is, however, imperative to 

develop algorithms, which are relatively fast and applicable to a broad class of problems. The 

first step is to determine the structure function of the system. This paper requires the structure 

function to be known and given in a disjunctive normal form. 

 

2. BINARY SYSTEMS 

Let S be the system under consideration and e e en1 2, ,...,  its n elements. Let furthermore zs  be 

indicator variable of the system state and zi  the indicator variable of element ei . Then, in a 

binary system, 
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z
S

s =
RST
1

0

if is operating

otherwise
,       z

e
i =

RST
1 if is operating

0 otherwise
i . 

The structure function ϕ of S is a Boolean function, which describes the mutual relationship 

between the states of the system and its elements: 

z z z zs n= ϕ( , ,..., )1 2 . 

z zs iand the  are Boolean, binary  or,  more specific,  (0-1)-variable.  For any two (0-1)-

variable x and y, disjunction, conjunction and complement are defined as follows: 

Disjunction        x y x y xy x y∨ = + − = max( , ) 

Conjunction      x y x y x y∧ = = min( , ) 

Negation           x x= −1  

Furthermore, x and y are called disjoint if x y = 0. Hence,  

x y x y x y∨ = +     if  and  are disjoint.                              (1) 

Let Z  be the set of all 2n  state vectors of the system. The system is monotone if ϕ is 

nondecreasing in each variable zi  and each zi  is relevant with respect to ϕ, i.e.zi  influences 

the value of ϕ. A vector 
r
z ∈ Z  is called a path vector of ϕ  if ϕ( ) .

r
z = 1  A path vector 

r
z  is 

called minimal if ϕ( )
r
y = 0  for all 

r
y ∈ Z  with

r r
y z< . Note that 

r r
y y y y z z z zn n= < =( , ,..., ) ( , ,..., )1 2 1 2  iff y zi i<  for all i n= 1 2, ,...,  and y zj j<  for at least 

one j. Let 
r
z1, 

r
z2 ,…, 

r
zw  be the set of all minimal path vectors. The minimal path set 

belonging to 
r
z z z zn= ( , ,..., )1 2  is defined as 

W j zi j= =, 1n s. 

Obviously, the concepts of (minimal) path vectors and (minimal) path sets are equivalent. For 

a thorough discussion of these concepts see, for instance, [7] and [15]. It is easy to see that the 

structure function of any binary monotone system with minimal path sets W1, W2 ,…, Ww  has 

structure 

                                               ϕ( )
r

Lz A A Aw= ∨ ∨ ∨1 2                                           (2) 

with 

A z j wj i
i W j

= =
∈
∏ ; , ,...,1 2 . 
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Since there are computer-aided methods for determining the minimal path sets of any binary 

monotone system, the disjunctive normal form of ϕ  given by (2) is most widely used for 

generating disjoint sum forms of structure functions. A disjoint sum form of ϕ  has structure  

 

 

ϕ( ) ; ,
r

Lz D D D D D i jd i j= + + + = ≠1 2 0 ,                           (3) 

where the D k dk ; , ,...,= 1 2 ;  are products of some zi  and z i jj; .≠  Hence, ϕ  given by (3) is 

a sum of mutually disjoint terms Di .  

Let us now take into account that the zi  are random variables with  

z
p

p p
i ni

i

i i
=

= −
RST =

1 with probability 

0 with probability 1
1 2; , ,..., ; 

and let p P z P zs s= = = =( ) ( ( ) )1 1ϕ r
 be the probability that the system is operating. ps  is 

called the availability of the system and pi  is the availability of element ei . Since z zs = ϕ( )
r

 

is a binary random variable, 

p E zs = ( ( ))ϕ r
. 

This relationship shows the practical importance of a disjoint sum form (3): The system 

availability is simply given by  

p E D E D E Ds d= + + +( ) ( ) ( )1 2 L . 

If the zi  are independent random variables, i.e. the elements operate independently from each 

other, then E Di( )  is obtained from Di  simply by replacing there the zi  and z j  with the 

corresponding pi  and p j , respectively. 

 

Structure functions, in particular disjoint sum forms, are not unique. For the sake of 

computational efficiency, a disjoint sum form should be of low complexity, i.e. both d and the 

total number of factors in the Di  should be small. Numerous algorithms transforming the 

disjunctive normal form (2) into a disjoint sum form of low complexity have been developed. 

