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ABSTRACT

The structure functiop of a binary monotone system is assumed to be known and given in a
disjunctive normal form, i.e. as the logical union of products of the indicator variables of the
states of its subsystems. Based on this representat@granfimproved Abraham algorithm is
proposed for generating the disjoint sum form¢ofThis form is the base for subsequent
numerical reliability calculations. The approach is generalized to multivalued systems.
Examples are discussed.

1. INTRODUCTION

We deal with a basic problem of reliability theory, namely with finding and analyzing
algorithms for calculating reliability criteria of systems based on reliability criteria of its
elements (subsystems). Even in the simple case of binary monotone systems with independent
elements, these algorithms generally have running times which increase exponentially fast
with the complexity of the system [5]. Within that limitation it is, however, imperative to
develop algorithms, which are relatively fast and applicable to a broad class of problems. The
first step is to determine the structure function of the system. This paper requires the structure

function to be known and given in a disjunctive normal form.

2. BINARY SYSTEMS
Let Sbe the system under consideration &ne,,...,&, its n elements. Let furthermorg, be
indicator variable of the system state andhe indicator variable of elemesmt. Then, in a

binary system,
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., :$ if Sis operati.ng, . :$ if g is operati.ng'

otherwise otherwise
The structure function ¢ of Sis a Boolean function, which describes the mutual relationship
between the states of the system and its elements:

Zs = 9(2, 2,2 )-

z. and thez; are Boolean, binary or, more specific, (0-lyariable. For any two (0-1)-
variable x and ydisunction, conjunction and complementare defined as follows:
Disjunction XCy=x+y-xy=max(x,y)
Conjunction xLCy=xy=min(x,y)
Negation X=1-x
Furthermore, x and y are called digoihk y = 0. Hence,

xCy=x+y ifxandy are disjoint (1)
Let Z be the set of al2" state vectors of the system. The systermdsiotone if ¢ is
nondecreasing in each varialde and eachz; is relevant with respect g, i.e.z influences
the value ofg. A vector Z O Z is called gpath vector of ¢ if ¢(Z) =1 A path vectorZ is
called mnimal if ¢@¢(y)=0 for all yO Z withy<Z. Note that
Y=Y Y2, Yn)<Z=(Z@.,2p,...2y ) iff yj<z foralli=12,...n and y; <z for at least
onej. Let 7, 7,..., Z, be the set of all minimal path vectors. Tmeimal path set
belonging toZ = (7, 2, ...,z, ) is defined as

w=Iz=1<

Obviously, the concepts of (minimal) path vectors and (minimal) path sets are equivalent. For

a thorough discussion of these concepts see, for instance, [7] and [15]. It is easy to see that the
structure function of any binary monotone system with minimal path/é¢etés,..., W, has
structure

p(2)=ALAL-LA, 2)
with

A = |_|zi; j=12..w.
oW,
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Since there are computer-aided methods for determining the minimal path sets of any binary

monotone system, the disjunctive normal formgofgiven by (2) is most widely used for

generatinglisoint sum forms of structure functions. A disjoint sum form @f has structure

¢(2):D1+D2++Dd, DlDJ:O,lij, (3)
where theDy; k=12....d; are products of somg andz;;i# j. Hence,¢ given by (3) is

a sum of mutually disjoint termB) .
Let us now take into account that theare random variables with
with probabilityp; _
zg with probabilityp; = 1 p; =L2
and let pg = P(z.=1) = P(¢(Z) =1 be the probability that the system is operatipg. is
called theavailability of the system and p; is theavailability of element g . Since z. = ¢(Z)
is a binary random variable,
ps = E(4(2)).
This relationship shows the practical importance of a disjoint sum form (3): The system
availability is simply given by
ps = E(Dy) + E(D2) +---+ E(Dg) .
If the z are independent random variables, i.e. the elements operate independently from each

other, thenE(D;j) is obtained fromD; simply by replacing there thg and z; with the

correspondingp; and pj, respectively.

