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ABSTRACT

Reliability and diagnostic are in general two problems discussed separately. Yet the
two problems are in fact closely related to each other. Here, this relation is considered
in the simple case of modular systems. We show, how the computation of reliability
and diagnostic can efficiently be done within the same Bayesian network induced by the
modularity of the structure function of the system.

1. INTRODUCTION

Reliability is concerned with the prediction of the correct functioning of systems. Di-
agnostic on the other hand aims at finding the cause of the malfunctioning of systems.
Usually the two problems are discussed separately, each domain has its own literature.
But in fact the two problems are closely related. This will be demonstrated in this paper
in a simple context. We consider modular systems. It is well known that modularity
helps in computing the reliability of a system. The same structure helps also for the task

of diagnostic, once a malfunctioning of a modular system has been observed.

The logical dependence of the good functioning of a system on the intactness of its
components can be described by a Boolean function, the structure function. This is well
known in reliability theory. The structure function can be represented in different ways:
one possible representation is by its minimal paths. Another one depends on the minimal
cuts of the system. In any case, the structure function allows to compute the reliability

of the system, if the component reliabilities are known. This task however is NP hard,
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i.e. in the worst case the computa%t H{IQriofioy rg%(l)swasc'éia(i)onentiaﬂy with the number of
components of the system. That is where modularity comes in. Technical systems are
often built up of modules, which can be exchanged as a whole in the case of a defect. This
technical structure is reflected in the logical structure of the system, i.e. in the structure
function. A modular decomposition of a system can be represented by a corresponding
graph, in fact a tree. Reliability computation can be much simplified using this tree. The
method works from the leaves to the root, starting at the leaves, which represent the
components of the system, computing intermediate nodes, corresponding to modules, up

to the root, which designs the system. This approach is presented in Section 2.

This is so far a classical approach of reliability theory. But assume now, that the system
is observed of not being functioning correctly. Then a problem of diagnostic arises:
Which modules or which components are not functioning, causing the system to be down?
Generally, it will not be possible to single out a unique set of modules or components
which is responsible for the system break-down. The best we can hope for is to compute
the posterior probabilities of each module and each component to be down, given the
event of the system break-down. This will then permit to selectively test the most likely
candidates for the cause of the system break-down. Using the results of these tests, new
posterior probabilities can be obtained, which will progressively point more and more to
the true cause of the system break-down. In this paper (Section 3) we show that the tree
of the modular decomposition can be used to compute these posterior probabilities. In
fact, once the system and module reliabilities have been obtained by traversing the tree
from the leaves to the root, we can use the results of these computations, when we traverse
this time the tree in the opposite direction from the root to the leaves. Essentially, we
apply Bayes’ theorem at each node to obtain sequentially the posterior probabilities of
the descendents of the node. At the end, the posterior probabilities, given the event of a
system break-down, have been computed for all modules and all components. This shows

that diagnostic is indeed intimately related to reliability.

This duality between reliability and diagnostic can be enforced, if the calculations are
related to a Bayesian network. Bayesian networks are very popular and a well developed
computational theory is available for them. We show how a modular decomposition gives
rise to a Bayesian network, in fact a Bayesian tree. Therefore, the computational proce-
dures for Bayesian networks apply here and they solve indeed both the reliability as well
as the diagnostic problem. We present in Section 4 one of the computational architec-
tures for Bayesian networks and relate it to reliability and diagnostic computation. This
gives us a unifying framework for both problems. Also it generalizes the computational
approach presented in Birnbaum and Esary [5], Birnbaum et al. [6]. So, this shows again
the duality between reliability and diagnostic. We remark, that modular systems are only

very simple, also convenient, examples, where this duality can be exploited. Model-based



reliability and diagnostic is a mucl'$ %é%”%@ﬂ%%rlaf?aaﬁ%%/ork, where this duality finds its
most general expression. A first discussion of this framework is in Provan [14]; yet this
field has still to be explored.

