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Abstract

We analyse the long-run availability of a technical device subjected to inspections and
repair. All statistical distributions involved are general. In order to describe the ran-
dom behaviour of the system, we employ a stochastic process endowed with stationary
measures satisfying coupled Hokstad-type differential equations. The solution proce-
dure is based on the theory of sectionally holomorphic functions. As an example, we
consider the particular case of Coxian inspections.
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1 Introduction

Statistical Reliability Engineering is a topic of particular interest in Operations Research
(see, for example, Shaked et al. (1990)). In this paper we introduce a (new) methodology
to analyse the stochastic behaviour of a renewable T-cell (a technical device that requires
a man-machine interaction) subjected to general statistical distributions with respect to
failure, inspection and repair. Our method is also applicable to modified systems.

Innovations in the field of microelectronics and micromechanics have enhanced the in-
volvement of “smart” electro-mechanical devices in all kind of engineering applications
as described by Brandin (1996). Unfortunately, no device is completely reliable. The
usual “bugbears” are software failures (Gaskill & Went (1996)), common-cause failures
(Dhillon & Yang (1997) and wear-out (Birolini (1994)). Often, a technical device requires
a man-machine interaction to reveal (detect) “hidden” failures (Gnedenko et al. (1994)).
For instance, a fault-tolerant electro-optical device requires regular inspections to ascer-
tain the performance level of the unit. Therefore, human inspections are indispensable in
attempts at increasing the reliability, availability, quality and safety of operational plants.

∗Department of Decision Sciences, University of South Africa, P.O. Box 392, Pretoria 0003, South
Africa, email: evanderperre@yahoo.com

147



148 EJ Vanderperre

The reliability of complex engineering systems operating in a Markov environment, sub-
jected to random inspections, perfect repair (Gertsbakh (1989)) or instantaneous replace-
ments, has been analysed by several authors (see, for example, Dieulle (2002) and Mazum-
dar (1970)). In this paper we consider a T-cell, subjected to random inspections and
perfect repair.

Note that our T-cell is less general with regard to the structure of the e-system presented
by Dieulle (2002) and Mazumdar (1970). On the other hand, the statistical structure
of our T-cell is less restrictive, since we allow general failure, inspection and repair time
distributions.

In order to analyse the long-run availability of the T-cell, we introduce a stochastic process
endowed with stationary measures satisfying general Hokstad-type differential equations.
The solution procedure is based on the theory of sectionally holomorphic functions. Fi-
nally, as an example, we consider the particular case of Coxian inspections.

2 Formulation

Consider the T-cell operating in a random environment. The T-cell satisfies the usual
conditions, i.e. independent, identically distributed random variables with finite mean
and variance. The failure-free time of the T-cell, denoted by f , is assumed to have a
general cumulative distribution function F (·), F (0) = 0.

Suppose inspections are performed at time instants tn, n = 1, 2 . . . where t0 = 0. The inter-
inspection times, called cycles, are supposed to be independent, identically distributed
random variables with distribution H(·), H(0) = 0. The inspection cycle is denoted by h.
Note that the inspection process is assumed to end after detection of the failed T-cell and
restarts after the instant of a repair completion. The repair time of the T-cell, denoted
by r, has a general cumulative distribution function R(·), R(0) = 0. Finally, we assume
that f, h, r are statistically independent. Characteristic functions may be formulated in
terms of a complex transform variable. For instance,

Eeiωr =
∫ ∞

0
eiωx dR(x), Imω ≥ 0.

Observe that

Ee−iωr =
∫ 0

−∞
eiωx d

{
1−R((−x)−)

}
, Im ω ≤ 0.