Most popular is the algorithm of Abraham [2]. It has formed the basis for substantially 

improved versions yielding disjoint sum forms of lower complexity than the original version 

of Abraham [7], [8], [9], [14]. The probably most efficient algorithm not based on Abraham’s 

one, is due to Torrey [22]. For surveys, see [21], [23]. 
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The following version of Abraham’s algorithm is based on an algorithm given in [7]. To 

describe the algorithm, some further notation is needed. Let M  be the set of all possible 

products of some zi  and z j . The principle of the algorithm consists in replacing each Ak  in 

(2) with a sum of disjoint products 

 

L D M Mk k
D Mk

= ⊆
∈
∑ ,  

such that 

A A A L Dw k
k

w

D M
1 2

1

∨ ∨ ∨ = =
= ∈
∑ ∑L

ϕ

 

with L A1 1=  and the set M M M Mwϕ = ∪ ∪1 2 L  consists of mutual disjoint products from 

M . Thus, the set Mϕ  can be identified with the structure function ϕ. The sums Lk  are 

successively generated from sums L Lk k1 2, ,, , ,L  Lk k−1,  with property 

A A A Aj k1 2∨ ∨ ∨ ∨ =L A A A Lj j k1 2∨ ∨ ∨ +L , , 

where 

L D M Mj k j k
D M j k

, ,,
,

= ⊆
∈
∑ . 

The process starts for each k = 2, 3, …, w  at  j = 1 and stops at j = k-1, L Lk k k− =1, . The 

transition from L j k−1,  to L j k,  or, equivalently, from M j k−1,  to M j k, , depends on which of the 

following three cases occurs. To characterize these cases, let A  be the product of some zi  and 

C A B C C Cc( , ) , ,..., ,= 1 2l q B M∈ ,  the set of all those zi , which are factors in A , but not in 

B .  

a) A B⋅ = ∅   ( A  and B  are disjoint)  if zi  is a factor in A  and zi  is a factor in B .  

b) A B A∨ =  if A  and B  are not disjoint and C A B( , ) = ∅ . 

c) A B A C B C C B C C C C Bc c∨ = + + + + −1 1 2 1 2 1L L   if A  and B  are not disjoint and 

C A B( , ) ≠ ∅ . 

To construct M j k,  from M j k−1, , C A Bj( , )  is determined for B M j k∈ −1, . If case a) applies, 

then B  also is an element of M j k, . If b) is true, then B  is eliminated, since it does not 

contribute to the construction of M Mk k k− =1, . In case c), M j k,  contains the products 

C B C C B C C C C Bc c1 1 2 1 2 1, , ,L L − . The complete set M j k,  is obtained if this procedure is 
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repeated for all B M j k∈ −1,  and starts with M Ak k0, = l q. Note that the sets Mk  are generated 

independently from each other. Hence, they can be determined in an arbitrary order. 

 

Algorithm 1 

1  Order the Aj  according to the number of their factors. 

2  Initialize M A kϕ = =1 2l q,  

3  Initialize M A kk k0 2, ,= =l q  

4  Initialize M j k, = ∅  

5  For all B M j k∈ −1, :  

5.1 If Aj  and B  are disjoint, B  becomes element of M j k, . Select another B . 

5.2 Determine C A Bj( , ) . 

5.3 If C A Bj( , ) = ∅ , delete B  and select another B . 

5.4 If C A B C C Cj c( , ) , ,..., ,= 1 2l q c ≥ 1, then C B C C B C C C C Bc c1 1 2 1 2 1, , ,L L −  become 

elements of M j k, . 

5.5 Select another B. 

6 If j k< −1, then j j← +1 and go to 4.  

7 Expand Mϕ  by adding Mk k−1, . 

8 If k w< , then k k← +1 and go to 3. If k w= , STOP. 

                                                                                   2 

 

                                                         e1                                              e4 
 

                                               1                               e3                                     4 

                                                                e2                                 e5  

 

                                                                                    3 
 

                                                        Figure 1  Bridge structure 

 

Example 1  Let us consider a system the reliability block diagram of which is given by the 

“bridge structure” (Figure 1), i.e. it has the four nodes 1, 2, 3 and 4 with 1 and 4 being 
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entrance and exit nodes, respectively, and edges e1 1 2= ( , ) , e2 1 3= ( , ) , e3 2 3= ( , ) , e4 2 4= ( , ) , 

and e5 3 4= ( , ) . 