2. RELIABILITY OF MODULAR SYSTEMS

Systems are made up from different components. At any given time point, these compo-
nents may or may not work. Depending on the states of all its components, the system
itself may or may not work. This dependence of the functioning of the system on the
functioning of its components is described by a structure function. Suppose that the
system is composed of 2 = 1,...,n components. Then we introduce a Boolean variable a;
for each component ¢ with the meaning that

(1)

T if the component with number ¢ works,
a;, = .
1 otherwise.

We use here the symbols L and T borrowed from logic to denote the states of the
components in order to clearly distinguish these states from other concepts introduced in
the sequel. Clearly, in reliability theory, the symbols | and T are usually interpreted as

numerical values 0 and 1 respectively.

The state of the variables ay,...,a, can be summarized by a vector a = (ay,...,a,).
This vector has 2" different possible states. The set of all possible states is divided into
two subsets, the set St of states for which the system works and its complement, the
set S| of states for which the system is down. The state of the system is denoted by a
Boolean variable a. The dependence of the system state a on the vector a is denoted by

the Boolean function ¢, defined as

. . T ifaEST,
o= o = { ] paed 2

The function ¢ is called the structure function of the system. It is a Boolean function,
which maps n Boolean variables in a Boolean variable; for the basic definitions for boolean
functions see Beichelt [4], Kohlas [11]. In the sequel, we assume that the systems are

monotone, which means that the structure function ¢ is nondecreasing in each variable.

There are two important general representations of any monotone Boolean function. A
subset P C {1,...,n} of components is called a path of ¢, if a; = T for all 1 € P implies
that ¢(a) = T, independently of the state of the other components. That is, a path is
a subset of components whose functioning is sufficient for the functioning of the system.
A path P is called minimal, if no proper subset of P is a path. Let P be the family of
minimal paths of ¢. Then

da) = V Aa (3)

PeP ieP



p/'\//(():g%rjq.'%%rtr}?)lﬁ. %ﬁ%’) So the formula above simply

Here V denotes disjunction (or) arit
states that the system is functioning, if, and only if, all (conjunction) components of at
least one (disjunction) minimal path are working. This is the disjunctive normal form.
We assume in this paper, that the set of all components is a path: if all components
work, then the system works. If this is the only path in a system, then it is called a series
system. A component which belongs to no minimal path is irrelevant for the function of
the system. It can be eliminated as far as the system reliability is concerned. We assume

hereafter that all components are relevant.

A subset of components C' is called a cut if the system is down, whenever all the elements
of C' are down (irrespective of the states of the other components). A cut C is called
minimal, if no proper subset of (' is a cut. Let C denote the family of all minimal cuts of

the system. Then,

da) = A Va (4)

CecC eC
This says that the system is functioning if at least (disjunction) one component in all
(conjunction) minimal cuts is working. This is the conjunctive normal form of ¢. The
two representations of conjunctive and disjunctive normal forms are dual to each other.
We assume that the set of all components is a cut, otherwise there would be no cut,
hence no reliability problem. If this is the only cut in a system, then it is called a parallel

system.

We assume that the probability p; that the component 7 is working at a given time is
known for every component i. The probabilities py,...,p, are assumed to be mutu-
ally independent. Let p denote the vector (pi,...,p,). Then, the structure function ¢
determines the probability p that the system itself is functioning,

p = E(¢) = Plo=1} (5)

Clearly, this probability depends on the vector p of the component probabilities. In order

to emphasize this dependence, we write
p = hy(p). (6)

The computation of the probability p from the structure function is in general no trivial
task. Many methods have been proposed, we refer to Beichelt [4] and Kohlas [11]. One
method consists of transforming the disjunctive normal form into a disjunction of disjoint
terms, whose probabilities can be easily computed and which can be simply summed up,
since the terms are disjoint, see Abraham [1], Heidtmann [8]; this subject is discussed in

the article “Disjoint Sum Forms in Reliability Theory” of Anrig & Beichelt in this journal

2].



