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ABSTRACT

Global competition and increased environmental concern have emphasized the signifi-
cance of process quality for an economic success. Statistical Process Control (SPC) is
considered as one of the major tools for better quality. However, there are many opinions
about the nature, the role and the results of SPC in industry. If SPC is understood and
implemented correctly, then it should not only lead to “a reduction of waste, shorter
throughput times and greater reliability of supply, but also in a better understanding of
the processes and their variation” as Does, Roes and Trip formulated it in [15]. SPC
should ultimately lead to “an operational management of the continuous improvement of
processes.” The aim of an industrial production process is to make profit, thus quality
should by measured by process profitability. From a more operational point of view high-
est quality, i.e. highest profitability, is reached by producing with high conformance to
an appropriately selected target value, and quality improvement means further reduction
of variation around the target value. Thus, understanding the inherent variation repre-
sents the key for controlling “profitability” and for being able to implement a system of
continuous “quality improvement”. The inherent variations reflect the complex relations
between everything concerning the production process and results in uncertainty about
the future development. Exactly at this point stochastics, the science of uncertainty, en-
ters the stage. For controlling profitability the relations and the resulting variations have
to be taken appropriately into account by an integrated and objective-oriented stochastic
approach.

1. INTRODUCTION

Most, if not every problem is the result of or is related to uncertainty. Stochastics, the
science of uncertainty with probability theory as its theoretical part and statistics as
its empirical part offers the necessary means for solving almost any problem as good

as possible in a quantitative and reliable way. Moreover, having identified uncertainty



as source of a problem makes stochastics the scientific key for continuous improvement
of knowledge and methods by means of the cycle observation, evaluation, modeling,

application which is represented graphically below.

The scientific cycle means that everything starts with observing a real phenomenon by
experiments. The next step is to evaluate the observed results including the inherent
random variation by scientific procedures. The evaluation leads to a quantitative model
describing the variations exhibited by the phenomenon. Once the model is available, it
can be utilized for application. Any application leads to improved knowledge and further
observations, which again are subject of evaluation, leading to an improvements of the

model, etc.
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Figure 1: Scientific Cycle.

In order to make the scientific cycle rotate field specialists and stochasticians must co-
operate. In a first step, the stochastician develops a stochastic model for the inherent
variations based on the available knowledge made available by the field specialist. The
second step consists in deriving the “statistical” procedures to be applied in order to
answer questions and to solve problems. Generally, neither model nor procedures can be
taken from standards, but have to be developed by a custom made approach implying
that the stochastician has to take over the leadership in an inter-disciplinary team. Does
et al [15] state "We will even go so far as to state that the more the statistician succeeds
in attaining the role of supervisor and intitiator instead of calculator, the better he is

able to carry out his job.”

The arising problems can be classified in

e measurement problems for determining the actual value of a quantity of interest,

e prediction problems for forecasting a future event, and



e decision problems, where different alternatives have to be compared or excluded.

Such problems and the necessity to solve them occur in any branch of science and in any

part of society explaining the universal use of stochastics models and statistical methods.

Figure 2 displays a diagram of the cyclic steps - called Product Cycle - leading to improved
or entirely new products. Each step involves many problems and decisions and is linked
to the other steps and all of them to the center represented by the process management
and product marketing. Any solution for the arising problems not taking appropriately
into account the inherent variability caused by technical, environmental, social and other
features must be judged hazardous and will lead generally to an inferior result or even to
failure. The characteristic variability of real-world phenomena is the outcome of existing

relations which connect everything with everything over space and time implying

e that there are no pure cause-effect relations,
o that generally future developments cannot be predicted with certainty, and

o that deterministic modeling of real-world phenomena is generally inappropriate.
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Figure 2: The Product Cycle.

As shown in Figure 2 the Product Cycle can be divided into a development phase and an
execution phase. Each of them poses specific problems and each of them is related to the
others. In order to arrive at appropriate solutions for any one of the existing problems,

the following points have to be considered necessarily:

1. The ultimate aim of production.



2. The inherent uncertainty.
3. The procedures to be implemented.

4. The relations between the problems and their solutions.

2. ULTIMATE AIM

From the producer‘s viewpoint the ultimate aim of producing and selling a product is
to make profit. Therefore, for a producer quality of a production process is exclusively
determined by process profitability. From the consumer‘s viewpoint, however, product
quality is of major interest. However, the criteria for evaluating product quality might be
different for different consumers. Moreover, product quality from the viewpoint of public
or social communities might again be entirely different illustrating the fact that quality

is not an absolute quantity but a relative one depending on the underlying objective.

