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ABSTRACT 
In this paper, we consider the problem of scheduling N jobs on a single machine to minimise total 
tardiness. Both the modified due date (MDD) rule and the heuristic of Wilkerson and Irwin (W-I) 
are very effective in reducing total tardiness. We show that in fact the MDD rule and the W-I 
heuristic are strongly related in the sense that both are based on the same local optimality 
condition for a pair of adjacent jobs, so that a sequence generated by these methods cannot be 
improved by any further adjacent pair-wise interchange.  
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1. INTRODUCTION 

There is a plethora of methods, both simple and complex, that have been developed to solve the 

total tardiness problem. Among the simple rules, the modified due date (MDD) rule due to Baker 

and Bertrand (1982) and the heuristic of Wilkerson and Irwin (W-I) (1971) have been found to be 

very effective in reducing total tardiness and in some cases have been found to produce optimal 

tardiness schedules (see Baker and Bertrand (1982) and Baker and Kanet (1983)). The W-I 

heuristic is an example of a pair-wise interchange technique and is based on conditions of local 

optimality.  Thus, any sequence that satisfies these conditions cannot be improved by adjacent 

pair-wise interchange. In this paper, we show that the MDD rule is in fact strongly related to the 

heuristic of Wilkerson and Irwin (W-I) in that it also generates a sequence that satisfies the local 

optimality conditions. This is a useful result since it demonstrates that these two “classical” 

techniques are much more similar than has generally been recognized. 
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Rachamadugu (1987) has presented local pair-wise optimality conditions for the general weighted 

tardiness problem. He has also shown that the MDD rule is a special case of the optimality 

conditions. By showing the strong relationship that exists between the W-I heuristic and the 

MDD rule we note that, as indicated by Rachamadugu’s results, at least one optimal sequence 

will satisfy the MDD conditions and thus the W-I heuristic conditions. 

 

The balance of the paper is organized as follows. In the next section, we describe the MDD rule 

and the W-I heuristic in detail and in section 3 we present the proof of the relationship between 

them. This is followed in section 4 with the presentation and discussion of some experimental 

results while section 5 concludes the paper. 

 

2. RELATIONSHIP BETWEEN THE MDD RULE AND THE W-I HEURISTIC 

The scheduling problem considered is as follows. There is a set Z={1,2,...,N} of jobs 

simultaneously available at time zero, to be processed on a single machine under the common 

assumptions listed in Baker (1974). Job i requires ti  processing time, ∀i ∈ Z, on the machine 

which can only process one job at a time without pre-emption and inserted idle time. In addition, 

each job i is given a due date di, ∀i ∈ Z. If job i is finished late, a penalty equal to its tardiness Ti 

=max(Ci-di ,0) will be incurred where Ci is the completion time of job i. The objective is to find 

the optimal job sequence * that minimises the total tardiness, that is 

where ∑ −= ,)0 ,max()( ][][ ii dCf σ  (i=1,2,...,N);  is an arbitrary job sequence; the subscript [i] 

denotes the job in position i of ;  is the set of all possible sequences of which there are N!. 

 

Wilkerson-Irwin Heuristic: 

Wilkerson and Irwin (1971), using dominance conditions produced by Emmons (1969), 

developed an effective heuristic to solve the total tardiness problem in (1). The W-I heuristic is an 

example of an interchange procedure. The W-I heuristic uses a decision rule that employs a pair-

wise job comparison in the construction of a sequence. The decision rule can be stated as follows: 

for any given pair of adjacent jobs i and j that can start after time T, schedule the jobs according to 

the earliest due date (EDD) rule if  

))((min)( σσ
πσ

 f = f *

∈
                                               (1)                           
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)2(} ,max{},max{ ddt t+T jiji <  

otherwise schedule the jobs according to the shortest processing time (SPT) rule if  

)3(} ,max{},max{ ddt t+T jiji ≥  

The time T depends on the partial job sequence established prior to the start of job i or job j. 