So, in the simplest case of a dlSJOln%th(é/I’%O 1urngls a%%,z%at there are terms ¢; = A;cp, [

with [; = a; or —aj, such that ¢ =\/;¢; and ¢; A¢; = L if ¢ # j. Then we have
>_p(c) (7)

and

plec) = TIpi- II(1—py). (8)

aj;Ec; tajEec;

It is well known that the problem of computing the probability p that the system is
functioning is NP-hard, cf. for example Ball [3]. The modular structure of a system may
however help to simplify the computation. A subset of components, say for example
i=1,...,m (m < n), is called a module, if there are Boolean functions ¢’ and ¢" such
that

pla) = qﬁ’(qb"(al, ey )y Qg1 s e Oy (9)

¢" is the structure function of the module. Suppose that the set of components {1,...,n}
of a system decomposes into m > 2 modules My,..., M,,. Let a; denote the vector of
the Boolean variables associated with the components in module M; and let ¢; be the
structure function of module M; under the restriction that the variables in a; are disjoint

from those in aj if 7 # k. Then there is a Boolean function ¢, such that

¢@) = d(d(ar),. ., dmlan)). (10)

My, ..., M, is called a modular decomposition of the system and ¢ its organizing struc-

ture.

If we have a modular decomposition of a system ¢, then we obtain
p = hs(P) = hylhs(P1),-- s lg(Pm)), (11)

where p; is the vector of probabilities corresponding to a;.

This formula explains how a modular decomposition helps to compute p: the organizing
function h, as well as the modular functions Ay, have less, possibly much less, arguments
as the original function h,. And this helpful property of a modular decomposition will

be amplified, if the modules themselves possess their own modular decomposition.

This leads then to a hierarchical structure of modules over several levels. We represent
this structure by a tree (see Fig. 1). The root node at level 0 corresponds to the Boolean
system variable, denoted now by a!. Its descendants on level 1 are the Boolean variables a]
to al = a}zlyl. In general, a variable (node) a]. at level ¢ has descendants a};} to aﬁlﬂ

where k1; = 1 and kjy1,; = h;; + 1. We denote the vector of Boolean variables of the
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Figure 1: The hierarchy of Boolean functions is arranged in a tree.

descendants of aé- by aé. Associated with any node aé of the tree, except the leaves with

no descendants, there is a structure function qb; such that
a; = ¢i(al). (12)
So, we have, starting at the root node,
ai = (@) = e, aq,,), (13)
and
0 = @) = el 0l (14)

etc. We denote the probability of a Boolean variable aé by pé- and the probability function,

associated with a structure function qD; by h; Then we have also
o= k(). (15)

Thus, we may start with the given component probabilities at the leaves of the tree and
compute probabilities upwards in the tree, until we get the system reliability p? at the

root,
pio= k@) = Apis--ospn,,)- (16)

This supposes for example that we determine the paths of each structure function gD; for
each non-leave node of the tree and use an appropriate orthogonalization of the corre-
sponding disjunctive normal form. Since — hopefully — in a modular hierarchie nodes
have only a small number of descendants (components or modules) these computations for
each node will be relatively small. We shall discuss in Section 4 an alternative approach

to the reliability computation in a modular hierarchy.

3. DIAGNOSTIC OF MODULAR SYSTEMS

The reliability computation presented in the previous section corresponds to a more or
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less classical pattern. But in this's HEEN AV ORI REFL new problem which seems so

far hardly having been considered in the framework of modular system structures: the
problem of diagnostic. Assume that we observe that the system is down. Then clearly
some modules and components must be down. The question is which ones. Given only
the observation that the system is down, it will in general not be possible to identify
unambiguously the defect module(s) or component(s) which cause the system failure.
But, by computing the posterior probabilities of module or component failures, given the
event that the system is down, we may be able to point out those modules or components,
which are more likely to cause the problem. Performing further tests on selected modules
or components, we may identify the cause of the system failure with more and more

certainty.

To start with, consider a system described by a structure function

a = ¢la,...,a,) (17)

and assume that the components a; have probabilities p;. But assume now, we observe
that @ = L, 1.e. the system is down. This given event changes the prior probabilities
pi = P{a; = T} into posterior, conditional probabilities P{a; = T|a = L}. How do we

compute these posterior probabilities?

