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ABSTRACT 
In this paper, a stochastic network is an undirected graph with unreliable edges and absolutely 
reliable nodes. Its connectedness probability is determined by reliability preserving network 
reduction. The principle of this method consists in splitting the underlying deterministic graph 
of the stochastic network into two edge-disjoint subgraphs via a separating node set. One of 
the subgraphs is replaced with a simpler structured graph (replacement graph) in such a way 
that the interesting reliability criterion of the original stochastic network is retained. Special 
attention is given to the construction of suitable replacement graphs. The case of a 3-point 
separating node set is considered in more detail. 
 
 
1. INTRODUCTION 

Network reliability analysis arises in many important engineering areas, in particular 

communication networks, computer networks, monitoring and military systems as well as 

transportation and electrical power systems. Hence it is imperative that effective tools are 

being developed for the reliability analysis of complex networks with a general topological 

structure. 

 

In this paper, a stochastic network is an undirected graph with unreliable edges and absolutely 

reliable nodes. The edges can be in two states: available (operating) or not. The terminology 

used throughout the paper refers to communication networks. Thus, if an edge is not 

available, then no direct transmission of information between its end nodes is possible. The 

paper only deals with the connectedness probability of a stochastic network, i.e. with the 

probability that there is a path between any node pair of the network, which only consists of 
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available edges. For the sake of convenience, the connectedness probability of a stochastic 

network is simply referred to as its reliability. 

 

Basic Notation 
~
G                  stochastic network under discussion 

G N E= ( , )   G  underlying deterministic graph with node set N = 1 2, ,..,nl qand edge 

                     set E 
~

'G                 any stochastic network with underlying deterministic graph G'  

R(
~

' )G )         connectedness probability (reliability) of 
~

'G  

U, u             separating node set, cardinality of U  

∅                  empty set 

 

2. NETWORK DECOMPOSITION 

A subset U  of N  is said to be a separating node set of G  if there exist two edge-disjoint 

subgraphs G N E1 1 1= ( , )  and G N E2 2 2= ( , )  of G  such that 

G G G= ∪1 2, G G U1 2∩ = ∅( , )  

Figure 1 shows the splitting of a graph G  with 11 nodes and 24 edges into two edge-disjoint 

subgraphs G1and G2  by the separating node set U = 1 2 3, ,l q It is an intuitive approach to 

separately carry out reliability analysis for 
~
G1  and 

~
G2  and to combine the results to obtain 

R(
~

)G . Pursuing this approach requires the introduction of some combinatorial concepts. 

 

A partition π of U  is a family of disjoint subsets of U  the union of which is U . The 

elements of π are called blocks Let ΠΠΠΠ = π π π1 2, ,..., Bl q be the partition set of U . B B u= ( )  is 

the Bell-number of U : B B B B( ) , ( ) , ( ) , ( ) .2 2 3 5 4 15 5 52= = = =  B u( )  grows exponentially 

fast with increasing u . Partition π j  is a refinement of π i  if each block of π j  can be 

obtained by splitting a block of π i . (Trivial splitting is allowed.) 
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                                                                 3                             3 
                                                                                                                                               

 
Figure 1   Decomposition of a graph with 11 nodes and 24 edges 

 

In ΠΠΠΠ a partial order “≤” is introduced in the following way: The relation “π i ≤π j ” holds if and 

only if π j  is a refinement of π i . Thus, the partition lattice (ΠΠΠΠ, ≤) is given. Let π1 be its 

smallest and π B  its greatest element. Further, let π πi j  be the greatest partition satisfying both 

π π πi j i≤  and π π πi j j≤ . Let U Gj j
i( )  be that node set (graph) arising from U ( )G i  by fusing 

the nodes of each block of π j  into one node; i j B= =1 2 1 2, ; , ,..., . There is obviously a one-to-

one correspondence between the blocks of π j  and the nodes of U j . Hence, in what follows, 

the elements of U j  will be identified with the corresponding blocks of π j .The stochastic 

network 
~
G1  induces partitions of U in the following way: partition π j  is induced if the nodes 

belonging to a component of 
~
G1  belong to the same block of π j . By assumption, the 

underlying deterministic graph G is connected. 

Theorem  The reliability of 
~
G is given by 
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R P Rj j
j

B
(
~

) (
~

) (
~

),G G G= ∑
=

1 2

1
                                              (1) 

where Pj (
~

)G1  is the probability that 
~
G1  induces partition π j  and each component of 

~
G1  

has a node in common with U. 