The corresponding Fourier-Stieltjes-transforms are called dual transforms. Without loss
of generality with regard to F and R, we may assume that F , R are Lebesgue-absolutely
continuous with bounded density functions (in the Radon-Nikodym sense) defined on
[0, ∞). In addition, we assume that

(i) H ′ is of bounded variation on [0, ∞), and

(ii) H ′′ exists on (0, ∞).
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Condition (i) implies that Eeiτh, τ ∈ R, is Lipschitz continuous (L-continuous) at infinity,
i.e.

|Eeiτh| = O

(
1
|τ |

)
, |τ | → ∞.

See Keilson (1965, page 57).

In order to describe the random behaviour of the T-cell, we employ a stochastic process
{Nt, t ≥ 0} with discrete state space {A, B, C} ⊂ [0, ∞), characterized by the following
events:
{Nt = A}: The T-cell is operative at time t.
{Nt = B}: The T-cell is down at time t.
{Nt = C}: The T-cell is under repair at time t.

Note that state B corresponds to an unrevealed failure of the T-cell. A (vector) Markov
characterization of the process {Nt} is piecewise and conditionally defined by:

{(Nt, Xt, Yt)} if Nt = A, i.e. if the event {Nt = A} occurs, where Xt de-
notes the remaining failure-free time of the T-cell being op-
erative at time t and where Yt denotes the remaining inspec-
tion cycle being in progress at time t.

{(Nt, Yt)} if Nt = B.
{(Nt, Zt)} if Nt = C, where Zt denotes the remaining repair time of

the T-cell being under progressive repair at time t.

The state space of the underlying Markov process is given by

{(A, x, y), x ≥ 0, y ≥ 0}
⋃
{(B, y) , y ≥ 0}

⋃
{(C, z), z ≥ 0} .

Next, we consider the T-cell in stationary state (the so-called ergodic state) with invariant
measure

{PK ;K = A,B,C} ; ΣK PK = 1,

where
PK := P {N = K} := lim

t→∞
P {Nt = K |N0 = A} .

Finally, we introduce the measures

PA(x, y) dxdy := P {N = A, X ∈ dx, Y ∈ dy}
:= lim

t→∞
P {Nt = A, Xt ∈ dx, Yt ∈ dy |N0 = A} ,

PB(y) dy := P {N = B, Y ∈ dy}
:= lim

t→∞
P {Nt = B, Yt ∈ dy |N0 = A} , and

PC(z) dz := P {N = C, Z ∈ dz}
:= lim

t→∞
P {Nt = C, Zt ∈ dz |N0 = A} .

Note that, for instance, that

PA =
∫ ∞

0

∫ ∞

0
PA(x, y) dxdy =

∫ ∞

0

∫ ∞

0
PA(x, y) dy dx.
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2.1 Notation

The long-run availability of the T-cell, denoted by A, is defined by

A := lim
T→∞

1
T

∫ T

0
P {Nt = A | N0 = A} dt.

Hence, A ≡ PA. The indicator (function) of an event E is denoted by 1E . The real
line and the complex plane are denoted by R and C with obvious superscript notations
C+,C−. For instance, C+ := {ω ∈ C : Im ω > 0} . Finally, we introduce the notations
λ+

H(τ), λ+
F (τ), λ−F (τ), λ+

R(τ), τ ∈ R, where for instance,

λ+
F (τ) :=

{
Eeiτf−1

iτEf , if τ 6= 0

1, if τ = 0.

and

λ−F (τ) :=

{
1−Ee−iτf

iτEf , if τ 6= 0

1, if τ = 0.

3 Differential equations

In order to determine the steady-state probability density functions (hence forth called
the p-functions), we first construct a system of coupled steady-state differential equations
based on Hokstad’s supplementary variable technique, (see, for example, Attahiru and
Srinivasa (2000)). For x > 0, y > 0, z > 0, we obtain(

− ∂

∂x
− ∂

∂y

)
PA(x, y) = PA(x, 0)

dH
dy

(y) + PC(0)
dH
dy

(y)
dF
dx

(x),

− d
dy
PB(y) = PA(0, y),

− d
dz
PC(z) = PB(0)

dR
dz

(z).