Structure functions, in particular disjoint sum forms, are not unique. For the sake of
computational efficiency, a disjoint sum form should be of low complexity, i.e.dattd the

total number of factors in th®, should be small. Numerous algorithms transforming the

disjunctive normal form (2) into a disjoint sum form of low complexity have been developed.
Most popular is the algorithm of Abraham [2]. It has formed the basis for substantially
improved versions yielding disjoint sum forms of lower complexity than the original version
of Abraham [7], [8], [9], [14]. The probably most efficient algorithm not based on Abraham’s
one, is due tdorrey [22]. For surveys, see [21], [23].
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The following version of Abraham’s algorithm is based on an algorithm given in [7]. To
describe the algorithm, some further notation is needed.M.ebe the set of all possible

products of some; and z;. The principle of the algorithm consists in replacing eéghn

(2) with a sum of disjoint products

L= >.D, M, O M

DOM,

such that

ADAZD"‘DAN:ZW‘,H: ZD

k=l DOM,

with L, = A and the setM, = M, [0 M, 0---M,, consists of mutual disjoint products from

M. Thus, the setM, can be identified with the structure functign The sumsL, are

successively generated from suigg, L,,,---, L,_,, with property
ACALC-CACA=ACALCA+L,,

where

L,=>.D, M, OM,

DOM;
The process starts for eakhs 2, 3, ...,w at j =1 and stops gt= k-1, L, =L,. The
transition fromL,_,, to L,  or, equivalently, fromM,_, to M,,, depends on which of the
following three cases occurs. To characterize these casésetthe product of some and
C(AB)= |C1,C2,...,ch B M, the set of all those,, which are factors inA, but not in

B.
a) AlB=0 (A andB are disjoint) ifz is a factor inA andz is a factor inB.

b) ACLB=Aif A andB are not disjoint ancC(A,B)=0.

c) AOB=A+CB+CC,B+-+CC,--C.4sC.B if A and B are not disjoint and
C(AB)z 0.

To constructM; , from M;_1y, C(A;j,B) is determined foBLM_; | . If case a) applies,

then B also is an element oM; . If b) is true, thenB is eliminated, since it does not

contribute to the construction oMy_; = My . In case c),M;y contains the products

CB, GCyB, -++,GCyr+-Ce1CcB. The complete seM;y is obtained if this procedure is
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repeated for alBIM _;c and starts withMg ) = |Ak( Note that the set¥l, are generated

independently from each other. Hence, they can be determined in an arbitrary order.

Algorithm 1

1 Order theA; according to the number of their factors.

2 Initialize My =1AC] k=2

3 Initialize Moy = A k=2
4 Initialize M =0
5 Forall BUMj_q

51 If Aj andB are disjoint,B becomes element d1; . Select anotheB.

5.2 DetermineC(Aj, B).

5.3 If C(A,B)=0, deleteB and select anothes..

54 If C(Aj,B):lcl,Cz,...,ch c>1, then B, GCB, ---,GCy---C.1C.B become
elements ofM i .

55 Select another B.
6 If j<k-1,thenj « j+1andgoto4.

7 Expand My by addingMy._q i -

8 If k<w, thenk — k+1 and go to 3. Ik =w, STOP.
2
8 &
63 4
€ &
3

Figure 1 Bridge structure

Example 1 Let us consider a system the reliability block diagram of which is given by the

“bridge structure” (Figure 1), i.e. it has the four nodes 1, 2, 3 and 4 with 1 and 4 being
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entrance and exit nodes, respectively, and edge$l,2), e, =(1, 3), e3=(2,3), e =(2,4),
ande; =(3/4).
From Figure 1W = 1,40, Wy = 12,50, wy = I1,3,9C, wy = 12,3 4C. Hence,
A =202, P =275 Pg=27375, A = 237,
so that the disjunctive normal form (2) is given by
9(2)= 124 L 275 L 32375 L 27374
To apply algorithm 1, firstly, initializeMg » = |A2(.Then B=A, OMg, is selected. Since
C(A,B)= |zl,z4(, Mp=Mjpo= |le225 ZZZ X% g Secondly, initialize setMg3= |A3(
and selectB = Az. ThenC(A;,B) = |z4(. Therefore,M 3= |zlz324z 5( With B =27z37,z5,
C(A.B)=l2,C. Thus, Mg=M,3=lzzz7 2L Thirdly, initialize Mg 4=1A,C Then,
with B=A,, C(A,B)=lz( This gives Mi4=lzzzz L With B=2272y7,, the
corresponding setC(Ap,B) becomes C(AQ,B):|Z5(. Therefore, M2,4=|21222g425(.
Lastly, with B = 7z,232475, A3 and B are disjoint (case a). Henc8, is also element of
M3y4. This implies My =M3z4=Mj4 In view of My=M;0 My0 M3l My with
M = A, the disjoint sum form is