Notice that our form of representing the heuristic is slightly different from that used by others (see 

Baker (1974)). Thus, instead of using the ‘ ≤ ’ sign in (2) and the ‘>’ in (3) the ‘<’ and the ‘ ≥ ’ 

sign have been applied respectively. Our form ensures that when ] ,max[] ,max[ jiji ddttT =+ , a 

short job is the one that is assigned the next position in the schedule. In the conventional form, a 

long job may as well be preferred to a short job. In appendix A, we show that scheduling a long 

job in this way may cause an increase in the tardiness of the schedule. 

 

To implement the W-I heuristic two ordered lists are used. The first is a list of jobs that have been 

scheduled. It is in fact a partially completed job sequence and is subject to possible rescheduling. 

The second is the unscheduled list which contains the remaining jobs in earliest due date (EDD) 

order so that ,... ][]1[ Rdd ≤≤  and ]1[][ ii tt +≤  whenever ][1][ ii dd +=  where ,)1 2,..., ,1( −= Ri  and 

.1 NR ≤<  At each stage, the first job on the unscheduled list is removed to act as a pivot job in 

order to implement the decision rule. In practice, the heuristic is used as an algorithm the steps of 

which have been described in Baker (1974). For the sake of completeness we shall repeat the 

steps of the heuristic below. Following Baker’s approach we shall let  

  =the index of the last job on the scheduled list 

  =the index of the pivot job 

  =the index of the first job on the unscheduled list 

Adopting our form of representing the W-I heuristic we can now repeat the steps of the algorithm 

as follows. 

 

Step 1 

(Initialisation) Put all the jobs on the unscheduled list in EDD order. Let a and b denote the first 

two jobs on this list. If } ,max{} ,max{ baba ddtt < , then assign the first position in the scheduled 

sequence to the job with the earliest due date; otherwise assign the first position in the sequence 

to the shorter job. The assigned job becomes �and the other job becomes , the pivot job. T 

becomes equal to the completion time of job . 
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Step 2 

If } ,max{} ,max{ γβγβ ddttT <+  or if γβ tt ≤ , then, add job  to the scheduled list. Job �now 

becomes job ; job   is removed from the unscheduled list and now becomes job ; and the next 

job on the unscheduled list now becomes job . Repeat Step 2 unless the unscheduled list is 

empty, in which case add job  to the scheduled list and stop. If, on the other hand, 

}  ,max{}  ,max{ γβγβ ddttT ≥+  and ,γβ tt >  then, return job  to the unscheduled list and let job 

 now become job� � Proceed to Step 3. 

 

Step 3 

If } ,max{} ,max{ βαβαα ddtttT <+−  or if ,βα tt ≤  then, add job  to the scheduled list. Job  

now becomes job ; the first unscheduled job now becomes the pivot job; and the next job on the 

unscheduled list now becomes job . Go to Step 2. If, on the other hand, 

} ,max{} ,max{ βαβαα ddtttT ≥+− and ,βα tt >  then, a jump condition results. Go to Step 4. 

 

Step 4 

(Jump condition) Remove job �from the scheduled list and return it to the unscheduled list in 

EDD order. If jobs remain on the scheduled list, the last remaining job now becomes job . 

Return to Step 3. If there are no jobs on the scheduled list, job �is assigned first position on the 

scheduled list and becomes job ; the first job on the unscheduled list now becomes the pivot job; 

and the next job on the unscheduled list now becomes job . Go to Step 2. 

 

This quite complicated definition has a relatively straightforward result, which we call the W-I 

condition: for adjacent jobs i and j in the final sequence, (with i before j), if 

} ,max{} ,max{ jiji ddttT <+  then ji dd ≤  (i.e. EDD ordering) and if 

} ,max{} ,max{ jiji ddttT ≥+  then ji tt ≤  (i.e. SPT ordering). 