Proof  Let us introduce the following random events: 

A          each component of 
~
G1  has a node in common with U 

Aj        
~
G1  induces partition π j  and each component of 

~
G1  has a node in common  

            with U 

Then A A AB1 2, ,...,  is a set of mutually exclusive random events with 

A A A AB= ∪ ∪ ∪1 2 L  

Therefore, A A AB1 2, ,...,  is a complete system of random events. Moreover, R A(
~

) ,G = 0  

since, on condition A , 
~
G1  contains at least one component, which is completely isolated 

from 
~
G2 . On the other hand,  

R A R
j j(

~
) (

~
),G G= 2  

since, given Aj , 
~
G  is connected iff if 

~
G j

2  is connected, because in this case the components 

of 
~
G j

1  are connected by the components of 
~
G j

2  (and vice versa). Since P A Pj j j( ) (
~

)= G1 , the 

proof of the theorem is finished by applying the total probability rule. 

 

Of course, formula (1) is only useful if the probabilities Pj j(
~

)G1  are known. To establish a 

system of equations in the Pj j(
~

)G1 , note that 
~
Gk

1  is connected if and only if each component 

of 
~
G1  has a node in common with U and Pj j(

~
)G1  induces a partition π j  satisfying 

π π πj k = 1. Therefore, the probabilities Pj j(
~

)G1  satisfy 

                                       
j

j k
j k

P R
:

(
~

) (
~

)
π π π=
∑ =

1

1 1

n s
G G                                                 (2) 

To simplify notation, let, for i k B= =1 2 1 2, ; , ,..., , 
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p P p p pj
i

j
i i i i

B
i T= =(

~
), ( , ,..., )G p 1 2  

R R R R Rj
i

j
i i i i

B
i T= =(

~
), ( , ,..., )G R 1 2  

a jk
j k=

=RST
1

0

1if

otherwise

π π π
 

Note that A = (( ))a jk  is the coefficient matrix of the system of linear equations (2). Hence, 

system (2) is equivalent to 

                                                           Ap R1 1=                                                        (3) 

Thus, formula (1) becomes 

R T(
~

) ( )G p Ap= 1 2 

(Of course, the roles of G1  and G2  can be exchanged.) From the theory of partition lattices it 

is well-known that the matrix A is regular (see, for instance, Aigner [1])). Hence, from (3), if 

A−1 denotes the inverse matrix of A, 

p A R1 1 1= −                                                      (4) 

Thus, the decomposition formula obtains its final form: 

R T(
~

) ( )G R A R= −1 1 2                                             (5) 

Note that the matrix A is a characteristic of the partition lattice (ΠΠΠΠ, ≤) and depends only on the 

cardinality u of U. In particular, A does not depend on 
~
G1  and 

~
G2 , respectively. 

From the modeling point of view, determining R(
~

)G  is equivalent to computing the 

availability of a binary coherent system. Hence, with respect to computational complexity, 

computing R(
~

)G  is an NP-hard problem (Ball [2]). Thus, applying the decomposition 

formula (1) can be expected most efficient if U splits G into two subgraphs of about the same 

“size”. The splitting approach has been applied in Beichelt, Tittmann [5] to the K-terminal 

reliability of a stochastic network. The proof of formula (1) given here is new. 

Example 1  Let us consider the graph G which is split in Figure 1 by the separating node set 

U = {1, 2, 3} into two subgraphs G1  and G2 . Let ΠΠΠΠ = π π π1 2 5, ,...,l q be the partition set of 

U with 

π π π π π1 2 3 4 5123 12 3 13 2 1 23 1 2 3= = = = =l q l q l q l q l q, , , , , , , , ,                  (6) 
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Note that here and in what follows blocks are separated by commata. In particular, U = π5 . 

The corresponding matrices A and A−1 are 

A =

F

H

GGGGG

I

K

JJJJJ

1 1 1 1 1

1 0 1 1 0

1 1 0 1 0

1 1 1 0 0

1 0 0 0 0

,          A− =
− −

− −
− −

− − −

F

H

GGGGG

I

K

JJJJJ
1

0 0 0 0 1

0 1 2 1 2 1 2 1 2

0 1 2 1 2 1 2 1 2

0 1 2 1 2 1 2 1 2

1 1 2 1 2 1 2 1 2

/ / / /

/ / / /

/ / / /

/ / / /

 