P(2) = 7124 + 12975 + 21297475 + 929237475 + 7129237475

Algorithm 1 is not applicable to generating disjoint sum forms of non-monotone structure
functions. However, there are technical systems, whose reliability behaviour can only be
described by non-monotone structure functions. Examples are given in [7]. Moreover, the
problem of generating disjoint sum forms from disjunctive normal forms also arises in
probabilistic model-based reasoning and in the Dempster-Shafer theory of evidence. Here the
Boolean functions of interest (“structure functions”) are usually nhon-monotone. Abraham’s
approach to generating disjoint sum forms from disjunctive normal forms of Boolean
functions has been generalized to non-monotone Boolean and even multi-valued functions in
[3, 4], 10, 12, 16, 17, 18, 20].

3. MULTIVALUED SYSTEMS
To assume that the systefhand its elementsg,e,,...,.6, can only be in either state

“available” or “not available” is frequently an inadmissible oversimplification of the real
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situation. Consider, for example, systems (elements) with different operating and/or failure
modes. Hence, it makes sense to assume that the indicator variablesz of the states of

Sandeg can assume values from sets

Zszas,llzs,Z'---’zs,rst and Z; za,l’zi,Z'---'Zi,rit; i=12,..n,
respectively. Then a state vecbr (7, 2, ...,z, ) of the system is element of

Z=21%xZy%-xZy (4)

and the state spacg hasrlry---r, elements.Z.,Z; is called theframe of the indicator
variables z¢, z; i =12,...,n;respectively.The structure functiorzg = ¢(Z) mapsZ onto
Z .. A multivalued coherent system with finite state set¥ ¢, Z;; i=12,...n; and structure
function ze = ¢(2), Z=(7,2,...,z, )UZ ,is commonly defined as follows:

1) ¢ isnondecreasing in each argument and

2) min z <¢(Z)< max z.
i=12,..n i=1,2,..n

Usually, the elements of th&; are real numbers. Otherwise, a total order in the
set Z,0Z,0---0Z, must be given (see, for instance, [1, 11, 19}).these papers it is
generally assumed that the state spatgsand Z; are identical onre =2 andr; >2. Multi-

valued systems with nondenumerable state spaces are, for instance, considered in [6]. Here a

partial generalization of these models is dealt with: The state s@gacg&s,Z»,....Z,, need
not be identical (although this can be assumed without loss of generality) and the structure

function$ need not be nondecreasing. However, as in the previous section, the, sthtiee
system can only assume values O or 1,42.e={,1} (system is not available, is available).

To be able to present an algorithm for constructing a disjoint sum form of the structure

function, concepts introduced in section 2 have to be generalizedZ[Ef;. A set

constraint (SC)over z with respect taZ is denoted a$zi DZ) and defined by

< _ DZ) a if z assumes a value from Z
“ - if z assumes a value frof\ Z

Thus, Z is that subset of states, in which elemenbperates satisfactorily. From the point of

view of logic, <zi DZ) is apredicate, which is true iffz assumes a value fro&. Obviously,
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if Z; =lo,1C, then the Boolean variablg is equivalent to(zi DZi>. Hence, SC’s are
generalizations of Boolean variables with
0=(z 00)<(z 0Z;)=1

Let Z,Z’'L1Z;, 2" Z . Digunction, conjunction andnegation of SC’s are defined as

Disjunction: (7 DZ'>D<ZJ DZH>: max®; DZ>'<Zi Dzl>j

Conjunction: (3 DZ'>D<ZJ‘ DZ">:mi”@i DZ'>'<ZJ' DZ'M

Negation: (z0Z)=(z 0Z;\Z)

In particular, for SC’s over the same variable,

Disjunction  (z 0Z)0(z 0Z")=(z 0Z'0Z")

Conjunction  (z 0Z)0(z 0z")=(z 0Z'nZ")

Two SC's(z UZ)) and(z; 0Z") are said to beisjoint if (z 0Z)0(z; 0Z")=0.1fi=j,
then(z 0Z') and(z 0OZ") being disjoint is equivalent t&'nz"'=0 .