Profitability depends on the solutions of many problems, and for evaluating the quality
of each single solution, it has to be evaluated by its contribution to profitability. Thus,
profitability serves as comparison criterion with respect to quality for the product, for the
production process, for marketing, for customer service and even for the product idea. In
order to use profitability as a quality comparison criterion it must necessarily be defined

quantitatively depending on the entirety of the solutions.

For defining profitability two cases have to be distinguished.

e Profitability in the long run.

e Profitability in the finite run.

If the number of items to be produced is not known beforehand, but the aim is to
produce and sell as many products as possible over an unknown time, then the first case
is appropriate. The second case is appropriate if the process is installed for producing
a fixed and small number number of items. Since the second scenario refers to rather

special situations, this paper is restricted to the first case.

It is assumed that the output of the production process can be divided into suitable items,
which exhibit a certain variability in their performance characteristics. Let X; denote
the performance characteristics of the ith produced item and let N(¢) denote the number
of items produced up to the time ¢ and G(¢) denote the profit derived from these items.
Then the profit per item in the long run denoted by II is defined by the limit:

_ o G
II= tl;nolo m (1)



Once (1) has been derived for a process one can compare quantitatively different designs
for the development phase and different strategies for the execution phase in order to

determine those which increase profitability.

2.1 Uncertainty and Procedures

The derivation of (1) must necessarily take into account the inherent uncertainty about
the development of any of the involved quantities. For this end the variability of the phe-
nomena in question has to be modeled by suitably selected probability distribution. The
more relevant information about a phenomenon are available, the better the probability

distribution can be chosen for describing the variability.

A first but very important step in the modeling task involves the decision about rele-
vant information. The questions to be answered refer to the relevant information and
how to make it available. An evaluation of the state of information and a program for

continuously improving it are two eminent important points.

Before the production process is started, the

e level of performance, and

e the way how to maintaining this level during the entire time of process operation

should be decided based on the available information. The first problem, although of great
significance for an economic success, is not treated here. In a series of papers Kiesmiiller
has investigated related problems (compare Kiesmiiller [22], [23], [24] and [25]).

Of course, both tasks are again closely related. If the performance level is fixed at a
too high level, the cost of maintenance will be excessively high, thus yielding a low
profitability. On the other hand, if the cost of maintenance is limited to a rather low
level then the performance level will decrease resulting again in a low process profitability.
Therefore, the appropriate performance level and the maintenance strategy can be decided

upon in a rational way only by means of (1).

The performance level for an item X produced is defined by a probability distribution
F)((e)(:t) of the relevant quality characteristics X, where 6 is a possibly multi-dimensional
distribution parameter. The process performance level is maintained over time, if for any
process segment (X1,..., Xy) and any N € IV the following two conditions with respect

to the variations are met:

N
01,...,0 a;
FE @ an) = TR (a0) (2)



F$ () = F(z;) foranyie {1,...,N} (3)

Of course, meeting strictly conditions (2) and (3) will not be possible, but the maintenance

strategy should be designed in a way that the two conditions are almost met.

From the viewpoint of process maintenance and process control four aspects are of special

interest.

o FExternal effects:

1. 1. Process input.

2. 2. Environmental process conditions.
e Internal Effects:

1. 3. Process wear.

2. 4. Process disturbance.

Variations in the process input may affect the technical performance and lead to changes
in the probability distribution of the performance characteristics. There are two ways to
overcome the problems of varying input. The most common way is to monitor and sort the
input by means of acceptance sampling plans. Another way would be to monitor the input
process and react on any variation by a change in the process itself thus compensating

the change of the input.

Generally, the technical performance of a production process depends on environmental
conditions like temperature, pressure, cleanliness. If there are too large changes in the
relevant conditions, the process performance will suffer. Generally the environmental
conditions are continuously monitored and controlled by automatic control devices, for

details compare for example Box & Lucetio [4].

Process wear and the related process aging may increase the proneness for process distur-
bances particularly for process failures or may directly worsen process performance. Wear
and aging are compensated by means of continuous maintenance policies which remove
wear and aging to a large extent by preventive process corrections before they can affect
process profitability. Any correction action is called preventive, if it is performed before
the state of the corresponding process part affects the joint probability distribution (2)
markedly. The times of preventive corrections are fixed by means of process characteris-
tics like operation time, or accumulated costs, or others which reflect the actual state of
(2) or (5) and thus, announce an approaching considerable process deterioration. This

leads to a characteristic feature of phenomena like process wear and aging. Their effects



are to some extent predictable since their development is a known function of other,

observable characteristics.