4 Solution procedure

It should be noted that the above equations are well adapted to an integral transforma-
tion. The integrability of the p-functions and their corresponding derivatives implies that
each p-function vanishes at infinity irrespective of the asymptotic behaviour of the under-
lying density functions of h, f, r. Applying a routine Fourier-transform technique to the
differential equations reveals that

i(ω + η)E
(
eiωXeiηY 1 {N = A}

)
+

(
1−Eeiηh

) ∫ ∞

0
eiωxPA(x, 0)dx

+ iηE
(
eiηY 1 {N = B}

)
+ PB(0) = PC(0)EeiηhEeiωf (1)

and iζE
(
eiζZ1 {N = C}

)
+ PC(0) = PB(0)Eeiζr. (2)
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Substituting ζ = 0 into (2) and η = 0 into (1) yields

E
(
eiζZ1 {N = C}

)
= PC(0)Erλ+

R(ζ), Im ζ ≥ 0

and E
(
eiωX1 {N = A}

)
= PB(0)Efλ+

F (ω), Im ω ≥ 0

Since PB(0) = PC(0), we have that PC = PB(0)Er and PA = PB(0)Ef . Substituting
ω = −τ , η = τ for some τ ∈ R into (1) yields the Hilbert equation

ψ+(τ)− ψ−(τ) = ϕ(τ), τ ∈ R, (3)

where

ψ+(τ) :=

{
iτ

Eeiτh−1
E

(
eiτY 1 {N = B}

)
− PB(0), if τ 6= 0,

−PB(0) + PB/Eh, if τ = 0,

ψ−(τ) :=
∫ ∞

0
e−iτxPA(x, 0)dx,

ϕ(τ) := PB(0)K (τ) , and

K(τ) :=

{
Ee−iτf−1
Eeiτh−1

Eeiτh, if τ 6= 0,
−Ef/Eh, if τ = 0.

Note that by the Riemann-Lebesgue theorem (see, for example, Apostol (1998)),

lim
|τ |→∞

ψ+(τ) = lim
|τ |→∞

ψ−(τ) = lim
|τ |→∞

ϕ(τ) = 0.

Hence, ψ+, ψ− and ϕ are continuous on R and at infinity. Equation (3) constitutes a
Sokhotski-Plemelj problem on R solvable by means of the theory of sectionally holomorphic
functions (see, for example Roos (1969)). First, note that K′(τ) is bounded on R. Hence,
by the mean value theorem (see, for example, Apostol (1998)), K(τ) is L-continuous on
R. Moreover, K(τ) is L-continuous at infinity. Consequently, the Cauchy-type integral

1
2πi

∫
Γ
K(τ)

dτ
τ − ω

, ω ∈ C

exists for all ω ∈ C (real or complex), provided that the singular integral

1
2πi

∫
Γ
K(τ)

dτ
τ − u

, u ∈ R

is defined as a Cauchy principal value in double sense, (see Vanderperre (2000) for a precise
definition of Γ).

Moreover, the Cauchy-type integral represents a sectionally holomorphic function in C,
vanishing at infinity. A straightforward application of the theory of sectionally holomor-
phic functions entails that

ψ+(ω) =
1

2πi

∫
Γ
ϕ(τ)

dτ

τ − ω
, ω ∈ C+,
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or more explicitly,

E
(
eiωY 1 {N = B}

)
= EhPB(0)λ+

H(ω) {1 + κ(ω)} , ω ∈ C+, (4)

where
κ(ω) :=

1
2πi

∫
Γ
K(τ)

dτ
τ − ω

, ω ∈ C+.

Equation (4) yields PB = EhPB(0)(1 + κ), where

κ := lim
ω→0
ω∈C+

κ(ω). (5)

Applying the Sokhotski-Plemelj formula, it follows that

κ =
1
2
K(0) +

1
2πi

∫
Γ
K(τ)

dτ
τ
.