In fact, we could ask the same question, if we observe the system to be working, i.e.

a = T. So we consider more generally the problem of computing the family of conditional

distributions p(a;|z) where x = T or x = L. Of course, we use Bayes’ theorem. Assume

first that a = T

plaiNa)  plai A ¢lay,. .., a.))
pla) pla) '

pla) = plala) = (18)

The denumerator of this formula is the result of the reliability computation, which we
assume to be done. How can the numerator then be computed? Assume that for the
reliability computation, the structure function ¢ has been transformed into a disjoint

disjunctive form
¢ = \a, ¢iNej= L fori # . (19)
From this we deduce that

a; A glar, ... a,) = \/C;'a (20)

where

c; if a; € ¢,
—— 1 if —a; € ¢, (21)
c; N\ a; otherwise.



Note that the ¢ are still disjoint. @(t)t’p:‘/\/fgriggijgumals.ac.za/
p(ai/\qb(alv"'van)) = Ep(c;) (22>

and

p(e:) ifa; € ¢,
p(c) = {0 if ~a; € ¢, (23)
p(ci) - p;i otherwise.

For a = L, we have in the same way

plai A =glan, ., an))

/
pla;) = pla;|~a 24
(@) = plad-a) el (24)
Here, the numerator is computed using the following identities:
pla; N =g(ar, ... a,)) = pla; A (—a; V =¢(a,...,a,)))
= pla; A=(a; A dlas, ..., a,)))
= pla;) —pla; A (a,...,a.)) (25)

The first term is the prior probability p; and the second one has been computed above.

So there is no need to compute new probabilities in this case.

If we consider now the more complicated case of a modular hierarchy, then the compu-
tations above permit to obtain the posterior distribution of the descendants of the root
node. More generally, for any node aé- assume that we have the family of posteriors

p(a§-|x). How can we now obtain the posterior distribution for the descendants of aé? Let

ait! be such a descendant. Then, by the formula of total probability, we have
P(ai) = plai)
= plag |a})p(d]|2) + plait |=a)p(=d]|z). (26)

The conditional probabilities p(a; |a§-) and p(ait! |—|aé-) are computed just as above in the
case of a root node, using the reliabilities p(a’) which have been computed beforehand.
If we work the tree downwards, then the probabilities p(a;|a) and p(ﬁa§|a) =1- p(aé—|a)
have already been computed on a higher, hence previous, level. In this way, we may work
downwards down to the leaves of the tree to get the posteriors p’(a;) of all nodes of the
tree.

In summary, we work first the tree of a modular hierarchy upwards to get the reliabili-
ties of the nodes of the tree. Then, once we observe the system state, we work the tree
downwards, using the results of the reliability computation, to obtain the posterior prob-
abilities of the states of all modules and components. This exhibits nicely the duality

inherent between reliability and diagnostic.



hmac.za/
ay
2
ay ay
— ——
L a% =

Figure 2: A serial module in a parallel organizing structure.

To illustrate this theory consider the example in Fig. 2. In this example the function ¢1
has two parameters aj and a}. The first parameter depends of an other module al =

#3(aj,a3). The two Boolean functions are defined as
$ilar,a3) = ayVay,  $iaf,a3) = ajAa (27)
Assume the prior probabilities of a}, a? and a3 to be
play) = 0.7, p(a?) = 0.8, p(a2) = 0.6. (28)
So in a first step the prior probabilities of a{ and a have to be calculated as
pal) = p@nad) = pladpld) = 08x06 = 045,

plal) = pla;Vay) = 1—(1—=pla))(1—p(a3))
= 1-(1-048)(1-0.7) = 0.844. (29)

Now, if the variable a? is observed to be L, then its posterior probability changes to
p'(al) = 0. And the posterior probabilities of all underlying variables change as well:

7R L | 0 pla 1A= ) _ p(a%/\—'qéi(a},a%))
p (al) - p(al | _'al) - 1 p( ) - 1 _p(a(l))
plal) — plad A glalad) _ plad) —plal) _ 0
1 — p(a?) 1 — p(a?) 0.156

In the same way we obtain p’(aj) = 0. It is clear, that if a parallel system is down, then

all its components must be down. The calculation of p/(af) is done as follows:

, , , p(a? A\ —al
Plad) = ol [/ (ad) 4t [~ (al) = plad ) = PO pla] )1)
a3
plai A=¢i(ai a3) _ plai) — plai A ¢i(ad, a}))
1 —p(a1)) L= plai)
_ p(a}) — p(a? A a3) _ 0.8—-0.8:-0.6 0.667

1 —p(a}) 1—-0.48
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To conclude this little example, we ttglve a An p/()sterlor probabilities under the

observation af being L and T respectively:

Variable Prior Posterior Probability
al =1 ad=T
al 0.7 0 1
al 0.48 0 0.569 (30)
aj 0.7 0 0.829
a? 0.8 0.667 0.834
al 0.6 0.25 0.668

We may now select some modules or components and test them. This will introduce
additional information and therefore lead to revised posterior probabilities. In order to
discuss these more general issues, we link modular hierarchies to a more general structure,
namely Bayesian network. This will allow us to draw on a well developed computational

theory and apply it to our particular problem.

4. MODULAR SYSTEMS AND BAYESIAN NETWORKS

The tree of a modular hierarchy can be considered as a Bayesian network. If we put
the system into this framework, then we can use computational procedures developed for
Bayesian networks (Jensen [9], Cowell et al. [7]). We shall study this approach in this

section and compare it to the computational methods introduced in the previous sections.

In a tree of a modular hierarchy, each node corresponds either to the system (the root
node), to a module or to a component (leaf nodes). We number the nodes of the tree
from 0 (root) to m. For any node i of the tree, we denote the descendants of ¢ (the
elements of the module) by D(i). For leaves i of course we have that D(i) = 0. Fig. 3

shows the modular tree of the example in Section 3.

Figure 3: Modular Tree of the Example.

By a we denote the vector of all Boolean variables associated with the nodes (system,
modules, components) of the tree. More generally, if .J is a subset of nodes, then a;
denotes the vector of the Boolean variables a; for j € J. To every non-leaf node :

corresponds a structure function ¢;(apy). In order to translate the structure into a



Bayesian network, we associate wit R IMHNRISAGZon & 0-1 conditional probability
matrix,
1 if QDZ(aD(Z)) =T
plailap@uy) = e 7 31
plailapg)) { 0 if ¢:(apw) = L. (31)
The prior probability p; = p(a;) is defined for every leave i. The tree, together with these

prior and conditional probabilities constitutes a Bayesian network. We refer to Cowell

et al. [7] for details about the theory of Bayesian networks.

We sketch here the necessary elements in order to understand the application of Bayesian
networks to the reliability and diagnostic of modular Boolean systems. First of all note
that we may put p(a;) = p(a;|D(i)) for leaves, since D(7) is empty in this case. With this
convention, we can define the overall multivariate distribution of all variables in the tree

by
r(d) = [Ip(ailapg), (32)

where the product is to be taken over all nodes of the tree. The system reliability is then

simply obtained from the marginal of this distribution with respect to the variable aq,
plag) = E p(a). (33)
a;,t7£0
That is, we sum out all variables in p(a), except ag. Assume furthermore, that we observe

now a certain variable a;, say that a; = L. Then we look at the conditional distribution

of the other variables, given this event;

plag,...,a;—1, L, aiy1,...,an

plag, ..., Gi—1,Qip1, ... Qpla; = L) = (a0, i1, _’ T ) (34)
plai = 1)

Hence the conditional probability is proportional to p(ag,...,a;i—1, L, ait1,...,am) which

is obtained from Equation (32) simply by putting the i-th variable a; to the value L.
In fact, the conditional probability distribution is computed from the family of proba-
bilities p(ag, ..., ai—1, L, @it1,...,an) simply by normalizing it to 1. This is also true
for any marginal of the conditional distribution: It can be obtained by normalizing the

corresponding marginal of p(ao,...,a;—1, L, a;y1,...,a,). Finally, we remark that
plag, ..., Gi—1, i, Gix1, .. amla; = L) ~ plag,...,a¢i—1,6i,6ig1,. .., 05)0(a;), (35)