Finally, there are random process disturbances which occur like accidents. Unlike dis-
turbances due to wear and aging there are no observable features which announce an
approaching random disturbance. Their occurrence is independent of process character-
istics like operation time, cost or number of produced items. The process proneness to
disturbances is modeled by the disturbance intensity function, which sometimes is called

hazard function of a lifetime distribution denoted by:

A1) (4)

At time of production #; the intensity function A(¢) completely determines the distribution
of the time 7, until the next occurring disturbance. The distribution function of =, is

given by:

—fyA(t)dt
Gry(y) =1—e " (5)

Of course, one aim of process design is to reduce the frequency of random process dis-
turbances. However, experience shows that there is no production process without oc-
casionally occurring disturbances. Generally, process disturbances cause a sudden and
substantial change in the joint distribution (2) leading to a considerable decrease of pro-
cess profitability. As these disturbances cannot be prevented, they must be detected early
enough by process monitoring in order to limit the loss of profit. Process monitoring may
be performed by observing characteristics which reflect the actual form of (2), for instance

the process output {X;}.

2.2 Relations

The different steps of a product-cycle are related to and affect each other. However,
generally it would be too difficult if not impossible to solve the existing problems simul-
taneously. One way out of this difficulty is to answer the questions iteratively, where the
solution on step k takes into account the preceding solutions on step 1 to step £ — 1. For
example, although maintenance and process control are closely connected, the strategy
to select independently from process control in a first step an appropriate maintenance
policy and in a second step, taking into account the results of the maintenance policy, an

appropriate policy for process control yields an almost optimal result as shown in Frahm

[19].

Taking into account the relations assumes that the impact of e.g. product design, process



design, warranty policy, etc. on the variation exhibited during the various process stages
and model them by a joint probability distribution of all relevant features. One prere-
quisite for arriving at appropriate solutions is to adopt statistical thinking which has been
advocated for many decades by the late Edward W. Deming. Statistical thinking means
to recognize that random variations generated by stochastic relations cause the problems
and any improvement must be based on a thorough investigation and stochastic modeling

of the relevant relations.

The main topic of this paper is statistical process control. Therefore, it is assumed that
the other steps of the production cycle have been successfully accomplished and hence
only the results of these steps have to be considered, because process maintenance has an
immediate impact on statistical process control, the former is briefly treated in the next

section.

3. PROCESS MAINTENANCE
As mentioned earlier, process wear has different effects which have to be modeled differ-
ently. The gradually developing dependency of the output X; and its gradually developing

deviation from target is modeled by 6(¢). The gradually increasing disturbance intensity

is modeled by A(?).

The two standard methods of process maintenance are on the one hand automatic process
controllers (see for instance Box & Lucefio [4] and Dumitrescu [17], [16]), which contin-
uously monitor the relevant process parameters and automatically adjust them, and on
the other hand preventive replacements/renewals (see for instance Beichelt [2], [3]). Both
types of procedures aim at keeping 6(¢) and A(¢) for all ¢ close to their respective tar-
gets Oy and Ag. Therefore, assuming that an appropriate process maintenance has been

implemented implies:

=
&

0o for any t >0 (6)
At) ~ Ao foranyt >0 (7)

From (7) it immediately follows that the disturbance intensity can be looked upon as
constant implying that the exponential distribution with parameter A\q is an appropriate
model for the random variable 7. Assuming a different distribution of 7 as for example
in Rahim [28] and Rahim & Banerjee [29] means that the maintenance policy does not

remove wear and aging sufficiently well.

Of course, (6) is only guaranteed as long as there is no random disturbance. Therefore,



it remains to solve the problem of detecting and removing the effects of random dis-
turbances, which in general cannot be compensated by automatic process controllers or
preventive corrections. Not to remove disturbances and to wait until the next preventive

maintenance action could last too long and therefore may cause a considerable

4. STATISTICAL PROCESS CONTROL
The problem with random disturbances is to detect their occurrence. Once they are
detected, it is assumed that they can be removed completely. From (7) and (6) it follows

that removing a process disturbance can be looked upon as a process renewal.

For detecting a disturbance a process monitoring policy has to be implemented, i.e.a
directive fixing the actions which have to be performed aiming at detecting any occurred
disturbance. By its implementation the monitoring policy becomes a part of the process.
In order to compare different monitoring policies we need an indicator reflecting their

contributions to overall process profitability.

Any monitoring policy in the framework of statistical process control for detecting the
occurrence of random disturbances is given by {(%;, n;,v:) tien, where ¢; is the ith moni-
toring timepoint, n; is the sample size at time ¢;, and ~; is the decision rule. For a more
detailed presentation see v. Collani [5]. Here, we restrict ourselves to periodic monitoring

policies, i.e.:

tiy1—t;i=h for 1=1,2,--- with £ =0 (8)

with fixed sample size n; = n. Aim of sampling at time ¢; = ¢h is to decide whether or
not the process parameter (¢) is still on target or has been shifted by the occurrence of a
disturbance. By selecting a suitable shift 8, the decision problem is solved by comparing

the two alternatives:
Ho: 6(t) =6 (9)
Hy: 0(t)=06y + 6, (10)
Because of the assumptions, it makes sense to use only one fixed decision function
vi=v€l with ~v:{(Xy,....,X,)}—={0,1} (11)

in all decision points ¢;, + = 1,2,..., where I" denotes the set of admissible decision

functions. The error probabilities when using 4 are denoted by

= P(y=1|0) (12)
= P(y=0|00+0) (13)

Now we are in a position to define the monitoring policy investigated here.