We summarize the results of this section as
PA = PB(0)Ef,
PB = PB(0) (1 + κ)Eh,
PC = PB(0)Er.

Invoking the identity
∑

K PK = 1, reveals that PB(0) = 1/ (Ef + Er + (1 + κ)Eh).
Hence,

A =
Ef

Ef + Er + (1 + κ)Eh
.

4.1 Some remarks

Note that A satisfies the so-called insensitivity property with regard to R, i.e. A is R-
insensitive. Consequently, A exists for an arbitrary R with finite mean. Moreover, ob-
serve that the L-continuity of a characteristic function does not depend on the canonical
structure (Lebesgue-decomposition) of the corresponding distribution. For instance, the
L-inequality

|Ee−iτ1f −Ee−iτ2f | ≤ Ef |τ1 − τ2|, τ1, τ2 ∈ R

always holds for any f with finite mean. However, Ee−iτf with f arbitrary, has no limit
if |τ | → ∞. Therefore, we transform K(τ) into the equivalent form K(τ) = K+

H(τ)λ−F (τ),
where

K+
H(τ) :=


EfiτEeiτh

1−Eeiτh
, if τ 6= 0,

−Ef/Eh, if τ = 0.

From the identity

iτEeiτh +H ′(0) +
∫ ∞

0
eiτxH ′′(x) dx = 0, τ ∈ R

and the relationship ∫ ∞

0
|H ′′(x)|dx =

∫ ∞

0+
|dH ′(x)| <∞,
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we obtain, by the Riemann-Lebesgue theorem,

lim
|τ |→∞

K+
H(τ) = −EfH ′(0).

Hence, the L-continuity of K on R and at infinity holds for any f with finite mean and
variance. Thus, A also exists for an arbitrary f . Consequently, our initial assumptions
concerning the existence of density functions F ′ and R′ are superfluous with respect to
ensuring the existence of an invariant measure, provided that our initial conditions imposed
on H are preserved.

4.2 An example

LetH(x) = p1(1−e−λ1x)+p2(1−e−λ2x) where p1 > 0, p2 < 0, p1λ1+p2λ2 = 0 and without
loss of generality 0 < λ1 < λ2. Note that p1 = λ2/(λ2 − λ1), p2 = −λ1/(λ2 − λ1), Eh =
(λ1 + λ2)/λ1λ2. The function (1−H)−1 is log-convex. Hence, H belongs to an important
family of Coxian distributions with tractable engineering applications (see Vanderperre
(1999)). For instance, H is suitable to model the inspection cycle. Note that

Eeiτh = λ1λ2/(λ1 − iτ)(λ2 − iτ).

Hence,

κ(ω) =
λ1λ2

2πi

∫
Γ

Ee−iτf − 1
τ(τ − ω)

dτ
τ + i(λ1 + λ2)

, ω ∈ C+.

Applying Cauchy’s theorem (see, for example, Roos (1969)), entails that

κ(ω) =
1−Ee−(λ1+λ2)f

iEh
(
ω + i(λ1 + λ2)

) .
Hence, by (5),

1 + κ = 1− 1−Ee−(λ1+λ2)f

(λ1 + λ2)Eh
.

Finally, we introduce the random variable

αF :=
∫ f

0
e−(λ1+λ2)x dx.

Note that αF ≤ f , P-almost surely. From the identity

EαF =
1−Ee−(λ1+λ2)f

λ1 + λ2

we obtain

A =
Ef

Ef + Er + Eh−EαF
.
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5 Conclusion

The long-run availability of a technical device, which we called a T-cell, has been analysed
by a powerful methodology based on the theory of sectionally holomorphic functions.
In particular, an explicit formula for the long-run availability of the T-cell was derived
in general (i.e. assuming no specific statistical distributions with regards to the inter-
inspection and repair times) and this result was illustrated for the special case where
Coxian inspections are assumed. The analysis of the time-dependent T-cell (i.e. the point
availability) is still an open problem.
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