From Figure 1, W1 1 4= ,l q, W2 2 5= ,l q, W3 1 3 5= , ,l q, W4 2 3 4= , ,l q. Hence, 

A z z A z z A z z z A z z z1 1 4 2 2 5 3 1 3 6 4 2 3 4= = = =, , , , 

so that the disjunctive normal form (2) is given by 

ϕ( )
r
z z z z z z z z z z z= ∨ ∨ ∨1 4 2 5 1 3 5 2 3 4 . 

To apply algorithm 1, firstly, initialize M A0 2 2, = l q.Then B A M= ∈2 0 2,  is selected. Since 

C A B z z( , ) ,1 1 4= l q, M M z z z z z z z2 1 2 1 2 5 1 2 4 5= =, ,l q. Secondly, initialize set M A0 3 3, = l q 

and select B A= 3 . Then C A B z( , )1 4= l q. Therefore, M z z z z1 3 1 3 4 5, = l q.  With B z z z z= 1 3 4 5, 

C A B z( , )2 2= l q. Thus, M M z z z z z3 2 3 1 2 3 4 5= =, l q. Thirdly, initialize M A0 4 4, = l q. Then, 

with B A= 4 , C A B z( , )1 1= l q. This gives M z z z z1 4 1 2 3 4, = l q. With B z z z z= 1 2 3 4 , the 

corresponding set C A B( , )2  becomes C A B z( , )2 5= l q. Therefore, M z z z z z2 4 1 2 3 4 5, = l q. 

Lastly, with B z z z z z= 1 2 3 4 5 , A3 and B  are disjoint (case a). Hence, B  is also element of 

M3 4, . This implies M M M4 3 4 2 4= =, , . In view of M M M M Mϕ = ∪ ∪ ∪1 2 3 4 with 

M A1 1= , the disjoint sum form is 

ϕ( )
r
z z z z z z z z z z z z z z z z z z z z= + + + +1 4 1 2 5 1 2 4 5 1 2 3 4 5 1 2 3 4 5 . 

 

Algorithm 1 is not applicable to generating disjoint sum forms of non-monotone structure 

functions. However, there are technical systems, whose reliability behaviour can only be 

described by non-monotone structure functions. Examples are given in [7]. Moreover, the 

problem of generating disjoint sum forms from disjunctive normal forms also arises in 

probabilistic model-based reasoning and in the Dempster-Shafer theory of evidence. Here the 

Boolean functions of interest (“structure functions”) are usually non-monotone. Abraham’s 

approach to generating disjoint sum forms from disjunctive normal forms of Boolean 

functions has been generalized to non-monotone Boolean and even multi-valued functions in 

[3, 4], 10, 12, 16, 17, 18, 20]. 

 

3. MULTIVALUED SYSTEMS 

To assume that the system S and its elements e e en1 2, ,...,  can only be in either state 

“available” or “not available” is frequently an inadmissible oversimplification of the real 
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situation. Consider, for example, systems (elements) with different operating and/or failure 

modes. Hence, it makes sense to assume that the indicator variables zs  and zi  of the states of 

S and ei  can assume values from sets 

Zs s s s rz z z
s

= , , ,, ,...,1 2o t   and   Zi i i i rz z z i n
i

= =, , ,, ,..., ; , ,..., ,1 2 1 2o t  

respectively. Then a state vector 
r
z z z zn= ( , ,..., )1 2  of the system is element of 

Z Z Z Z= × × ×1 2 L n                                              (4) 

 

and the state space Z  has r r rn1 2⋅ L  elements. Zs ,Zi  is called the frame of the indicator 

variables zs , z i ni; , ,..., ;= 1 2 respectively. The structure function z zs = ϕ( )
r

 maps Z  onto 

Zs . A multivalued coherent system with finite state sets Z Zs i, ;  i n= 1 2, ,..., ;  and structure 

function z z z z z zs n= = ∈ϕ( ), ( , ,..., ) ,
r r

1 2 Z  is commonly defined as follows: 

1)  ϕ  is nondecreasing in each argument and 

2)                                             min ( ) max
, ,..., , ,...,i n

i
i n

iz z z
= =

≤ ≤
1 2 1 2

ϕ r
. 