From (4), 

p R1
1

5
2=  

p R R R R2
1

2
1

3
1

4
1

5
11

2
= − + + −  

p R R R R3
1

2
1

3
1

4
1

5
11

2
= + − + −  

p R R R R4
1

2
1

3
1

4
1

5
11

2
= + + − −  

p R R R R R5
1

1
1

2
1

3
1

4
1

5
11

2
2= − − − +  

 

i     π i       Ri
1      Ri

2  

1 {123} 0.983567 0.980261 

2 {12,3} 0.938471 0.968360 

3 {13,2} 0.943555 0.978309 

4 {1,23} 0.972559 0.939692 

5 {1,2,3} 0.892682 0.927445 

 

Table 1   Numerical results for example 1 (Beichelt [3]) 

Table 1 shows the corresponding vectors R1  and R2  in case of the common edge availability 

p = 0.8. Formula (5) yields the reliability of 
~
G : 

R(
~

) .G = 0963096 

Hence, 
~
G  is not connected with probability 1 0 036904− =R(

~
) .G . 
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3. NETWORK REDUCTION 

Network reduction (network transformation) is a powerful tool for the reliability analysis of 

complex stochastic networks 
~
G . Most of the known efficient (nonexponential) algorithms for 

computing network reliability criteria are based on network reduction. It is characterized by 

simplifying the topological structure of the underlying graph G by substituting a subgraph of 

G by one or more replacement graphs  More exactly, reliability preserving network reduction 

involves three basic steps: 

1) Decomposition of G by a separating node set U: 

G G G= ∪1 2, G G U1 2∩ = ∅( , )  

2) Generation of a graphs H2  by replacing G2  with a graphs H2,k , k = 1, 2,…r, satisfying 

G H U1 2 1 2∩ = ∅ =, ( , ), , ,...,k k r  

3) The stochastic networks 
~
Hk  belonging to H G Hk k= ∪1 2,  are constructed in such a way 

that 

  R T R R R r(
~

) ( (
~

), (
~

,..., (
~

) ),G H H H= 1 2                                      (7) 

where T( )⋅  is a one-to-one-function from 0 1, r  on [0, 1]. 

As in 
~
G , the reduced (transformed) graphs 

~
Hk  are assumed to have absolutely reliable 

nodes. Moreover, the availabilities of the edges of 
~
G1  in 

~
Hk  are the same as in 

~
G ; k = 

1,2,…, r. Here only the case of a linear function 

T x x x h x h x h xr r r( , ,..., )1 2 1 1 2 2= + + +L  

 is considered. Then the reduction equation (7) simplifies to 

R h R h R h Rr
r(

~
) (

~
) (

~
) (

~
)G H H H= + + +1

1
2

2
L                               (8) 

The factors hk  are called reduction constants. To obtain a system of equations in the hk  and 

in the unknown availabilities of the edges of 
~ ,H2 k such that condition (8) is satisfied, formula 

(1) is applied to 
~ ~ ~ ,H G Hk k= ∪1 2 : 

R p Rk
j j

k

j

B
(
~

) (
~

),H H= ∑
=

1 2

1
,   k = 1, 2,…, r                                   (9) 

Combining (8) and (9) yields 
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R p h Rj k
k

r

j
k

j

B
(
~

) (
~

),G H= ∑∑
==

1

1

2

1
                                           (10) 

Comparing the coefficients of the p j
1  in (1) and (10) yields 

R h R j Bj k j
k

k

r2 2

1
1 2= =∑

=
(
~

); , ,...,,H                                       (11) 

The reliabilitiesRj
2  have to be determined by any suitable method, whereas the reliabilities 

R j
k(

~
),H2  are given in terms of the unknown edge availabilities of 

~
H j

2 . 

If there is no redundant equation in (11), then two conditions are necessary for the existence 

of a unique solution of (11): 

1) The total number of edges in the set of replacement graphs s satisfies s ≥ B – r. If 

s B r> − ; then the availabilities of s B r− +  edges have to be fixed. This should be done in 

such a way that solving (11) is facilitated. 

2) Each partition of U can be generated by at least one of the stochastic replacement networks 

~
,
~

,...,
~, , ,H H H2 1 2 2 2r . 

In case r = 1, equations (8) and (11) simplify to 

R h R(
~

) (
~

)G H=  

and 

R h R j Bj j
2 2 1 2= =(

~
); , ,...,H                                        (12) 

Note:  In what follows it is assumed that, for all k = 1, 2,…, r, both in 
~
G  and 

~
Hk the indicator 

variables of the states of the edges are independent. 