Definition 1 A simple periodic monotoring policy for detecting the occurrence of a ran-
dom disturbance is given by three quantities (h,n,v), and the following rule: Take every
h € IR™ hours of operation a random sample of size n € INg with 0 < n < hv (where
v denotes the number of produced items per hour) from the process oulpul, and decide
by means of the decision function v € I' on the actual state of the system. In case the
decision is in favor of a disturbance an alarm is released, the process is inspected and the

disturbance is removed in case of a true alarm. Otherwise the process is left alone.

5. PROCESS PROFITABILITY

In order to compare different monitoring policies an indicator is needed reflecting the
policy’s contribution to process profitability. Profitability is defined as the long run
profit per item produced which has to be derived taking into account the relevant random

interrelations between the single parts of the production process.

Let G/(m) be the gain derived from the first m items produced, then

IT = lim M (14)

m—>00 m

defines the long run profit per item. Clearly, II is a function of process design, process
maintenance, monitoring policy, customer service, and more generally of process man-
agement and product marketing. However, aiming at designing only monitoring policies
for detecting random disturbances, the other process features are looked upon as fixed,

i.e. Il is considered here only as function of the monitoring policy, i.e.
I =1I(h,n,).

The problem is to determine an optimal monitoring policy.

Definition 2 A monitoring policy (h*,n*,v*) is called optimal with respect to 11 within
the set of admissible monitoring policies I' = {(h,n,v)}, if

H(r*,n*,~") > ll(h,n,v) forany (h,n,v) €Tl

In order to find an explicit expression for Il the technical and the economic situation has

to be described quantitatively.

The economic situation with respect to the output is given by:

gr = expected profit derived from one item produced on target
g1 = expected profit derived from one item produced after occurrence
of a disturbance disturbance



Of course, gr and gy are complex quantities reflecting a large number of different process
and product features including the inherent variations which depend on the state of the
process. For instance the variations of the item quality characteristic X are different

when producing on target and when producing off target.

The simple monitoring policy includes three actions:

e sampling,
e intervention after false alarm called inspection, and

e intervention after true alarm called renewal.

An economic model describing these actions is given by:

a*n = expected cost for taking and evaluating a sample of size n,
e* = expected cost of an inspection after a false alarm, and
b* = expected benefit per renewal after a true alarm.

The three parameters a*, ¢* and b* are called economic key parameters of a production

process.

After a disturbance is detected, the process is renewed. Consecutive renewals divide the
process in stochastically equivalent parts which are called renewal cycles. The following

random variables refer to one renewal cycle:

A;r = number of monitoring actions when operating on target

Ar = number of false alarm

Arr = number of monitoring actions after the occurrence of a disturbance
N = number of produced items

G = profit derived from the N produced items

With these quantities, the following expectations are obtained:

E|G] = g E[Ar + Apf]hv + 0" — €*E[AF] — a*nE[A; + Aff]
E[N] = E[A[ + A[[]hv

Hence

E[G] 1 {b*—e*E[AF]

M(h,n,v) = 4 = = _a 1
(hn. ) -+ an (13

E[N] ~ hv

Any change of a relevant part of the process may be judged beforehand by means of the
objective function (15). Moreover, (15) may serve in order to optimize and continuously

improve design and methods displayed in the product cycle.



6. OPTIMIZATION

It turns out that from the viewpoint of numerical optimization the objective function(15)
has rather ugly properties. One of them is on the one hand the flatness of the objective
function in an environment of the optimal solution and on the other hand the steep
descent which can be observed when the flat area around the optimal solution is left.
The first property implies that an approximate solution is almost as good as an exact
solution of the optimization problem. The second property shows that not adopting the

integrated and objective-oriented approach may lead to rather inferior solutions.

Besides the numerical problems one has to solve the problem of a user-friendly presen-
tation of optimal monitoring policies. The number of input parameters directly entering
the objective function II makes a tabulation of the optimal monitoring policies impos-
sible. However, a tabulation of the economic monitoring policies is an almost necessary
condition for competing successfully with the existing “statistical” standards like for in-
stance [SO 8258 [21]. Therefore, one major problem is to find an approximation which is
sufficiently accurate and which allows the determination of optimal solutions by means

of simple tables and explicit formulas.