 

Usually, the elements of the Zi  are real numbers.  Otherwise, a total order in the 

set Z Z Z1 2∪ ∪ ∪L n  must be given (see, for instance, [1, 11, 19]).  In these papers it is 

generally assumed that the state spaces Zs  and Zi  are identical or rs = 2 and ri > 2 . Multi-

valued systems with nondenumerable state spaces are, for instance, considered in [6]. Here a 

partial generalization of these models is dealt with: The state spaces Z Z Z Zs n, , ,...,1 2  need 

not be identical (although this can be assumed without loss of generality) and the structure 

function ϕ need not be nondecreasing. However, as in the previous section, the state zs  of the 

system can only assume values 0 or 1, i.e. Zs = { , }0 1  (system is not available, is available). 

To be able to present an algorithm for constructing a disjoint sum form of the structure 

function, concepts introduced in section 2 have to be generalized. Let Z i⊆ Z . A set 

constraint (SC) over zi  with respect to Z  is denoted as z Zi ∈  and defined by 

             z Zi ∈ =
RST

1

0

 if  assumes a value from Z                 

 if  assumes a value from i

z

z Z Z
i

i \
 

Thus, Z  is that subset of states, in which element ei  operates satisfactorily. From the point of 

view of logic, z Zi ∈  is a predicate, which is true iff zi  assumes a value from Z . Obviously, 
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if Zi = 0 1,l q, then the Boolean variable zi  is equivalent to zi i∈Z . Hence, SC’s are 

generalizations of Boolean variables with 

0 1= ∈∅ < ∈ =z zi i iZ  

Let Z Z Zi j, ' , ' '⊆ ⊆Z Z . Disjunction, conjunction and negation of SC’s are defined as 

Disjunction:        z Z z Z z Z z Zi j i j∈ ∨ ∈ = ∈ ∈' ' ' max ' , ' 'e j 

Conjunction:       z Z z Z z Z z Zi j i j∈ ∧ ∈ = ∈ ∈' ' ' min ' , ' 'e j 

Negation:            z Z z Zi i i∈ = ∈Z \  

In particular, for SC’s over the same variable, 

Disjunction         z Z z Z z Z Zi i i∈ ∨ ∈ = ∈ ∪' ' ' ' ' '  

Conjunction        z Z z Z z Z Zi i i∈ ∧ ∈ = ∈ ∩' ' ' ' ' '  

Two SC’s z Zi ∈ '  and z Zj ∈ ' '  are said to be disjoint  if z Z z Zi j∈ ∧ ∈ =' ' ' 0 . If i j= , 

then z Zi ∈ '  and z Zi ∈ ' '  being disjoint is equivalent to Z Z' ' '∩ = ∅ . 

An SC z Zi ∈  is called proper if Z ≠ ∅  and Z i≠ Z . 

An SC-clause (SC-term) is a disjunction (conjunction) of proper SC’s with every variable zi  

occurring at most once. 

For any two (0,1)-functions f  and g  defined on Z,  

f g f g∧ = min( , ) and f g f g∨ = max( , ) 

and f f y= ( )
r

 and g g z= ( )
r

 are called disjoint if f y g z( ) ( )
r r∧ = 0  

for all 
r r
y z, ∈Z . ( f  and g  may actually only depend on k k n, ,<  of the variables 

z z zn1 2, ,..., . In this case, the residual n k−  variables are irrelevant to f  and g  and can be 

deleted.) If f  and g  are disjoint, then 

f g f g∨ = +  

Let Z k r r ni ik k
⊂ = < <Z ; , ,..., ; ,1 2 0  and f  be the corresponding SC-term, i.e. 