where ¢ is defined by ¢(T) =0, and (L) =1

Based on these considerations, we may replace for computational purposes a probability
distribution p in a Bayesian network by any non-negative function ¢, which is proportional
to the distribution. Such non-negative functions are called potentials. According to (35),

observed events can also be represented by potentials. So Bayesian networks reduce to a



calculus of potentials, which will HERiQTpRIP li'fln%‘wséa(s;éz(flllel. A potential v refers always
to some set of variables (nodes) .J, i.e. ¢ is a non-negative function of a;, and we define
d(v) = J. We remark that a potential is just a multidimensional table of non-negative
numbers. If K C J, then we denote the projection of the vector ay by ay(. Also, if ¥ is
a potential on .J, then its marginal with respect to K C .J is obtained by summing out

the variables outside K,

¢¢K(al{) = Z ¢(a1{7 aJ—K)- (36)

aj_K
So, given the Bayesian network related to a modular hierarchy together with, for example,
some observations (tests) on certain modules or components, the problem consists of
computing marginals relative to variables a; of a product of potentials. For example for

the system reliability, we compute

(H p(az‘|aD(i))) HO} : (37)

Suppose we observe then that ag = L, i.e. the system is down. Therefore, define tg(aqg)
by o(T) = 0 and to(L) = 1. Then we are interested in the marginals relative to some

other variables «a;

(1:[ P(ai|aD(i))¢0(a0))W} : (38)

This gives, up to normalization, the posterior probability of module or component 7, given
that the system is down. There may also be several observations, not only on the system
as a whole, but on other modules. This leads to similar problems of the computation of

marginals of some product of potentials.

Although it seems straightforward to compute the marginal of a product of potentials,
in practice the product refers to 2™ different states and an explicit computation of such
a product, followed by summing out all the variables not in the marginal, is not feasible.
Therefore Lauritzen and Spiegelhalter [13] proposed a more realistic approach, based on
graphical structures like Bayesian networks. Jensen et al. [10] introduced later a more
efficient variant, which we shall present next for our modular hierarchy. For this purpose,
we transform our tree, which represents the Bayesian network into another tree. We take
the nodes 1 of the original tree, but add nodes, each of which represent a non-empty
set D(1). We introduce edges between i to D(z) and D(i) to every 57 € D(i). We add a
node (0) and link it to the original root node 0; similarly, we we add a node (j) to every
leave node j. Such a tree is called a join or junction tree. The nodes D(i) together with
the added nodes (0) and (j) for every leave node j form a set of nodes which we denote

by V, whereas the other nodes ¢ (including the original 0) form a set of nodes S. Note
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{a, a3}] [(a2)

(ad)]  [(a3)

Figure 4: Join Tree of the Example. The Circles denote the Separators in S.

that there is exactly one node i € S between a pair D(j) and D(z) of nodes of ¥V with
i € D(j). The nodes of S are called separators.

Fig. 4 represents the join tree constructed from the modular tree in Fig. 3.

Assume now, in a general setting, that on every node v = D(z) of V there is a potential ¢,
with d(t,) = D(7), and on every node 7 of S there is a potential ¢; with d(v;) = {1}. We
make further the important assumption that, if node ¢ is the separator between nodes v

and w, then

Yi(a;) =0 implies ¢,(a,) = 0,v,(a,) =0,
whenever attt = atli} = ¢, (39)

We direct first the edges in the join tree towards the root (0). We pass the messages
between nodes, starting with the leaves. Once a node v = D(7) has obtained a message,
it passes its message to its separator 7, which passes its message to w = D(3),1 € D(j).
If ¢, ¥, and v; are the potentials on the corresponding nodes of the join tree before the
messages are passed, and 7, ¥ and ¥ the contents of the nodes after the messages are

passed, then

<-
< %
V]
N
I

¥y(ay),

Pi(a) = it (a),

. P (@)} (k™)
77ij (aw) = Ibl(at{l}) )

(40)



Note that t;(a;) = ¥;(atl?) can pitp/lQuoRjeunals asate of a;. But, then by (39) the
numerator vanishes also. In this case we fix the result arbitrary to, say, 0. In the sequel,

we will write the formulas from (40) simply as follows:

¢; =y,

o = it
Pty
b = —— (41)
Yi
This message passing continues, until the root is reached. This is called the collect phase.
It can be proved, that at the end of the collect phase, we have the following marginal in

the root (0) (Jensen et al. [10]):

H(0)}
- () «

Usually we start with », = p(a;|ap ) and unit tables ¢; on the separators. Then the
last result shows that we get the reliability p(ag) at the end of the collect phase on the
root. This corresponds clearly to the reliability computation in a modular hierarchy, as
presented in Section 2. Only. instead of computing with disjoint disjunctions for structure
function, we use the tabular form of conditional probabilities and the corresponding
multiplications and summations of tables. If this were all, the approach based on Bayesian
networks would, in most cases, be computationally less efficient than the approach of

Section 2. Bayesian networks become interesting however if diagnostic problems arise.

Assume then that an observation of the system state is made (T or L). We then add
a corresponding potential @/}20> to our product. That is, the content ¢Z‘O> of root node

becomes

Pioy¥o)- (43)

Now, the edges are oriented away from the root. Then, starting with the root, messages
are passed outwards towards the leaves. The message passing mechanism is exactly the
same as in the collect phase, (41). This message passing scheme stops when all leaves
have received their message. This is called the distribute phase. Jensen et al. [10] show
that at the end of the distribute phase every node v = D(i) € V and every node i € S

contains the marginal ¥*?() or ¢+ respectively, where

HUEV ¢v
HiES 77ij .

In our case this product equals the common probability distribution, with ag instantiated

b = (44)

to the observation, say

p(Lyar, ... am), (45)



if ag = L was observed. This showrs]t%g%ri?gm{mufsn %Iﬁéar?,'zt?{) to normalization the posterior

distribution of the state of module or component 7, given the system observation.

This distribute phase corresponds clearly to the diagnostic computation discussed in
Section 3. Now the Bayesian networks become interesting. We may introduce further
observations of other modules or components besides the one of the whole system already
introduced. It suffices to take the corresponding node as a new root, direct all edges of
the join tree outwards, i.e. away from the new root, and add a new distribute phase based
on the actual contents of the node of the join tree, cf. Jensen et al. [10] and Kohlas [12].
This will give the updated posterior probabilities for all other modules and components.
This incremental procedure helps to identify the cause of a system breakdown by com-
puting posterior probabilities, selecting modules to test on the base of these posterior
probabilities and updating the posterior probabilities by a distribute phase. This can be

repeated until the faulty elements are identified with sufficient certainty.

5. CONCLUSION

The computation of the reliability of a modular system is a classical problem of reliability
theory. But there is the dual problem of diagnostic: if the failure of the system or of some
of its modules is observed, what can then be the possible cause of this observation? Which
submodules or components are down? Or also: how does this change the reliability of
the system? We show in this paper that the modular structure of the system helps also
to answer these questions. In fact, it can be used to compute the posterior probabilities
of the submodules and the components given some observation. This calculation uses the
results of the previous reliability computation. The duality of reliability and diagnostic
becomes most clear, if we consider a modular hierarchy as a particular Bayesian network.
We then get a unifying framework, in which we may compute reliability and diagnostic
information using any information or observation about module states we may obtain.
In fact, it is possible to use incremental procedures, where one observation at a time is
added. The new updated posterior probabilities may be used to decide which modules

to test next.

The unifying framework of Bayesian networks shows that reliability and diagnostic of
modular systems are two sides of the same coin. It offers well developed computation
procedures. The Bayesian network of a modular hierarchy has however a very special
form. This particular structure may help to adapt the Bayesian methods and to render
them more efficient in this particular case. This issue is still open. So are many other
issues related to the application of Bayesian networks in the study of modular systems.
For example the time dependency of the availability and reliability, related to aging,
and other features could be integrated into this framework. Also, the duality between

reliability and diagnostic can be explored in more general structures than modular system.



This is the subject of model-based T4 'i'ﬁrc])},o WRESi3%4%hds the well-known approach of

model-based diagnostic.
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