6.1 Approximate Optimal Sampling Interval
In traditional control charting, there is no way to rationally fixing the sampling interval.
This is an major deficiency as it turns out that an inappropriate sampling interval may

lead to a sharp decrease of process profitability.

The integrated and objective-oriented approach reflected by (15) enables the derivation

of an explicit formula for computing an approximately optimal sampling interval h*.

For any given sampling plan (n,¥), the approximately optimal sampling interval iL*(n, ¥)

is given in v. Collani [7].

b* (1— ﬁ)+oz
A a+—n+\/ 105(1 8)
h*(n,v) = E[r] (16)

where « and 3 denote the error probabilities for the sampling plan (n, ).

In industrial environments the approximation (16) is as good as the exact optimal solution

because of two reasons:

e The objective function (15) is rather flat in an environment of the optimal solution.

e The optimal sampling interval A* is generally taken in practice only as a guideline.



The actually used sampling interval is rounded and adjusted to the needs of the

respective situation.

Formula (16) may be taken to complete in an appropriate way any control chart, e.g.a
control chart taken from ISO 8258 and given by the sampling plan (n,v). However, the
objective function (15) also enables the determination of an optimal sampling plan. In
v. Collani [7] a methodology is developed for determining approximately optimal sampling

plans (72*,4*) for various situations with respect to the underlying distribution model.

6.2 Approximately Optimal Sampling Plan

In v. Collani [7] it is shown under rather general conditions that the optimal sampling
plan (n*, k*) may be approximately determined by minimizing a loss function L(n,k),
which is obtained as a limit of the optimum of (15) when Ak tends to 0. Actually, L(n, k)
represents the losses due to not detecting immediately a disturbance (first factor) and

due to sampling and to false alarms (second factor).

Lin, k) = (#(nk) _ %) - (an + a(n, k) (17)

a*

where a = %
By means of L(n,k) the above mentioned major problem is solved at least with respect

to the sampling plan (n, k):

e There is only one economic parameter and, depending on the model, only few
distributional parameters explicitly entering L(n, k), thus allowing a comprehensive

tabulation of approximately optimal sampling plans for many situations.

For deriving approximately optimal sampling plans two of the three economic key param-
eters must be necessarily known. These are:

sampling cost a*

inspection cost e*

If sampling is expensive compared with inspections yielding a large value of the parameter
a in (17), then the optimal sample size is small since a larger false alarm rate is tolerable
from an economic point of view. On the other hand, if sampling is cheap compared
with an inspection yielding a small value of a, the optimal sample size gets larger and

consequently the false alarm rate smaller.

6.3 Normal, one-sided case, fixed variance

The relevant parts of the process are the quality characteristic X, its distribution, the



target value and the effect of a disturbance. The one-sided normal case with fixed variance
is selected, if the quality characteristic X is a measurable variable with a one-sided
specification where the disturbance affects only the process mean given by the expectation
FE[X] but not the process variability given by a constant variance V[X], which can be
assumed as being known.

quality characteristic Xie(p(t),o?)
distribution N(u(t),o?)

target value Lo

effect of disturbances P(u(t) =po+do)=1

The following process input parameters have to be specified by the user:

target value Lo
variance o?
shift parameter )

The decision function is completely determined by the so-called control limit ¢ and given
by the following well-known expression where (Xi,..., X)) denotes the sample of size n

and X the arithmetic mean of the sample.

0 for %\/ﬁ <c
1 for N

e

(18)

7(X1,---,Xn)={

The approximate optimal sampling plan (n*, ¢*) is obtained in the following simple way.

e Calculate ag = Z—: . 5% and take for given ag the quantities y and z from Table 1 and

set

2
= closest positive integer to (%) (19)
&=z (20)

Below a detail of Table 1 is displayed.

| ao | 0.0001  0.0005 0.0010  0.0050  0.01 |

y || 4.70283 4.16945 3.91402 3.23682  2.89647
z || 3.47853 3.02028 2.80396 2.214127 1.96448

Table 1: Normal, one-sided case, fixed variance

6.4 Normal, two-sided symmetric case, fixed variance

This case (see v. Collani [5], [6]) is assumed when the quality characteristic is measurable
with two specifications and when a disturbance affects only the process mean E[X] but
not the process variance V[X] which consequently is assumed to be known. Moreover,

negative and positive shifts are equally probable.



quality characteristics Xi(p(t),0?)

distribution N(u(t),o?)

target value Lo

effects of disturbances P(u(t) = po—do)=0.5
P(u(t) = po + d0) =0.5

In this case the same set of process input parameters have to be specified as in the

preceding case.

target value Lo
variance o?
shift parameter )

The decision function is given by:

%;ﬂo\/ﬁ
X;HO\/H

< c
21
o (21)

(X X,) = 0 for
AL [ | for

The approximate optimal sampling plan (n*,¢*) can be determined as follows.

at 1

o Calculate ag = % - & and take for given ag the quantities y and z from Table 2 and

set:

2
= closest positive integer to (%) (22)
& o=z (23)

where a detail of Table 2 is given below.

| ao | 0.0001  0.0005 0.0010 0.0050  0.01 |

y || 4.91206 4.40830 4.16945 3.54520 3.23682
z || 3.66052 3.22443 3.02027 2.49551 2.24127

Table 2: Normal, two-sided symmetric case, fixed variance

6.5 Normal, two-sided asymmetric case, fixed variance
The process characteristics are the same as in the preceding case except for the shifts
and frequencies of negative and positive shifts after occurrence of a disturbance which
are now assumed to be not equal.

quality characteristics Xi(p(t),0?)

distribution N(u(t),o?)

target value Lo

effects of disturbances P(u(t) = po — 610) = w
P(u(t) = po+ d20) =1 —w

The corresponding set of process input parameters includes the shift parameters and the

probability w of a negative shift.



target value Lo

variance o
negative shift parameter 01
positive shift parameter g

negative shift probability w

In this case the decision function takes into account the asymmetry of the shifts by

admitting two different control limits ¢; and ¢;.

0 for — < X_“O\/E < ¢y

[

X—po X—po
1 for o/ < e or TR/ >

The approximate optimal sampling plan (72*,¢*) is determined in a similar way as in the

preceding cases:

e Calculate ag = ’;—: : 5% and A = g—; and take for given ag, A and w the quantities y,

z1 and z, from Table 3 and set

. . . 2
n* = closest positive integer to (%) (25)

where a detail of Table 3 is given below:

A=02 , w=02
ap [ 0.0001  0.0005 0.0010 0.0050  0.01
y [|9.97406 7.22355 6.10928 4.25170 3.62780
z | 279716 2.29700 2.07814 1.57406 1.35386
zp || 5.42927 4.09091 3.55880 2.59313 2.21450

Table 3: Normal, two-sided asymmetric case, fixed variance

6.6 Normal, two-sided symmetric case

This case is similar equal to the second case except for the fact that a disturbance affects
not only the process mean E[X] but also the process variability V[X]. For details see
v. Collani[8] and v. Collani & Treml [11]. The process characteristics are the following.

quality characteristics Xie(p(t), o2(¢)

distribution N(u(t),o?(t))

target value for process mean Lo

target value for process variability ol

effects of disturbances P(u(t) = po — d100) = 0.5
P(u(t) = po + d1009) = 0.5
P(o(t) = (8,00)%) = 1.0

The set of process input parameters to be specified by the user is given below.



target value for process mean Lo

target value for process variability ol
shift parameter for process mean 601 >0
shift parameter for process variance 9y > 1

Instead of using a (X, S?)-decision rule, as proposed e.g. by the ISO standard [21], the

following simple decision function is recommended.

0 for %Zn: (X‘;O““O)2<c
/')/(X17 P 7XTL) — =1

Ut LF (Sem) s (28)

For determining an approximately optimal sampling (n*, ¢*) the following algorithm can

be used.

e Calculatea = Z—: and take for given a, §; and d, the approximately optimal sampling

plan n* and ¢ from Table 4.

Below there is a detail of Table 4.

09 = 2.25
601 00 05 1.0 15 20 25
a

0.0001 12 11 9 7 5 4
3.25 3.40 3.80 4.44 5.50 6.48

0.0005 9 9 7 6 4 3
3.28 3.31 3.80 4.23 5.46 6.72

0.0010 8 8 6 5 4 3
3.25 3.28 3.84 435 5.09 6.24

0.0050 6 ) 4 4 3 2
3.09 3.39 3.90 4.05 4.93 6.56

0.0100 4 4 4 3 2 2
3.37 3.40 3.51 4.24 5.64 5.87

Table 4: Normal, two-sided and symmetric case

6.7 Poisson case
If item quality is determined by the number of nonconformities then the Poisson model is
often appropriate. For details compare v. Collani & Drager [13] In this case the following
process characteristics are obtained.

quality characteristics Xe(u(t))

distribution Po(u(t))

target value o
effect of disturbances P(u(t) = dpo)) = 1.0



The set of process input parameters to be specified by the user is as follows.

target value Lo

shift parameter d>1
In this case the decision function is based on the total number of nonconformities in the
sample:

’Y(Xh"',Xn) —

{ 0 for Y, ,X,<c (29)

1 for Yo Xi>c
The approximately optimal sampling plan (n*, ¢*) is obtained by means of Table 5.

o Calculate a = Z—: : Ml_o and A = i—; and take for given a and A the quantities y and

z from Table 5. Then set

= closest positive integer to 5—0 (30)

& = z (31)

where a detail of Table 5 is given below.