f z Z z Z z Zi i i i i ir r
= ∈ ∧ ∈ ∧ ∧ ∈

1 1 2 2
L  

As in chapter 2, it will be assumed that the z z zn1 2, ,...,  are independent. Then, since SC’s are 

random (0-1)-variables, 

P f E f P z Z P z Z P z Zi i i i i ir r
( ) ( )= = = ∈ = ∈ = ∈ =1 1 1 1

1 1 2 2e j e j e jL  
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with 

P z Z P z zk k k k j
z Zk j k

∈ = = =∑
∈

1c h ( ),
,

 

Let the structure function of a possibly noncoherent multivalued system be given in the form 

ϕ( ) ,
r

Lz f f fm= ∨ ∨ ∨1 2                                           (5) 

where the fk  are proper terms with SC’s over all or some of the z z zn1 2, ,..., . The usefulness 

of transforming structure function of type (5) into disjoint sum forms is motivated as in 

chapter 2. The following algorithm is an adaptation of algorithm 1 to noncoherent system 

functions with multi-valued arguments [3, 20]. It is based on a version firstly presented in 

[18]. An alternative approach using the information that every element is in exactly one mode 

is presented in [4]. 

Algorithm 2 

; input: ϕ = ∨ ∨ ∨f f fm1 2 L   (order: f j  contains not more SC’s than f j+1) 

; output: sets M j r i ji j, ; ,..., ; ,...,= = −1 1 1 

for j = 1  to m  

   M fj j0, := n s 

    for i = 1  to j −1  

   Mi j, := ∅  

    for all D  in Mi j−1,  

        if D  and fi  are disjoint, then add D  to Mi j,  

        else define I I I k I I Y Zi D i D k k: ( ) := − ∪ ∈ ∩ ⊄l q 

                           with f z Zi
k I

k k
i

= ∧ ∈
∈

 and D z Y
k I

k k
D

= ∧ ∈
∈

 

                           if I i i it= ≠ ∅1 2, ,...,l q , then add the following formulas to Mi j, : 

                              D z Zi i i∧ ∈
1 1 1

Z \  

                              D z z Zi i i i i∧ ∈ ∧ ∈
1 1 2 2 2

Z Z \  

                                                              M  

                              D z Z z Z z Zi i i i i i it t t t t
∧ ∈ ∧ ∧ ∈ ∧ ∈

− −1 1 1 1
L Z \  
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Note that one has to make sure that the algorithm generates only proper SC-terms. By using 

an appropriate data structure for representing SC-terms, this can be done efficiently. The sets 

Mi j,  only contain SC-terms and the corresponding disjoint sum form is 

ϕ = ∑∑
∈= −

D
D Mj

m

j j11 ,

 

Example 2  Consider variables z z z1 2 3, ,  with identical frame Z = 1 2 3 4, , ,l q. Let us assume a 

non-monotone system function of type (5) given by ϕ = ∨f f1 2  with 

 f z z1 1 23 4 1= ∈ ∧ ∈,l q l q, f z z2 1 313 4 13= ∈ ∧ ∈, , ,l q l q. 

Applying algorithm 2 yields: 

j M f= =1 0 1 1: :,Initiate l q 

j M f= =2 0 2 2: :,Initiate l q 

          i = 1:   The only element of M0 2,  is not disjoint with f1. Hence, 

                    determine I = 1 2,l q and construct formulas 

                    z z z1 3 113 4 13 3 4∈ ∧ ∈ ∧ ∈, , , ,l q l q l q 

                    z z z z z1 3 1 3 213 4 13 3 4 13 1∈ ∧ ∈ ∧ ∈ ∧ ∈ ∧ ∈, , , , ,l q l q l q l q l q 

                     Simplifying these formulas to obtain SC-terms yields 

                    z z z z1 3 1 213 4 13 3 4 1∈ ∧ ∈ ∧ ∈ ∧ ∈, , , ,l q l q l q l q{ } 

Hence, the system availability becomes 

                          P P D P D
D M D M

( ) ( ) ( )
, ,

ϕ = = =∑ + =∑
∈ ∈

1 1 1
0 1 1 2

 

                                       = ∈ ⋅ ∈P z P z( , ) ( )1 23 4 1l q l q + ∈ ⋅ ∈P z P z( ) ( , )1 31 13l q l q  

                                        + ∈ ⋅ ∈ ⋅ ∈P z P z P z( , ) ( , , ) ( , )1 2 33 4 2 3 4 13l q l q l q . 
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