 

MDD Rule: 

Baker and Bertrand (1982) have also developed an effective heuristic - the MDD rule - to solve 

the problem in (1). Unlike the heuristic of Wilkerson and Irwin, the MDD rule is a construction 

heuristic. It is interesting to note, though, that Smith (1956) appears to have been the first to 

formulate the MDD rule; Baker and Bertrand do not seem to have been familiar with this work. 
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Further, it should be noted that while the W-I heuristic has been used mainly to solve 

deterministic static problems, the MDD rule is mainly associated with dynamic scheduling 

problems. As all jobs are available at time T=0 in a static deterministic case, the MDD rule can be 

described as follows. For any given pair of jobs i and j which can start processing after time T, 

schedule job i first followed by job j if  

)4(},max{},max{ t+T dt+T d jjii ≤  

In practice, jobs are selected for scheduling based on a priority index. For the MDD rule the 

priority index for a job k, which can start processing at time T, PIk is given as 

)5(} ,max{PI kkk tTd +=  

where dk and tk  are the original due date and the processing time of job k respectively. The index, 

PIk, is known as the modified due date of job k and is defined as the larger of the original due date 

of job k and its earliest completion time. Among all the unscheduled jobs, the job with the 

smallest value of PIk is the one that is selected for scheduling. 

 

3. PROOF OF RELATIONSHIP BETWEEN MDD AND W-I HEURISTIC 

Proposition 1. For adjacent jobs jandi    in a schedule, the relationship (4) of the MDD rule is 

equivalent to the W-I condition. 

 

Proof. We will first demonstrate that the W-I heuristic implies the MDD rule and then that the 

MDD rule implies the W-I heuristic. We shall use the notation qp ←  to denote that job p 

immediately precedes job q. 

 

 The W-I heuristic states that if 

} ,max{} ,max{ jiji ddttT <+  

then use the EDD to sequence jobs i and j. Suppose 

.} ,max{} ,max{ jiiji dddttT =<+  

So W-I implies ij ←  and we know that id  is greater than each of ,itT +  jtT +  and .jd  Hence,  

.} ,max{} ,max{ iijj tTdtTd +<+  

and so MDD yields ij ← .  

 Similarly, if  

} ,max{} ,max{ jijji dddttT =<+  
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then W-I yields ji ← . We also know that jd  is greater than each of ,itT +  jtT +  and id . 

Hence,  

} ,max{} ,max{ jjii tTdtTd +<+  

and so MDD yields ji ← . Notice that if  

DttT ji <+ } ,max{  

such that D= id = jd , then both the W-I and MDD use SPT to sequence jobs i and j. 

 The W-I heuristic also states that if  

} ,max{} ,max{ jiji ddttT ≥+  

then use SPT to sequence jobs i and j. Suppose  

} ,max{} ,max{ jiiji ddtTttT ≥+=+ . 

W-I then implies ij ←  and we know that itT +  is greater than jtT + , and greater than or equal 

to each of id and jd . Hence,  

} ,max{} ,max{ iijj tTdtTd +≤+  

and so MDD yields ij ← . Similarly, if  

} ,max{} ,max{ jijji ddtTttT ≥+=+  

then W-I yields ji ← . We know that jtT +  is greater than itT + , and greater than or equal to 

each of id  and jd . Hence,  

} ,max{} ,max{ jjii tTdtTd +≤+  

and so MDD yields ji ← . 

Therefore W-I implies MDD. 

 Suppose that  

jjjii dtTdtTd =+<+ } ,max{} ,max{ . 

So MDD implies ji ←  and jd  is greater than each of id , itT +  and jtT + . Hence,  

} ,max{} ,max{ jijji dddttT =<+  

which implies that W-I yields ji ← , the EDD sequence for those two jobs.  

 Now suppose that  

jjjii tTtTdtTd +=+<+ } ,max{} ,max{ . 

Then MDD implies ji ←  and jtT +  is greater than each of id , jd  and itT + . Hence,  
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} ,max{} ,max{ jijji ddtTttT >+=+  

which implies that W-I yields ji ← , the SPT sequence for those two jobs. Notice that if  

} ,max{} ,max{ jjii tTdtTd +=+  

then both the MDD and W-I use SPT to sequence jobs i  and j . 