Al 1.50 2.00 3.00 4.00 5.00
0]

0.0005 59.237 21.646 7.832 4.493 2.832
79 36 18 13 10

0.0010 49.792 18.757 7.031 4.223 2.580
66 31 16 12 9

0.0050 26.953 12.402 4.954 2.848 2.107
35 20 11 8 7

0.0100 18.057  9.433 4.127 2.566 1.846
23 15 9 7 6

0.0500 0.000  3.455 2.497 1.580 0.964
0 ) 5 4 3

Table 5: Poisson case

6.8 Binomial case
If each item can be classified either as conforming or nonconforming then the binomial
model is used for the item quality characteristic. This case is investigated in detail in
v. Collani & Dréger [12]. The process characteristics are the following.

quality characteristic X:(p(t))

distribution Bi(1,p(t))

target value Po
effect of disturbances P(p(t)=p1) =1.0

The set of process input parameters to be specified is given below.



target value Po
shifted value P1 > Po

Similar as in the Poisson case the number of nonconforming items in the sample is used

for making a decision.

_Jo for Y Xi<c
’Y(le""X”)_{ I for YL, Xi>c

The approximately optimal sampling plan (n*,¢*) is determined in the following way.

(32)

e Calculate a = Z—: and A = p; — po and take for given a, A and py the approximately

optimal sampling plan (n*, ¢*) from Table 6.

where a detail of Table 6 is displayed below.

A =0.05
po || 0.0  0.02 0.04 0.06 0.08
a
0.0005 (85,3) (127,6) (158,11) (201,18) (227,25)
0.0010 (59.2)  (87,4) (119.8) (149,13) (157,17)
0.0050 (5,00 (29,1) (37.2)  (42.3)  (35.3)
0.0100 (4,0) (8,00 (11,0)  (0,0) (0,0)

Table 6: Binomial case

7. CONCLUSION

A quantitative model of the relevant technical and economical features of a process and
their relations constitutes a necessary condition for designing, maintaining and continu-
ously improving a manufacturing process and predicting its profitability. Such a model

taking into account the entirety of features including the inherent uncertainty enables

e to judge any relevant process part with respect to its contribution to profitability,
e to react faster and in an appropriate way to changes with respect to relevant parts,

e to evaluate new technological developments with respect to their usefulness.

There is, however, also a problem which should not be concealed. The above outlined
approach for improving process profitability assumes sufficiently educated experts in
stochastic modeling. Scientists who are able to investigate, analyze and model the laws or
the structure of uncertainty. At many of our universities mathematicians are educated in

probability theory and stochastic processes and often it is assumed that either of the fields



are part of mathematics. Besides, there are statisticians who are taught how to select,
apply and to some extent also to develop statistical methods for estimating and testing
purposes, where statistics is considered as a mere methodology for handling large data
sets. Unfortunately, neither mathematics (which is used in stochastics as the appropriate
language) nor a statistical methodology are sufficient to solve the problems associated

with the aim of modeling profitability for a purposeful planning of future developments.

The late W. Edward Deming notes in his masterpiece “Out of the Crisis”, p. 132:

“The teaching of pure statistical theory in universities, including the theory
of probability and related subjects, is almost everywhere excellent. Appli-
cation to enumerative studies is mostly correct, but application to analytic
problems - planning for improvement of tomorrow’s run, next years crop - is

unfortunately, however, in many textbooks deceptive and misleading.”

Besides mathematics as language, computers are indispensable tools for solving the re-
lated computational problems. However, for solving the actual problems not computers,
but experts in modeling uncertainty are necessary. In his book Deming (p.133) throws
some light on the relation between statistics (or as I prefer to call it stochastics) and the

computer:

“People with master’s degrees in statistical theory accept jobs in industry and
government to work with computers. It is a vicious cycle. Statisticians do
not know what statistical work is, and are satisfied to work with computers.
People that hire statisticians likewise have no knowledge about statistical
work, and somehow suppose that computers are the answer. Statisticians and

management thus misguide each other and keep the vicious cycle rolling.”

What is needed for any manufacturing process is a model of profitability from the very
beginning of its operation as main declaration of the relevant performance characteristics.
The model should use up any available information and should be continuously improved
with any additional knowledge obtained during process operation. The modeling process
should be based on a purposeful data recording and data processing. It enables rational

decisions on any technical and managerial question related to the process in question.



References

1]

[10]

[11]

[12]

[13]

R.E.BARLOW and F.PROSCHAN, Statistische Theorie der Zuverlissigkeil.
Harri Deutsch, Frankfurt/Main (1978).