An SC(z 0Z) is called proper ifZ# 0 andZ # Z;.

An SC-clause (SC-term) is a disjunction (conjunction) of proper SC’s with every variable

occurring at most once.

For any two (0,1)-functiond and g defined onZ,
f Cg=min(f,g)and f Cg=max(f ,g)
and f = f(y) andg=g(Z) are called digointf f(y)C g(Z)=0
for all y,Zz0Z. (f and g may actually only depend oWk, k<n, of the variables
7,2p,...,Z,. In this case, the residual-k variables arerrelevant to f and g and can be
deleted.) If f and g are disjoint, then
fCg=f+g

Let Z, UZ; ; k=12..r;0<r<n,andf be the corresponding SC-term, i.e.

f =(z,02,)0(z,02,)0-0z 0Z )
As in chapter 2, it will be assumed that thez,, ...,z, are independent. Then, since SC’s are

random (0-1)-variables,

P(f =1)=E(f)= P@ql DZil> :JJ'F’@% DZi2> = JJI-O-F’&r DZi,>= 1]
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with

P@k DZk> = 1h z P(Zk = Zk,j)
Zk,j DZk

Let the structure function of a possibly noncoherent multivalued system be given in the form
#(2) = f, L fL-Lfp, (5)

where thef, are proper terms with SC’s over all or some of the,, ...,z,. The usefulness

of transforming structure function of type (5) into disjoint sum forms is motivated as in

chapter 2. The following algorithm is an adaptation of algorithm 1 to noncoherent system

functions with multi-valued arguments [3, 20]. It is based on a version firstly presented in

[18]. An alternative approach using the information that every element is in exactly one mode

is presented in [4].

Algorithm 2

;input: ¢ = f, L frL--Lfy, (order: fj contains not more SC’s thaf) )

;output: setsM; j; j=L1..r;i=1..j-1

for j=1 tom

MO,j:: nJS
fori=1 to j-1
Mi,jZ:D

forall D in Mj_g
if D and f; are disjoint, then ad® to M; ;
else defind:=(I; - 1p) O Ik O1; n 1p: %0z, C
withf; = 0O (z. 0Z) andD = 0O (z OY
' kDIi< «D2i) kDID< DY)
if 1= |il,i2,...,itqt [, then add the following formulas tif; ;:
D)z, 02;,\Z,)

D D<z|-1 DZi1> D<ziz 0Zi,\Z 2>

D D<Zi1 Dzi1>D"'D<Zit_l DZit_1> D<Zit Dzit \Zit>
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Note that one has to make sure that the algorithm generates only proper SC-terms. By using
an appropriate data structure for representing SC-terms, this can be done efficiently. The sets

Mj,; only contain SC-terms and the corresponding disjoint sum form is
m
=% 2 D
j:]. DM i-1
Example 2 Consider variableg, z,, zz with identical frameZ = |123 4 Let us assume a

non-monotone system function of type (5) givendoy f; C f, with

f =(z 01340J0(z, Ol Q). f, =(z 0300z 0l1 )
Applying algorithm 2 yields:
j =1 Initiate Mg 1:= | f1(
j =2 Initiate Mg .= | f2C
i =1 The only element oMy, is not disjoint with f; . Hence,

determiné= |1,2C and construct formulas

<zlm|La4(§|D<z3 Dlﬂ}]ﬂ(zlml 34

(z D|L34Q|D<z3 ol 100(z al 3 Qo(z 5l 16]0(z ol (0
Simplifying these formulas to obtain SC-terms yields

{= hadQo(z ol Qo ol 3@1a<zﬁl_c;ﬁ

Hence, the system availability becomes

P¢=D)= X PMD=hH+ > PD=I)
DOMg DOM, ,

=P((z D|3,4(§I> P((z, D|1(§I) +P((z D|1q) P((z3 D|li§t)
+P((z 013.4Q) tP((z, Ol2,3 PP (25 011 0.
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