 Similarly, suppose that  

} ,max{} ,max{ jjiii tTddtTd +>=+ . 

So MDD implies ij ←  and id  is greater than each of itT + , jtT +  and jd . Hence,  

} ,max{} ,max{ jiiji dddttT =<+  

which implies that W-I yields ij ← , the EDD sequence for those two jobs. 

 Now suppose that  

} ,max{} ,max{ jjiii tTdtTtTd +>+=+ . 

Then MDD implies ij ←  and itT +  is greater than each of id , jd  and jtT + . Hence,  

} ,max{} ,max{ jiiji ddtTttT >+=+  

which implies that W-I yields ij ← , the SPT sequence for those two jobs. 

Therefore the MDD implies the W-I.          � 

 

We wish to point out here that the proof we have given above serves only to show that the two 

procedures are based on the same local optimality condition. It does not simultaneously prove that 

the mechanisms of the two procedures for generating a tardiness schedule have exactly the same 

result so that for the same problem, the two heuristics will always generate the same tardiness 

schedule. On the other hand, experimental results presented below appear to indicate that the two 

procedures may in fact be exactly equivalent. However, we have been unable to prove that this is 

the case. 

 

4. EXPERIMENTAL RESULTS 

Two experiments each involving 20 problems were conducted in order to compare the 

performance of the MDD rule and the W-I heuristic on total tardiness. In the first experiment, 

each of the 20 problems had 50 jobs, and in the second, each problem had 100 jobs. The 20 

problems in each case were generated in the manner suggested by Potts and Van Wassenhove 

(1987), as follows. First, for each job i, (i=1,2,...,N), an integer processing time, ti, is generated 
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from a uniform distribution [1, N], and then the total processing time, ∑= itP , (i=1,2,...,N) is 

computed. N is the total number of jobs in the problem. Thus, N=50 and N=100 for problems in 

the first and second experiments respectively. The relative range of due dates (RDD) and the 

average tardiness factor (TF) were selected from the sets {0.2,0.4,0.6,0.8,1.0} and 

{0.2,0.4,0.6,0.8} respectively, and for each job i a due date, di, was generated from a uniform 

distribution as [P(1-TF-RDD/2), P(1-TF+RDD/2)]. Fisher (1976), Schrage and Baker (1978), and 

Potts and Van Wassenhove (1982) have observed that problems with TF=0.6 and TF=0.8 appear 

to be hardest to solve particularly when RDD is small. 

 

The results in Table 1 compare the relative performance of the MDD rule and the heuristic of 

Wilkerson and Irwin in reducing total tardiness with respect to problems with 50 and 100 jobs 

respectively. We can see that the performance of the two procedures in reducing tardiness is same 

for all combinations of RDD and TF values in both experiments. This suggests that the two 

methods may in fact be exactly equivalent. We also observed that while the MDD rule took the 

same computation time to solve each of the 20 problems with the same number of jobs, the 

computation time taken by the W-I heuristic was variable. In general, it took less time than the 

MDD rule to solve problems with TF=0.2, and took substantially more time than the MDD rule to 

solve problems with TF between 0.4 and 0.8 inclusive. 

 

Table 1: Tardiness values obtained for MDD and W-I heuristics for problems 
with 50 and 100 jobs. 

 
 
 

 
 

 
TOTAL TARDINESS 

 
RDD 

 
TF 

 
WITH 50 JOBS 

 
WITH 100 JOBS 

 
 

 
 