Example 2  Let graph G be split by a 3-point separating node set U = {1, 2, 3} into two edge-

disjoint subgraphs G1  and G2 . In this case it seems to be obvious to replace  G2   with a 

single replacement graph (r = 1),  namely a “star”,  i.e. a tree consisting of 3 edges which  

                                4                                                              e5  

 

                                                                              e1          e2     e3          e4 

              1                 2                 3                    1                      2                      3 

     Figure 2  Replacement graph “star”    Figure 3  Replacement graph in example 2 
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have a node, say node 4, in common (Figure 2). This replacement graph generates all 5 

partitions of U, but it has only 3 edges. Then (12) becomes a system of 5 equations in 4 

unknowns. To generate another unknown parameter, the common node 4 can be assumed 

unreliable too. In this case, the reduced graph 
~
H  would have both absolutely reliable and 

unreliable nodes, contradictory to our assumptions on 
~
H . However, in case of the well-

known delta-star-reduction, where a “delta” (triangle) is replaced with a star, the equations in 

(12) are linearly dependent in such a way that one of the equations is superfluous. Hence, in 

this special case a unique solution of (12) exists (see, for instance, Beichelt [4]. Unfortunately, 

in general, for a 3-point separating node set there is no tree with at least 4 edges which can 

serve as a replacement graph. (A replacement graph being a tree simplifies the structure of the 

system of equations (12) and, therefore, its solution.) Figure 3 shows a possible replacement 

graph with 5 edges e e e1 2 5, ,...,  containing one cycle. Let pi  be the availability of edge ei  to 

be determined and p p ii i= − =1 1 2 5; , ,..., . The availability of edge e5  is fixed to be 

p5 1 2= / .  Furthermore, let 

a R h jj j= =2 1 2 52 / ; , ,...,  

With U given by (4), the nonlinear system of equations (12) becomes (to verify, condition 

with respect to  “e5  available”  and  “e5  not available”): 

 a p p p p1 1 2 3 42= − −  

 a p p p p2 1 2 3 42= − −( )  

 a p p p p p p p p3 1 4 2 3 1 2 3 42= + + −( )( )  

 a p p p p4 2 3 4 12= − −( )  

 a p p p p5 2 3 1 4= +( )  

There exists a unique solution {p p p p1 2 3 4, , , } of this system of equations. In view of its 

complicated structure, it cannot be given here. However, dependent on the numerical values 

of the Rj
2 , the pi  need not satisfy conditions 

 0 1 1 2 5≤ ≤ =p ii ; , ,...,  (13) 

In case of the star-delta-transformation (a star is replaced with a triangle), this observation 

has been already made by Rosenthal and Frisque [6]. Nevertheless, also in what follows the 

pi  are referred to as “availabilities”. 
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                             e1              e2                                                  e3  

                  1                 2                  3                       1      e4        2                 3 

                                 H2 1,                                                    H2 2,  
 

Figure 4  Replacement graphs in example 3 

 

Example 3  As in the previous examples, let U = {1, 2, 3}. The subgraph G2  is replaced with 

the two graphs H2 1,  and H2 2,  depicted in Figure 4. Let p p p p1 2 3 4, , ,  be the availabilities of 

the edges e e e e1 2 3 4, , ,  and p4 0= . With r R jj j= =2 1 2 5; , ,..., ;  the system of equations (11) 

becomes 

 r h h1 1 2= +  

 r h p h p2 1 2 2 3= +  

 r h p p p p3 1 1 2 1 2= + −( )  (14) 

 r h p h p4 1 1 2 3= +  

 r h p p5 1 1 2=  

The solution is 

p
r

r r r r1
5

2 3 5 4

2=
+ + −

 

p
r

r r r r2
5

3 4 5 2

2=
+ + −

 

p
r r r r r

r r r r r r r r r r3
5 3 5 2 4

2 3 5 4 3 4 5 2 1 5

2

2
= + − −

+ + − + + − −
( )

( )( )
 

With p1 , p2 , p3  known, h1 is given by the last equation of (14) and h2  by the first. Note that, 

for all replacement graphs belonging to a 3-point separating vertex set, 

0 15 2 3 4 1< ≤ ≤ <r r r r r, ,  

Hence, p1  and p2  can be expected to satisfy condition (13), whereas p3  is likely to fulfill 

(13) if r r r r3 5 2 4+ > + . 

 

Unfortunately, even for replacement graphs satisfying the necessary conditions 1) and 2) 

stated above, a solution of (11) need not exist. Hence, it is necessary to establish a list of 
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replacement graphs, which, dependent on the numerical values of the r j , guarantee the 

existence of a solution of (11) with property (13). This task is still outstanding. Example 3 

illustrates that the use of more than one replacement graph facilitates establishing such a list. 

The idea to use more than one replacement graph in one reduction step is due to Tittmann [7]. 
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