F.BEICHELT, Zuverlassigkeit und Instandhaltungstheorie. Teubner Verlag,
Stuttgart (1993).

F. BEICHELT, Optimum Replacement Policies Under Stochastics Repair Cost De-
velopment. Economic Quality Control 12, 173-181 (1997).

G.E.P.BOX AND A.LUCENO, Statistical Control by Monitoring and Feedback
Adjustment. Wiley, New York (1997).

E.v.COLLANI, The Economic Design of Control Charts. Teubner, Stuttgart
(1989).

E.v.COLLANI, A Simple Procedure to Determine the Economic Design of an
X-Control Chart. Journal of Quality Technology, 18/3, 145-151 (1986).

E.v. COLLANI, Determination of the Economic Design of Control Charts Sim-
plified. In: Eds. K.S. Al-Sultan & M.A.Rahim: Optimization in Quality Control,
Kluwer, Boston (1997).

E.v.COLLANTI, Control of Production Processes Subject to Random shocks. An-
nals of Operation Research 91, 289-404 (1999).

E.v.COLLANI and CH. WEIGAND, Economic Machine Adjustment in the Case
of Product Screening. Statistical Papers 33, 171-184 (1992).

E.v.COLLANI, EM.SANIGA and CH. WEIGAND, Economic Adjustment
Designs for  Control Charts. IIFE Transactions, 26, 37-43 (1994).

E.v.COLLANI and J. TREML, Control of a Two-Dimensional Process-Quality-
Indicator by means of a Screening Procedure. Economic Quality Control 8, 167-194
(1993).

E.v.COLLANI and K.DRAGER, A Simplified Economic Design of Control
Charts for Monitoring the Nonconforming Probability. Economic Quality Control
10, 231-276 (1995).

E.v.COLLANI and K. DRAGER, The Economic Design of Control Charts for
Monitoring the Number of Nonconformities. Economic Quality Control 12, 15-46
(1997).



[14] E.v. COLLANI and V.DRAGALIN, A Simplified Economic Design of CUSUM
Charts for Monitoring a Normally Distributed Process Mean. Allgemeines Statistis-
ches Archiv (ASTA) 84, 217-293 (2000).

[15] R.J.M.M.DOES, K.C.B. ROES and A. TRIP, Statistical Process Control in In-
dustry. Kluwer Academic Publishers, Dordrecht (1999).

[16] M. DUMITRESCU, On the Robustness of MCEWMA Control Charts for AR(1)
Processes. Economic Quality Control 10, 223-230 (1995).

[17] M. DUMITRESCU, Mathematical Basis of Process Monitoring. ASU Technical Pa-
per Series 98-6, Quality and Reliability Engineering Group, Arizona State University
(1998).

[18] A.J.DUNCAN, The Economic Design of X Control Charts Used to Maintain Cur-
rent Control of Process. Journal of the American Statistical Association 51, 228-242
(1956).

[19] P. FRAHM, Combining Economic Design of X-Charts and Block Replacement Un-
der Weibull Shock Models. Economic Quality Control, 10/2, 77-115 (1995).

[20] C.HO and K.E. CASE, Economic Design of Control Charts: A Literature Review
for 1981-1991. Journal of Quality Technology, 26/1, 39-53 (1994).

[21] International Standard ISO 8258:1991 (E), Shewhart Control Charts. Geneve,
Switzerland (1991).

[22] G. KIESMULLER, Controlling a Process with Three Different States. Advances
in Stochastic Models for Reliability, Quality and Saftey. Birkhauser Verlag, Boston
(1998).

23] G. KIESMI"JLLER, Most Profitable Process Control - An Integrated Approach.
Feonomic Quality Control 14, 5-18 (1999).

24] G. KIESMULLER, Most Profitable Inspection Policies. Economic Quality Control
14, 65-83 (1999).

25] G. KIESMI"JLLER, Most Profitable Sampling Policies. Fconomic Quality Control
14, 105-122 (1999).

[26] T.J.LORENZEN and L.C. VANCE, Th Economic Design of Control Charts: A
Unified Approach. Technometrics 28, 3-10 (1986).

[27] D.C. MONTGOMERY, The Economic Design of Control Charts: A Review and
Literature Survey. Journal of Quality Technology, 12, 75-87 (1980).



[28] M.A. RAHIM, Economic Design of X Control Charts Assuming Weibull In-Control
Times. Journal of Quality Technology, 225, 296-305 (1993).

[29] M.A.RAHIM and P.K. BANERJEE, A Generalized Model for the Economic De-
sign of z-Control Charts for Production systems with increasing Failure Rate and

Early Replacement. Naval research Logistics, 40, 787-809 (1993).