 
MDD 

 
W-I 

 
MDD 

 
W-I 

 
0.2 

 
0.2 

 
430 

 
430 

 
2921 

 
2921 

 
0.2 

 
0.4 

 
3021 

 
3021 

 
22195 

 
22195 

 
0.2 

 
0.6 

 
7770 

 
7770 

 
57772 

 
57772 

 
0.2 

 
0.8 

 
13961 

 
13961 

 
108443 

 
108443 

 
0.4 

 
0.2 

 
45 

 
45 

 
28 

 
28 

 
0.4 

 
0.4 

 
2208 

 
2208 

 
14195 

 
14195 
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0.4 

 
0.6 

 
6845 

 
6845 

 
48202 

 
48202 

 
0.4 

 
0.8 

 
13907 

 
13907 

 
102808 

 
102808 

 
0.6 

 
0.2 

 
0 

 
0 

 
0 

 
0 

 
0.6 

 
0.4 

 
1361 

 
1361 

 
7748 

 
7748 

 
0.6 

 
0.6 

 
6079 

 
6079 

 
40828 

 
40828 

 
0.6 

 
0.8 

 
14483 

 
14483 

 
105367 

 
105367 

 
0.8 

 
0.2 

 
0 

 
0 

 
0 

 
0 

 
0.8 

 
0.4 

 
641 

 
641 

 
1788 

 
1788 

 
0.8 

 
0.6 

 
5930 

 
5930 

 
36806 

 
36806 

 
0.8 

 
0.8 

 
15179 

 
15179 

 
109626 

 
109626 

 
1.0 

 
0.2 

 
0 

 
0 

 
0 

 
0 

 
1.0 

 
0.4 

 
133 

 
133 

 
0 

 
0 

 
1.0 

 
0.6 

 
6412 

 
6412 

 
39447 

 
39447 

 
1.0 

 
0.8 

 
15926 

 
15926 

 
114495 

 
114495 

 

5 CONCLUSION 

In this paper we have studied the single machine total tardiness problem. We have shown that the 

W-I heuristic and the MDD rule are strongly related, and experimental evidence appears to 

suggest that the two methods are exactly equivalent so that for each tardiness problem, they will 

always arrive at the same result. However, we have been unable to prove  that this is indeed the 

case. Nevertheless, the above findings partly accounts for the outstanding performance of the 

MDD rule reported in the literature. We have also noted that the W-I heuristic is a special case of 

the Rachamadugu’ s local optimality condition for the general weighted tardiness problem. 
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Appendix A 

Consider a schedule in which N jobs are to be scheduled starting at time T=0 with the objective of 

minimizing tardiness. Suppose that the three jobs shown below are the remaining jobs which 

require scheduling beginning at time T=10 (this being the completion time of the (N-3)th job in the 

schedule formed so far) and assume that we use the conventional form of the W-I heuristic to 

schedule these jobs in order to minimize tardiness. 

 

 

Job Number:i 

 

ti 

 

di 

 

1 

 

41 

 

0 

 

2 

 

5 

 

51 

 

3 

 

7 

 

53 
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Remember that the conventional form states that: for any given pair of adjacent jobs i and j that 

can start after time T, schedule the jobs according to the earliest due date (EDD) rule if  

} ,max{} ,max{ jiji ddttT ≤+  

otherwise schedule the jobs according to the shortest processing time (SPT) rule if  

 

} ,max{} ,max{ jiji ddttT >+  

To implement the W-I heuristic jobs are first arranged in EDD order. In our case the jobs are 

already in EDD order. Adopting the notation introduced earlier, we find that at time T=10, job 1 

becomes job  and job 2 becomes job . When the decision rule is applied to these jobs we find 

that  

51} ,max{} ,max{ ==+ γβγβ ddttT  

since 41=βt , 5=γt , 0=βd , and 51=γd . Therefore, according to the decision rule, job 1 is 

added to the schedule and becomes job  whilst job 2 becomes job  and job 3 becomes job . T is 

increased to 51. When the decision rule is applied to jobs   and  we find that  

53} ,max{58} ,max{ =>=+ γβγβ ddttT   

since 5=βt , 7=γt , 51=βd , 53=γd . Hence, according to the decision rule, job 2 is added to 

the schedule. Finally, job 3 is scheduled in last position. The contribution to tardiness due to these 

last three jobs is 66. 

 

Similarly, following the same procedure, it can be shown that our form of the W-I heuristic 

schedules the three jobs starting with job 2, followed by job 3 and then job 1 in last position with 

a tardiness contribution of 63. 

 

This demonstrates that our form is superior to the conventional one in some cases. 
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